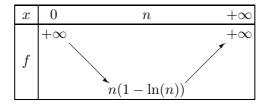
TD n°6 : corrigé

PTSI B Lycée Eiffel

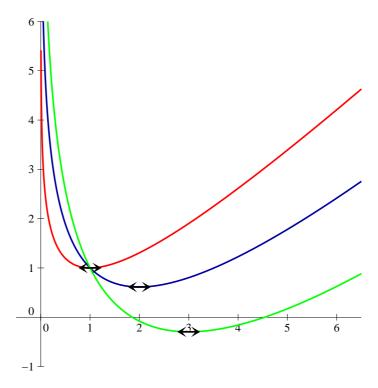
29 janvier 2015

Exercice

1. (a) La fonction f_n est définie sur \mathbb{R}_+^* , de dérivée $f_n'(x) = 1 - \frac{n}{x}$. Cette dérivée s'annule pour x = n, par ailleurs $\lim_{x \to 0} f_n(x) = +\infty$ (n est supposé strictement positif) et par croissance comparée, $\lim_{x \to +\infty} f_n(x) = +\infty$. Enfin, $f_n(n) = n - n \ln(n) = n(1 - \ln(n))$. D'où le tableau de variations suivant :



- (b) Calculons donc $f_{n+1}(x) f_n(x) = x (n+1)\ln(x) x + n\ln(x) = -\ln(x)$. Cette expression est positive si $x \in]0;1]$, négative sur $[1;+\infty[$. Les courbes sont donc « de plus en plus haut » sur [0;1], et « de plus en plus bas » sur $[1;+\infty[$. Elles ont toutes un point commun : $f_n(1) = 1$ quelle que soit la valeur de n.
- (c) Voici les allures demandées (f_1 en rouge, f_2 en bleu, f_3 en vert), avec minimum indiqué.



(d) Lorsque $n \ge 3$, on a $\ln(n) > 1$ puisque 3 > e, donc $n(1 - \ln(n)) < 0$. Or, au vu du tableau de variations de la fonction f_n , celle-ci est bijective de]0; n[vers $]n(1 - \ln(n)); +\infty[$, et

