TD n°6 : révisions pour le DS5

PTSI B Lycée Eiffel

29 janvier 2015

Exercice

Pour tout entier $n \in \mathbb{N}^*$, on définit la fonction f_n par $f_n(x) = x - n \ln(x)$.

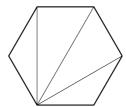
- 1. (a) Étudier la fonction f_n sur son domaine de définition (variations et limites).
 - (b) Déterminer la position relative des courbes représentatives des fonctions f_n .
 - (c) Tracer dans un même repère une allure rapide des courbes représentatives de f_1 , f_2 et f_3 .
 - (d) Expliquer pourquoi, si $n \geq 3$, l'équation $f_n(x) = 0$ admet exactement deux solutions, qu'on notera u_n et v_n (u_n étant la plus petite des deux), et qui vérifient $0 < u_n < n < v_n$.
- 2. (a) Montrer que $\forall n \geq 3, u_n \in]1; e[.$
 - (b) Montrer que $f_n(u_{n+1}) = \ln(u_{n+1})$, en déduire la monotonie et la convergence de la suite (u_n) .
 - (c) En utilisant un encadrement de $\ln(u_n)$, montrer que $\lim_{n\to+\infty}u_n=1$.
 - (d) Montrer que $\lim_{n\to+\infty} \frac{\ln(u_n)}{u_n-1} = 1$.
- 3. (a) Déterminer la limite de la suite (v_n) .
 - (b) Calculer $f_n(n \ln(n))$, en déduire que $n \ln(n) < v_n$.
 - (c) Montrer que $\forall n \geq 1, n > 2 \ln(n)$.
 - (d) En déduire le signe de $f_n(2n\ln(n))$, puis que $n\ln(n) < v_n < 2n\ln(n)$.
 - (e) En déduire la limite de $\frac{\ln(v_n)}{\ln(n)}$.

Problème

Ce problème présente quelques dénombrements classiques faisant intervenir une suite de nombres entiers appelés nombres de Catalan, ainsi que l'étude de quelques propriétés de ces nombres. Les différentes parties du problème sont très largement indépendantes.

I. Triangulations de polygônes.

Trianguler un polygône à n côtés consiste à tracer un certain nombre de cordes dans le polygône (segments reliant deux sommets non adjacents du polygône), de façon à la découper en triangles (les cordes ne doivent donc pas se couper). Ci-dessous, un exemple de triangulation d'un hexagone :



On notera dans cette partie t_n le nombre de triangulations distinctes d'un polygône à n+2 côtés (en convenant que $t_0=1$).

- 1. Déterminer les valeurs de t_1 , t_2 et t_3 (on pourra faire des petits dessins pour illustrer).
- 2. Vérifier que $t_4 = 14$ en dessinant les 13 triangulations d'un hexagone régulier distinctes de celle donnée en exemple plus haut.
- 3. Soient $A_1, A_2, \ldots, A_{n+3}$ les sommets d'un polygône à n+3 côtés. Quel est le nombre de triangulations du polygône contenant le triangle $A_1A_iA_{n+3}$ (pour $k \in \{2, \ldots, n+2\}$)? On exprimera le résultat en fonction des nombres t_i , pour des valeurs de i inférieures ou égales à n.
- 4. En déduire que, $\forall n \geq 1, t_{n+1} = \sum_{k=0}^{n} t_k t_{n-k}$.
- 5. Vérifier à l'aide de cette relation les valeurs des premiers termes de la suite (t_n) , et calculer t_5 et t_6 .

II. Une formule explicite.

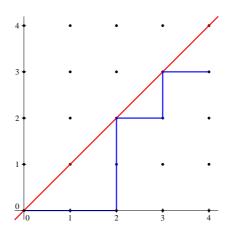
On note dans cette section $c_n = \frac{1}{n+1} \binom{2n}{n}$ (pour tout entier naturel n).

