Devoir Surveillé n°1 : corrigé

PTSI B Lycée Eiffel

27 septembre 2014

Exercice 1

- 1. Les nombres dont la partie entière est inférieure ou égale à 2 sont ceux qui sont strictement inférieurs à 3. On se ramène donc à la résolution de l'inéquation du second degré $x^2-3x-4<0$. Son discriminant vaut $\Delta=9+16=25$, et elle admet pour racines $x_1=\frac{3-5}{2}=-1$ et $x_2=\frac{3+5}{2}=4$. Le trinôme étant négatif entre ses racines, on en déduit que $\mathcal{S}=]-1,4[$.
- 2. Il faut faire attention à deux choses ici : le signe dans la valeur absolue bien sûr, mais aussi celui de 2-x qui peut changer le sens de l'inégalité si on le passe à gauche, ce qu'on a bien envie de faire. Séparons donc trois cas pour la résolution :
 - sur $]-\infty,1]$, 1-x et 2-x sont tous les deux positifs, et on se ramène donc à l'inéquation $(1-x)(2-x) \le x$, soit $x^2-4x+2 \le 0$. Ce trinôme a pour discriminant $\Delta=16-8=8$, et s'annule pour $x_1=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}$ et $x_2=2+\sqrt{2}$. Le trinôme est négatif entre ses racines, donc sur $[2-\sqrt{2},1]$ (la seconde racine étant supérieure à 1).
 - sur $[1,2[, |1-x| = x-1, \text{ mais } 2-x \text{ reste positif, ce qui nous ramène à l'inéquation } (x-1)(2-x) \le x$, soit $-x^2 + 2x 2 \le 0$. On trouve pour discriminant $\Delta = 4-8 = -4$, notre trinôme est donc toujours négatif. Autrement dit, l'inéquation est toujours vérifiée sur [1,2[.
 - sur]2,+∞[, pas besoin de se fatiguer, le membre de droite de notre inéquation est négatif et ne peut donc pas être plus grand qu'une valeur absolue.
 Conclusion : S = [2 - √2, 2].
- 3. L'inéquation n'a de sens que si x>0, on pose ensuite $X=\ln(x)$ pour se ramener à $2X^3-5X^2+2X\leq 0$, soit $X(2X^2-5X+2)\leq 0$. Déterminons le signe de la parenthèse : le trinôme a pour discriminant $\Delta=25-16=9$ et admet pour racines $X_1=\frac{5-3}{4}=\frac{1}{2}$, et $X_2=\frac{5+3}{4}=2$. On peut dresser le tableau de signes suivant :

X	$-\infty$		0		$\frac{1}{2}$		2		$+\infty$
$X^2 - 5X + 2$		+		+	0	_	0	+	
$X(X^2 - 5X + 2)$		_	0	+	0	_	0	+	

On doit donc avoir $X \in]-\infty,0] \cup \left[\frac{1}{2},2\right]$, soit en repassant à l'exponentielle (qui donne des valeurs positives pour x), $\mathcal{S} =]0,1] \cup \left[\sqrt{e},e^2\right]$.

4. Commençons par tout mettre à gauche et par multiplier l'équation par e^x pour obtenir l'équation équivalente $2e^{3x} + 3e^{2x} - 11e^x - 6 = 0$. On pose évidemment ensuite $e^x = X$ pour se ramener à l'équation du troisième degré $2X^3 + 3X^2 - 11X - 6 = 0$. On remarque que 2 est une racine évidente : $2 \times 2^3 + 3 \times 2^2 - 11 \times 2 - 6 = 16 + 12 - 22 - 6 = 0$. On peut donc factoriser sous la forme $2X^3 + 3X^2 - 11X - 6 = (X - 2)(aX^2 + bX + c) = aX^3 + (b - 2a)X^2 + (c - 2b)X - 2c$. Par identification des coefficients, on obtient les conditions a = 2; b - 2a = 3, soit b = 7; c - 2b = -11 soit c = 3; et -2c = -6 qui est bien vérifiée. Finalement, notre équation se