- de $]n; +\infty[$ vers $]n(1-\ln(n)); +\infty[$. Si $n \geq 3$, 0 a donc exactement deux antécédents, l'un (celui qu'on notera u_n) sur l'intervalle]0; n[, et l'autre sur $]n; +\infty[$ (qui correspond à v_n).
- 2. (a) On a déja remarqué plus haut que $f_n(1) = 1 > 0$. De plus, $f_n(e) = e n \ln(e) = e n < 0$ avec $n \ge 3$. Puisque $f_n(1) > f_n(u_n) > f_n(e)$, et la fonction f_n étant strictement décroissante sur l'intervalle]0; n[auquel appartiennent ces trois valeurs, on a bien $1 < u_n < e$.
 - (b) Calculons donc $f_n(u_{n+1}) = u_{n+1} n \ln(u_{n+1})$. Or, par définition, on sait que $f_{n+1}(u_{n+1}) = 0$, c'est-à-dire que $u_{n+1} (n+1)\ln(u_{n+1}) = 0$ ou encore $u_{n+1} = (n+1)\ln(u_{n+1})$. En remplaçant dans le calcul précédent, on a donc $f_n(u_{n+1}) = (n+1)\ln(u_{n+1}) n \ln(u_{n+1}) = \ln(u_{n+1})$. Comme on vient de voir que tous les termes de la suite étaient strictement supérieurs à 1, $\ln(u_{n+1}) > 0$, donc $f_n(u_{n+1}) > f_n(u_n)$. La fonction f_n étant toujours décroissante sur l'intervalle considéré, $u_{n+1} < u_n$ et la suite (u_n) est donc décroissante. Comme elle est par ailleurs minorée par 1, elle converge certainement.
 - (c) Au vu de l'encadrement $1 < u_n < e$, et en utilisant le fait que $u_n = n \ln(u_n)$, on a $1 < n \ln(u_n) < e$, soit $\frac{1}{n} < \ln(u_n) < \frac{e}{n}$. Les deux termes extrêmes de cet encadrement ont manifestement pour limite 0, une application du théorème des gendarmes nous permet d'affirmer que $\lim_{n \to +\infty} \ln(u_n) = 0$, donc $\lim_{n \to +\infty} u_n = 1$.
 - (d) Puisque u_n tend vers 1, u_n-1 tend vers 0, donc $\lim_{n\to+\infty}\frac{\ln(1+(u_n-1))}{u_n-1}=1$ (limite classique du cours), ce qui revient exactement à dire que la limite recherchée vaut 1.
- 3. (a) Puisque $n < v_n$, le théorème de comparaison nous donne immédiatement $\lim_{n \to +\infty} v_n = +\infty$.
 - (b) Calculons donc: $f_n(n \ln(n)) = n \ln(n) n \ln(n \ln(n)) = n \ln(n) n \ln(n) n \ln(\ln(n)) = -n \ln(\ln(n))$. Comme $n \ge 3$, $\ln(n) > 1$, et $\ln(\ln(n)) > 0$, donc $f_n(n \ln(n)) < 0$. Comme, par définition, $f_n(v_n) = 0$, et que sur $]n; +\infty[$, intervalle auquel appartiennent ces deux valeurs, f_n est croissante, on en déduit que $n \ln(n) < v_n$.
 - (c) On peut reprendre intelligemment les calculs de la toute première question : la fonction f_2 est strictement positive sur \mathbb{R}^{+*} , donc on a $\forall x > 0, \ x > 2 \ln(x)$. L'inégalité demandée en découle.
 - (d) Calculons à nouveau : $f_n(2n\ln(n)) = 2n\ln(n) n\ln(2n\ln(n)) = 2n\ln(n) n\ln(n) n\ln(2\ln(n)) = n(\ln(n) \ln(2\ln(n))$. Or, comme $n > 2\ln(n)$, $\ln(n) > \ln(2\ln(n))$, donc $f_n(2n\ln(n)) > 0$. On en déduit comme tout à l'heure que $v_n < 2n\ln(n)$.
 - (e) Au vu de ce qui précède, $\ln(n) + \ln(\ln(n)) \le \ln(v_n) \le \ln(2) + \ln(n) + \ln(\ln(n))$, donc $1 + \frac{\ln(\ln(n))}{\ln(n)} \le \frac{v_n}{\ln(n)} \le 1 + \frac{\ln(2)}{\ln(n)} + \frac{\ln(\ln(n))}{\ln(n)}$. Or, on sait que $\lim_{n \to +\infty} \ln(n) = +\infty$, et $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ (croissance comparée), donc par composition de limites, $\lim_{n \to +\infty} \frac{\ln(\ln(n))}{\ln(n)} = 0$. Les deux membres extrêmes de l'encadrement précédent ont donc pour limite 1, et on peut appliquer le théorème des gendarmes pour obtenir $\lim_{n \to +\infty} \frac{\ln(v_n)}{\ln(n)} = 1$.

Problème

I. Triangulations de polygônes.

1. Il n'y a qu'une seule façon de trianguler un triangle, c'est de ne rien faire! On en déduit que $t_1 = 1$. Pour un carré, deux possibilités, on peut le découper suivant l'une ou l'autre des deux diagonales, ce qui donne $t_2 = 2$. Pour les pentagones, autant faire une jolie petite liste de dessins, il doit y en avoir cinq:

2. Eh bien voila, en tentant de trier dans un ordre plus ou moins logique :

- 3. Une fois le triangle $A_1A_iA_{n+3}$ imposé, il reste à découper en triangles les deux polygones qui sont de part et d'autre de ce triangle. Le premier a pour sommets A_1, A_2, \ldots, A_i , soit i sommets, donc peut être triangulé de t_{i-2} façons. Le deuxième a pour sommets $A_i, A_{i+1}, \ldots, A_{n+3}$, soit (n+3)-i+1=n-i+4 sommets, donc peut être triangulé de t_{n+2-i} façons. Les deux triangulations se faisant indépendamment l'une de l'autre, il y a au total $t_{i-2}t_{n-(i-2)}$ triangulations de notre polygone initial contenant le triangle $A_1A_iA_{n+3}$.
- 4. Il y a par définition t_{n+1} triangulations pour le polygone considéré à n+3 sommets. Chacune de ces triangulations contient exactement un triangle du type $A_1A_iA_{n+3}$, avec $i \in 2, \ldots, n+2$ donc il suffit pour obtenir le nombre total de triangulations du polygone d'additionner les nombres obtenus à la question précédente pour toutes les valeurs possibles de i. Autrement

dit, $t_{n+1} = \sum_{i=2}^{i=n+2} c_{i-2} c_{n-(i-2)}$. Un petit décalage d'indice ramène à la formule nettement plus

lisible
$$t_{n+1} = \sum_{i=0}^{n} t_i t_{n-i}$$
.

