TD n°10 : révisions pour le DSn°9

PTSI B Lycée Eiffel

11 juin 2015

Exercice

A. Un exemple.

Dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) , on considère les quatre points A(-1, -1), B(3, -1), C(3, 3) et D(-1, 3). On notera également G le milieu du segment [AD].

- 1. Faire une figure que l'on complètera tout au long de l'exercice.
- 2. Montrer que ABCD est un carré, et déterminer les coordonnées de G.
- 3. On note \mathcal{E} l'ensemble des points du plan vérifiant $\parallel 2\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC} \parallel = \parallel \overrightarrow{AB} \parallel$. Montrer que \mathcal{E} admet pour équation $x^2 + y^2 + 2x 2y 2 = 0$, et reconnaitre l'ensemble \mathcal{E} .
- 4. Déterminer une équation cartésienne du cercle \mathcal{C} circonscrit au triangle ABC. On donnera les coordonnées de son centre Ω .
- 5. Déterminer l'intersection de \mathcal{C} et de \mathcal{E} .
- 6. On note $H(-3-2\sqrt{2},1)$. Déterminer l'équation des tangentes à \mathcal{C} issues du point H, et vérifier que ces tangentes sont également tangentes à \mathcal{E} .

B. Cercles orthogonaux.

Deux cercles du plan de rayons respectifs R_1 et R_2 et de centres respectifs O_1 et O_2 sont dits orthogonaux si $O_1O_2^2 = R_1^2 + R_2^2$.

- 1. Montrer que deux cercles orthogonaux se coupent nécessairement en deux points P et Q.
- 2. Montrer que deux cercles sécants en P sont orthogonaux si et seulement si les tangentes aux deux cercles passant par P sont orthogonales (on fera une figure pour illustrer).
- 3. Les cercles \mathcal{C} et \mathcal{E} de la première partie sont-ils orthogonaux?
- 4. Déterminer tous les cercles du plan qui sont simultanément orthogonaux à \mathcal{C} et à \mathcal{E} (on en tracera quelques-uns sur la figure de la première partie).
- 5. Si deux cercles ont pour équations respectives $x^2 + y^2 2ax 2by c = 0$ et $x^2 + y^2 2dx 2ey f = 0$, déterminer une condition nécessaire et suffisante sur les coefficients a, b, c, d, e et f pour que les cercles soient orthogonaux.