1

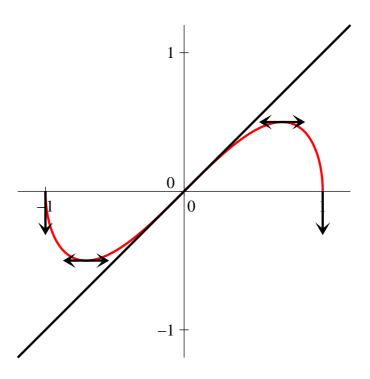
factoriser en $(X-2)(2X^2+7X+3)=0$. La parenthèse a pour discriminant $\Delta=49-24=25$, et admet pour racines $X_1=\frac{-7-5}{4}=-3$ et $X_2=\frac{-7+5}{4}=-\frac{1}{2}$. Les valeurs négatives de X étant à exclure puisqu'on a posé $X=e^x$, une seule solution est valide : $\mathcal{S}=\{\ln(2)\}$.

Exercice 2

- 1. La fonction f est définie quand $x^2 \le 1$, donc $\mathcal{D}_f = [-1, 1]$. La racine carrée n'étant pas dérivable en 0, f ne sera vraisemblablement pas dérivable quand $1 x^2$ s'annule, c'est-à-dire pour x = 1 et x = -1.
- 2. Si $-1 \le 1$, alors $0 \le 1 x^2 \le 1$, donc $\sqrt{1 x^2} \le 1$. Comme $|x| \le 1$, on en déduit que $|x|\sqrt{1 x^2} \le 1$ (les deux termes du produit sont positifs), soit $-1 \le x\sqrt{1 x^2} \le 1$.
- 3. La fonction f est dérivable sur]-1,1[, de dérivée $f'(x)=\sqrt{1-x^2}+x\times\frac{-2x}{2\sqrt{1-x^2}}=\sqrt{1-x^2}-\frac{x^2}{2\sqrt{1-x^2}}=\frac{1-2x^2}{\sqrt{1-x^2}}.$ Le numérateur de cette dérivée s'annule lorsque $x^2=\frac{1}{2}$, c'est-à-dire pour $x=\pm\frac{1}{\sqrt{2}}$, et il est positif entre les deux racines (qui appartient bien à \mathcal{D}_f . On remarque que f(1)=f(-1)=0, et $f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\sqrt{1-\frac{1}{2}}=\frac{1}{2}$. Sans surprise, $f\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{2}$, la fonction f étant manifestement impaire. On peut donc dresser le tableau de variations suivant :

x	-1	$-\frac{1}{\sqrt{2}}$	0	-	$\frac{1}{\sqrt{2}}$	1
f'(x)	_	0	+	+	0 –	-
f	0	$-\frac{1}{2}$	0		$\frac{1}{2}$	

- 4. On sait que $\lim_{x\to\pm 1}\sqrt{1-x^2}=0^+$ (là où ça a un sens, on ne peut tendre vers 0 que par valeurs positives puisque la racine carrée est positive). Comme $\lim_{x\to\pm 1}1-2x^2=-1$, on en déduit facilement que $\lim_{x\to-1^+}f'(x)=\lim_{x\to 1^-}f'(x)=-\infty$. Il y aura en ces deux points des tangentes verticales à \mathcal{C}_f .
- 5. Calculons à nouveau : $f''(x) = \frac{-4x\sqrt{1-x^2} (1-2x^2) \times \frac{-2x}{2\sqrt{1-x^2}}}{1-x^2} = \frac{-4x(1-x^2) + x(1-2x^2)}{\sqrt{1-x^2}(1-x^2)} = \frac{2x^3 3x}{(1-x^2)^{\frac{3}{2}}}$. Cette dérivée seconde est du signe de son numérateur $2x^3 x = x(2x^2 3)$. La parenthèse s'annule en $x = \pm \sqrt{\frac{3}{2}}$, valeurs situées en-dehors de l'intervalle [-1,1], elle est toujours négative sur [-1,1]. On en déduit que f''(x) est de signe opposé à celui de x, c'est-à-dire positive sur [-1,0] et négative sur [0,1[. En particulier, elle s'annule uniquement pour x=0. Comme f(0)=0 et f'(0)=1, la tangente en ce point a pour équation y=x.
- 6. Calculons donc $f(x) x = x(\sqrt{1-x^2}-1)$. On a déjà signalé plus haut que $\sqrt{1-x^2} \le 1$ sur \mathcal{D}_f , donc le signe de f(x) x est opposé à celui de x. La courbe est au-dessus de sa tangente sur [-1,0] et en-dessous sur [0,1].
- 7. Et une première courbe, une :