5. On calcule successivement $t_1 = t_0 = 1$, puis $t_2 = t_0t_1 + t_1t_0 = 1 + 1 = 2$; $t_3 = t_0t_2 + t_1^2 + t_2t_0 = 2 \times 2 + 1 = 5$; $t_4 = 2t_0t_3 + 2t_1t_2 = 2 \times 5 + 2 \times 2 = 14$. Jusque là on retrouve bien les valeurs constatées. Continuons donc : $t_5 = 2t_0t_4 + 2t_1t_3 + t_2^2 = 2 \times 14 + 2 \times 5 + 2^2 = 42$; et $t_6 = 2t_0t_5 + 2t_1t_4 + 2t_2t_3 = 2 \times 42 + 2 \times 14 + 2 \times 5 \times 2 = 132$.

II. Une formule explicite.

- 1. Calculons donc: $c_0 = \frac{1}{1} \times \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$; $c_1 = \frac{1}{2} \times \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1$; $c_2 = \frac{1}{3} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2$; et $c_3 = \frac{1}{4} \times \begin{pmatrix} 6 \\ 3 \end{pmatrix} = \frac{1}{4} \times \frac{6 \times 5 \times 4}{6} = 5$.
- 2. Cette question est placée à un endroit curieux dans le problème, puisqu'on ne peut pas déduire facilement des éléments qu'on a pour l'instant le fait que c_n est un entier. En effet, d'après la définition, $c_n = \frac{(2n)!}{n!(n+1)!}$, mais cela ne permet pas de conclure puisque le fait que $\binom{2n}{n}$ soit divible par n+1 n'a rien de trivial. Même la relation démontrée à la question suivante ne suffit pas à prouver le résultat par récurrence. Il faut attendre les relations de la question 4, et plus précisément la forme du milieu de cette question, pour voir de façon évidente que $c_n \in \mathbb{N}$.
- 3. C'est un simple calcul: $\frac{c_{n+1}}{c_n} = \frac{n+1}{n+2} \frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(n+1)!^2} \times \frac{n!^2}{(2n)!} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(2n)!} \times \frac{n!^2}{(2n)!} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(2n)!} \times \frac{n!^2}{(2n+1)!^2} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(n+1)!^2} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(2n)!} \times \frac{n!^2}{(2n)!} \times \frac{n!^2}{(2n)!} = \frac{n+1}{n+2} \times \frac{(2n+2)!}{(2n)!} \times \frac{n!^2}{(2n)!} \times \frac{n!^2}{(2n$
- 4. Encore du calcul sans grand intérêt : $\frac{1}{n} \binom{2n}{n+1} = \frac{(2n)!}{n(n+1)!(n-1)!} = \frac{(2n)!}{n!(n+1)!} = c_n;$ $\binom{2n}{n} \binom{2n}{n+1} = \frac{(2n)!}{n!n!} \frac{(2n)!}{(n+1)!(n-1)!} = \frac{(2n)!(n+1) (2n)!n}{(n+1)!n!} = \frac{(2n)!}{n!(n+1)!} = c_n;$ et enfin $\frac{2}{n+1} \binom{2n-1}{n} = \frac{2(2n-1)!}{(n+1)n!(n-1)!} = \frac{2n(2n-1)!}{(n+1)!n(n-1)!} = \frac{(2n)!}{(n+1)!n!} = c_n.$
- 5. (a) Commençons par l'inégalité de gauche : en élevant le tout au carré et en utilisant le calcul de la question 3, il faut donc prouver que $\frac{16n^3}{(n+1)^3} \leq \frac{4(2n+1)^2}{(n+2)^2}, \text{ soit encore } 4n^3(n+2)^2 \leq (2n+1)^2(n+1)^3.$ On passe tout à droite et on fait la différence : $(4n^2+4n+1)(n^3+3n^2+3n+1)-4n^3(n^2+4n+4)=4n^5+16n^4+25n^3+19n^2+7n+1-4n^5-16n^4-16n^3=9n^3+19n^2+7n+1$ qui est clairement positif, ce qui prouve l'inégalité de gauche. Passons à celle de droite, qui se ramène plus simplement à $\frac{4(2n+1)^2}{(n+2)^2} \leq \frac{16(n+1)^3}{(n+2)^3}, \text{ soit } (2n+1)^2(n+2) \leq 4(n+1)^3.$ On met une fois de plus tout à droite : $4(n+1)^3-(4n^2+4n+1)(n+2)=4n^3+12n^2+12n+4-4n^3-12n^2-9n-2=3n+2>0,$ ce qui prouve la deuxième partie de l'encadrement.
 - (b) Tous les nombres présents dans l'encadrement précédent sont positifs, on peut les multiplier entre eux sans difficulté, faisons-le lorsque k varie entre 1 et n-1 pour obtenir $\prod_{k=1}^{n-1} 4\left(\frac{n}{n+1}\right)^{\frac{3}{2}} \leq \prod_{k=1}^{n-1} \frac{c_{k+1}}{c_k} \leq \prod_{k=1}^{n-1} 4\left(\frac{k+1}{k+2}\right)^{\frac{3}{2}}$. Le terme du milieu se télescope pour donner $\frac{c_{n-1+1}}{c_1} = c_n$. Dans celui de gauche, les facteurs 4 donnent un 4^{n-1} puisqu'il y a n-1 termes dans le produit, et les puissances $\frac{3}{2}$ se telescopent pour laisser $\frac{1^{\frac{3}{2}}}{n^{\frac{3}{2}}} = \frac{1}{n\sqrt{n}}$, ce qui prouve exactement l'inégalité de gauche. À droite, on aura également un 4^{n-1} , et les puissances donnent $\frac{2^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}}$. Or, $(n+1)^{\frac{3}{2}} \geq n\sqrt{n}$, et $2^{\frac{3}{2}} = 2\sqrt{2} \leq 3$, donc $\frac{2^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} \leq \frac{3}{n\sqrt{n}}$, ce qui permet de conclure à l'encadrement souhaité.
- 6. (a) Utilisons donc l'indice généreusement donné par l'énoncé : en posant i=n-k, on obtient $T_n = \sum_{k=0}^{k=n} kc_k c_{n-k} = \sum_{i=0}^{i=n} (n-i)c_{n-i}c_i = \sum_{i=0}^{i=n} nc_i c_{n-i} \sum_{i=0}^{i=n} ic_i c_{n-i} = nS_n T_n. \text{ On a donc}$