- 1. Calculer c_0 , c_1 , c_2 et c_3 .
- 2. Expliquer pourquoi c_n est toujours un entier naturel.
- 3. Montrer que, $\forall n \in \mathbb{N}, c_{n+1} = \frac{2(2n+1)}{n+2}c_n$.
- 4. Prouver toutes les relations suivantes : $c_n = \frac{1}{n} \binom{2n}{n+1} = \binom{2n}{n} \binom{2n}{n+1} = \frac{2}{n+1} \binom{2n-1}{n}$.
- 5. (a) Montrer que, $\forall n \in \mathbb{N}, 4 \times \left(\frac{n}{n+1}\right)^{\frac{3}{2}} \leq \frac{c_{n+1}}{c_n} \leq 4\left(\frac{n+1}{n+2}\right)^{\frac{3}{2}}$.

- (b) En déduire que $\frac{4^{n-1}}{n\sqrt{n}} \le c_n \le 3 \times \frac{4^{n-1}}{n\sqrt{n}}$.
- 6. On note dans cette question $S_n = \sum_{k=0}^n c_k c_{n-k}$ et $T_n = \sum_{k=0}^n k c_k c_{n-k}$.
 - (a) En effectuant le changement d'indice i = n k, prouver que $T_n = \frac{n}{2}S_n$.
 - (b) Montrer que $T_{n+1} + S_{n+1} = 4T_n + 3S_n$.
 - (c) Prouver par récurrence, en utilisant les résultats des deux questions précédentes, que $S_n = c_{n+1}$.
 - (d) En comparant les relations de récurrence obtenues sur les suites (c_n) et (t_n) (de la première partie du problème), prouver rigoureusement que $\forall n \in \mathbb{N}, t_n = c_n = \frac{1}{n+1} \binom{2n}{n}$.

III. Le retour du dénombrement.

On considère dans cette partie des chemins menant dans le plan de l'origine du repère jusqu'au point de coordonnées (n,m), en respectant les conditions suivantes : à chaque pas, on se déplace d'une unité vers la droite, ou bien d'une unité vers le haut. On note Δ l'ensemble des points du plan de coordonnées (x,y) situés sous la droite d'équation y=x (c'est-à-dire tels que $x\leq y$), et on note $\delta_{n,m}$ le nombre de chemins menant de (0,0) à (n,m) et situés entièrement dans Δ (autrement dit, ne traversant pas la diagonale). Un exemple avec (n,m)=(3,4):



- 1. (a) Que vaut $\delta_{n,0}$ (pour tout entier n)? Que vaut $\delta_{n,m}$ si m > n?
 - (b) Justifier que $\delta_{n,n} = \delta_{n,n-1}$ (si $n \ge 1$) et $\delta_{n,m} = \delta_{n-1,m} + \delta_{n,m-1}$ si m < n.
 - (c) En déduire la valeur de $\delta_{n,1}$ (pour $n \geq 1$) et de $\delta_{n,2}$ (pour $n \geq 2$).
 - (d) Donner la liste des $\delta_{n,m}$ pour toutes les valeurs de n et de m inférieures ou égales à 6, en les présentant sous forme d'un tableau de type « triangle de Pascal ». Comparer les valeurs « diagonales » $\delta_{n,n}$ à celles de t_n et de c_n obtenues dans les deux premières parties du problème.
- 2. (a) Montrer par récurrence sur n que $\delta_{n,m} = \frac{n-m+1}{n+1} \binom{n+m}{n}$.
 - (b) En déduire que $\delta_{n,n} = c_n$.
- 3. (a) Montrer que le nombre de chemins menant de (0,0) à (n,n) sans croiser la diagonale Δ (ailleurs qu'en (0,0) et en (n,n), bien évidemment) est égal à c_{n-1} (ou si vous préférez à $\delta_{n-1,n-1}$).
 - (b) Montrer que le nombre de chemins menant de (0,0) à (n,n) en recoupant pour la première fois la diagonale en (k,k) est égal à $c_{k-1}c_{n-k}$.

(c) En déduire que, pour tout entier naturel n, $\delta_{n,n}=\sum_{k=0}^{n-1}\delta_{k-1,k-1}\delta_{n-k,n-k}.$