Exercice 3

1. La fonction f n'est pas définie si $x^2 - x - 2 = 0$, équation de discriminant $\Delta = 1 + 9$, et admettant pour solutions $x_1 = \frac{1-3}{2} = -1$ et $x_2 = \frac{1+3}{2} = 2$. On a donc $\mathcal{D}_f = \mathbb{R} \setminus \{-1; 2\}$.

2. Commençons par les images : $f\left(\frac{1}{2}\right) = \left|\frac{\frac{5}{2}}{-\frac{9}{4}}\right| = \frac{10}{9}$; et $f(-\sqrt{2}) = \left|\frac{2-\sqrt{2}}{\sqrt{2}}\right| = \sqrt{2}-1$. Pour les antécédents de 1, il faut résoudre l'équation $|x+2| = |x^2 - x - 2|$, ce qui donne deux possibilités : soit $-x - 2 = x^2 - x - 2$, donc x = 0; soit $x + 2 = x^2 - x - 2$, donc $x^2 - 2x - 4$, qui a pour discriminant $\Delta = 4 + 16 = 20$, et admet pour racines $x_1 = \frac{2-\sqrt{20}}{2} = 1-\sqrt{5}$ et $x_2 = 1 + \sqrt{5}$. Le réel 1 a donc trois antécédents par $f: 1 - \sqrt{5}$, 0 et $1 + \sqrt{5}$. Pour -2, aucun calcul à faire, il ne peut pas avoir d'antécédents puisque f ne prend que des valeurs positives. Pour 3, on utilise la même méthode que pour $1: \operatorname{soit} x + 2 = 3x^2 - 3x - 6$, donc $3x^2 - 4x - 8 = 0$, discriminant $\Delta = 16 + 96 = 112 = 7 \times 16$, racines $x_3 = \frac{4 - \sqrt{116}}{6} = \frac{2 - 2\sqrt{7}}{3}$ et $x_4 = \frac{2 + 2\sqrt{7}}{3}$; soit $-x - 2 = 3x^2 - 3x - 6$, donc $3x^2 - 2x - 4 = 0$, discriminant $\Delta = 4 + 48 = 52 = 4 \times 13$, racines $x_5 = \frac{2 - \sqrt{52}}{6} = \frac{1 - \sqrt{13}}{3}$ et $x_6 = \frac{1 + \sqrt{13}}{3}$. Le réel 3 a donc quatre antécédents qu'on n'a pas très envie de recopier.

3. On se ramène à l'inéquation $|x+2|-|x^2-x-2| \ge 0$, et on peut par exemple faire un tableau :

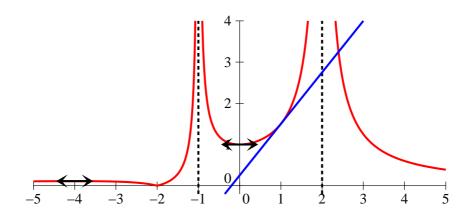
	x	$-\infty$ -	-2 -	-1 2	$2 + \infty$
Ī	x+2	-x-2 (x+2	x+2	x+2
Ī	$ x^2 - x - 2 $	$x^2 - x - 2$	$x^2 - x - 2$ ($-x^2 + x + 2$	$x^2 - x - 2$
	$ x+2 - x^2 - x - 2 $	$-x^2$	$-x^2 + 2x + 4$	x^2	$-x^2 + 2x + 4$

L'inéquation n'est jamais vérifiée sur $]-\infty,-2]$, et elle l'est toujours sur]-1,2[. Sur les deux intervalles restants, $-x^2+2x+4$ est positif entre ses racines, donc sur $[1-\sqrt{5},-1[$ (le nombre $1-\sqrt{5}$ étant compris entre -2 et -1) et sur $]2,1+\sqrt{5}[$. Conclusion : $\mathcal{S}=[1-\sqrt{5},-1[\cup]-1,2[\cup]2,1+\sqrt{5}]=[1-\sqrt{5},1+\sqrt{5}]\setminus\{-1,2\}.$