$$T_n = nS_n - T_n$$
, soit $2T_n = S_n$ et donc $T_n = \frac{n}{2}S_n$.

- (b) Partons plutôt du membre de droite, et utilisons le résultat de la question 3 en l'écrivant sous la forme $(4k+2)c_k = (k+2)c_{k+1} : 4T_n + 3S_n = 4\sum_{k=0}^{k=n}kc_kc_{n-k} + 3\sum_{k=0}^{k=n}c_kc_{n-k} = \sum_{k=0}^{k=n}(4k+3)c_kc_{n-k} = \sum_{k=0}^{k=n}(4k+2)c_kc_{n-k} + \sum_{k=0}^{k=n}c_kc_{n-k} = \sum_{k=0}^{k=n}(k+2)c_{k+1}c_{n-k} + S_n$. Faisons maintenant un petit changement d'indice en posant i = k+1 dans la première somme, et on a $4T_n + 3S_n = \sum_{i=1}^{k=n+1}(i+1)c_ic_{n+1-i} + S_n = \sum_{i=0}^{k=n+1}(i+1)c_ic_{n+1-i} c_0c_{n+1} + S_n$. Or, $c_0 = 1$, donc $c_0c_{n+1} = c_{n+1}$ qui, par hypothèse est égal à S_n . Il nous reste donc $4T_n + 3S_n = \sum_{i=0}^{k=n+1}(i+1)c_ic_{n+1-i} = \sum_{i=0}^{k=n+1}ic_ic_{n+1-i} + \sum_{i=0}^{k=n+1}c_ic_{n+1-i} = T_{n+1} + S_{n+1}$, et la formule est démontrée.
- (c) Au rang 0, le résultat est vrai : $S_0 = 1 = c_1$. Supposant maintenant le résultat vrai au rang n, et combinons les résultats des questions a et b pour trouver $\frac{n+1}{2}S_{n+1} + S_{n+1} = 4 \times \frac{n}{2}S_n + 3S_n$, soit (en multipliant tout par 2) $(n+3)S_{n+1} = (4n+6)S_n$. Autrement dit, en utilisant notre hypothèse de récurrence, $S_{n+1} = \frac{4n+6}{n+3}c_{n+1}$. Or, on sait en appliquant le résultat de la question 3 pour k = n+1 que $\frac{c_{n+2}}{c_{n+1}} = \frac{4(n+1)+2}{n+1+2} = \frac{4n+6}{n+3}$. On en déduit que $S_{n+1} = c_{n+2}$, ce qui prouve $\mathcal{P}(n+1)$ et achève la récurrence.
- (d) On peut encore une fois procéder par récurrence, mais il faut faire une récurrence forte. Au rang 0, on sait que $t_0=c_0=1$. Supposons donc les égalités vérifiées jusqu'à un certain entier n. On a alors $\sum_{k=0}^{k=n} c_k c_{n-k} = \sum_{k=0}^{k=n} t_k t_{n-k}$, puisque les termes apparaissant dans les deux sommes sont les mêmes par hypothèse de récurrence. On en déduit que $t_{n+1}=c_{n+1}$, ce qui achève la récurrence.

III. Le retour du dénombrement.

- 1. (a) Assez clairement, $\delta_{n,0}=1$ puisqu'on ne peut se rendre en un point situé sur l'axe des abscisses qu'en se déplaçant toujours vers la droite. Et $\delta_{n,m}=0$ si n>m puisque le point est situé au-dessus de Δ .
 - (b) Pour atteindre le point (n,n), le dernier déplacement effectué sera nécessairement un déplacement vers le haut (sinon, on viendrait d'un point qui n'est pas en-dessous de Δ), c'est-à-dire un déplacement venant compléter un début de chemin menant au point (n,n-1). Réciproquement, tout chemin menant à (n,n-1) se complète en un chemin menant à (n,n) en lui ajoutant un déplacement vers le haut. Il y a donc autant de chemins menant à (n,n-1) que de chemins menant à (n,n), et $\delta_{n,n}=\delta_{n,n-1}$. Le principe est exactement le même pour la deuxième formule, mais en distinguant cette fois deux types de chemins : ceux pour lequel le dernier déplacement s'est effectué vers la droite (venant donc du point (n-1,m)) et ceux ayant un dernier déplacement vers le haut (venant de (n,m-1)). Les deux catégories de chemins formant des ensembles disjoints, l'égalité en découle (on considérera évidemment que $\delta_{n,m-1}=0$ si m=0).
 - (c) D'après la question précédente, $\delta_{n,1} = \delta_{n-1,1} + \delta_{n,0} = \delta_{n-1,1} + 1$. Autrement dit, la suite $(\delta_{n,1})$ est arithmétique de raison 1, et comme $\delta_{1,1} = 1$ (un seul chemin possible : un pas vers la droite puis un vers le haut), on trouve $\delta_{n,1} = n$. On procède de même pour le deuxième calcul : $\delta_{n,2} = \delta_{n-1,2} + \delta_{n,1} = \delta_{n-1,2} + n$. Là encore, il nous faut une

initialisation : $\delta_{2,2} = \delta_{2,1} = 2$ en utilisant la première relation du b. On en déduit que $\delta_{n,2} = 2 + \sum_{k=3}^{n} k = 2 + \frac{n(n+1)}{2} - 1 - 2 = \frac{n(n+1)}{2} - 1 = \frac{n^2 + n - 2}{2} = \frac{(n+2)(n-1)}{2}$.

(d) Tout se calcule sans difficulté à l'aide des relations de la question b:

	m = 0	m = 1	m = 2	m = 3	m=4	m = 5	m = 6
n = 0	1						
n = 1	1	1					
n=2	1	2	2				
n = 3	1	3	5	5			
n=4	1	4	9	14	14		
n=5	1	5	14	28	42	42	
n = 6	1	6	20	48	90	132	132

On remarque que les valeurs diagonales ressemblent vraiment étrangement aux premiers termes de la suite (c_n) .

termes de la suite (c_n) . 2. (a) Il faut quand même réussir à faire varier n et m simultanément. Au rang n = 0, la seule

valeur possible de m est 0, et $\frac{n-0+1}{n+1} \binom{n+0}{n} = 1 = \delta_{0,0}$ donc ça va. Supposons les formules vraies pour un certain entier n, pour toutes les valeurs de m inférieures ou égales à n, et tentons de les prouver au rang n+1. Pour cela, on va procéder par récurrence sur m, pour m variant entre 0 et n+1. Pour m=0, on a $\frac{n+1-0+1}{n+1+1} \binom{n+1+0}{n+1} = 1$

 $1=\delta_{n+1,0}$, la formule est correcte. Supposons maintenant la formule vérifiée pour $\delta_{n+1,m}$, alors $\delta_{n+1,m+1}=\delta_{n,m+1}+\delta_{n+1,m}$. On utilise simultanément les hypothèses de récurrence de la « grande » récurrence et de la « petite » récurrence pour remplacer :

$$\begin{split} &\delta_{n+1,m+1} = \frac{n-m}{n+1} \binom{n+1+m}{n} + \frac{n+2-m}{n+2} \binom{n+1+m}{n+1} \\ &= \frac{(n-m)(n+m+1)!}{(n+1)n!(m+1)!} + \frac{(n+2-m)(n+m+1)!}{(n+2)(n+1)!m!} \\ &= \frac{(n+m+1)!}{(n+1)!(m+1)!} \binom{n-m+\frac{(n+2-m)(m+1)}{n+2}}{n+2} \\ &= \frac{(n+m+1)!}{(n+1)!(m+1)!} \times \frac{n^2+2n-nm-2m+nm+n+2m+2-m^2-m}{n+2} \\ &= \frac{(n+m+1)!}{(n+1)!(m+1)!} \times \frac{n^2+3n-m^2-m+2}{n+2}. \text{ On devrait obtenir pour achever la récurrence } \frac{n-m+1}{n+2} \frac{(n+m+2)!}{(n+1)!(m+1)!} = \frac{(n+m+1)!}{(n+1)!(m+1)!} \times \frac{(n-m+1)(n+m+2)}{n+2}. \text{ Le numérateur de la deuxième fraction vaut } n^2+nm+2n-mn-m^2-2m+n+m+2 = n^2+3n-m^2-m+2. \text{ Oh, miracle, ça marche!} \end{split}$$

(b) Remplaçons donc m par n dans la formule obtenue :

$$\delta_{n,n} = \frac{n-n+1}{n+1} \binom{2n}{n} = \frac{1}{n+1} \binom{2n}{n} = c_n.$$

- 3. (a) Un tel chemin commence forcément par un pas vers la droite et achève par un pas vers le haut. Entre deux, on effectue un déplacement du point (1,0) au point (n,n-1), le tout sans passer au-dessus de la droite d'équation y=x-1 puisqu'on ne veut pas croiser Δ . Quitte à décaler notre repère d'une unité vers la gauche, ces chemins sont les même que ceux menant de l'origine au point (n-1,n-1) sans passer au-dessus de Δ , qui sont par définition en nombre égal à $\delta_{n-1,n-1}=c_{n-1}$.
 - (b) Un tel chemin est composé de deux morceaux : un premier morceau menant de (0,0) à (k,k) sans retoucher la diagonale (on vient de voir qu'il y en a c_{k-1}) puis un second

6

- menant de (k,k) vers (n,n) en restant simplement en-dessous de Δ mais en pouvant la croiser, ce qui est exactement équivalent à partir de l'origine et aller jusqu'à (n-k,n-k) en restant en-dessous de Δ (on décale cette fois de k unités sur la diagonale). Il y a donc c_{n-k} chemins possibles pour la seconde moitié du parcours. Les choix des deux moitiés étant complètement indépendants, on a au total $c_{k-1}c_{n-k}$ possibilités.
- (c) On peut partitionner l'ensemble des chemins selon leur premier point de rencontre avec Δ (en faisant une catégorie supplémentaire pour ceux qui ne recroisent pas Δ). On obtient bien tous les chemins ainsi, et comptés une seule fois chacun (puisque le premier point de contact avec Δ est certainement unique). La somme des nombres de chemins corres-

pondants donnera alors $\delta_{n,n}$. Autrement dit, $\delta_{n,n} = \sum_{k=1}^{n-1} c_{k-1} c_{n-k} + c_{n-1}$. Comme $c_0 = 1$,

on peut écrire le terme isolé sous la forme c_0c_{n-1} et l'intégrer à la somme pour obtenir exactement la formule souhaitée.