- 4. Le quotient $\frac{x+2}{x^2-x-2}$ a pour limite 0 en $\pm\infty$ (quotient des termes de plus haut degré), donc f aussi. En -1 et en 2, le dénominateur s'annule mais pas le numérateur, ce qui assure que $\lim_{x\to -1} f(x) = \lim_{x\to 2} f(x) = +\infty$ (la valeur absolu étant de toute façon positive).
- 5. Posons $g(x) = \frac{x+2}{x^2-x-2}$ et étudions les variations et le signe de g. La fonction g est dérivale sur $\mathcal{D}_g = \mathcal{D}_f$, de dérivée $g'(x) = \frac{x^2-x-2-(2x-1)(x+2)}{(x-2-x-2)^2} = \frac{-x^2-4x}{(x^2-x-2)^2} = \frac{x(-x-4)}{(x^2-x-2)^2}$. On sait déjà que g(0) = -1 et $g(-4) = \frac{-2}{18} = -\frac{1}{9}$. De plus, la fonction g change de signe en -2, -1 et 2, elle est négative sur $]-\infty, -2]$ et sur]-1, 2[et positive sur [-2, -1[et sur $]2, +\infty[$. On peut donc dresser le tableau suivant :

x	$+\infty$ -4 -2 $-$	-1 0 2	$2 + \infty$
g'(x)	- 0 + +	+ 0 -	_
g	$\begin{array}{c c} & & & & \\ 0 & & & & \\ & & & \\ \hline \end{array}$	$-\infty$ $-\infty$	+∞ 0
g(x)	0 +		+
f	$\begin{array}{c c} & +\infty \\ & & \\ 0 & & \end{array}$	$+\infty$ $+\infty$	+∞ 0

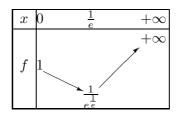
- 6. Pour x=1, on calcule $f(1)=-g(1)=\frac{3}{2}$ et $f'(1)=-g'(1)=\frac{5}{4}$ (f est opposée à g sur tout l'intervalle] -1,2[), l'équation recherchée est donc $y=\frac{5}{4}(x-1)+\frac{3}{2}=\frac{5}{4}x+\frac{1}{4}$.
- 7. Et une deuxième courbe :



Exercice 4

1. On écrira bien sûr $f_a(x)=e^{x\ln(x-a)}$ pour toute la suite de l'exercice. En particulier, $\mathcal{D}_{f_a}=[a,+\infty[$. Indépendemment de la valeur de $a,\lim_{x\to+\infty}f_a(x)=+\infty.$ De l'autre côté, on aura toujours $\lim_{x\to a}\ln(x-a)=-\infty.$ Si a<0, on en déduit que $\lim_{x\to a}x\ln(x-a)=+\infty.$ donc $\lim_{x\to+\infty}f_a(x)=+\infty.$ Au contraire, si a>0, on aura $\lim_{x\to a}x\ln(x-a)=-\infty.$ donc $\lim_{x\to a}f_a(x)=0.$ Enfin, cas particulier pour x=0, on recourt à la croissance comparée pour affirmer que $\lim_{x\to 0}x\ln(x)=0.$ donc $\lim_{x\to 0}f_0(x)=1.$

- 2. Une question facile : la fonction est dérivable sur son domaine de définition et $f'_a(x) = \left(\ln(x-a) + \frac{x}{x-a}\right)e^{x\ln(x-a)}$.
- 3. Si a=0, $f_0(x)=x^x$, et $f_0'(x)=(\ln(x)+1)e^{x\ln(x)}$, qui est du signe de $\ln(x)+1$. En particulier, la dérivée s'annule pour $x=\frac{1}{e}$, et $f_0\left(\frac{1}{e}\right)=\frac{1}{e^{\frac{1}{e}}}$ (on ne peut pas simplifier plus). D'où le tableau de variations suivant :



- 4. Comme le signe de la dérivée calculée plus haut n'a rien d'évident, posons $g_a(x) = \ln(x a) + \frac{x}{x-a}$, et dérivons à nouveau pour tenter de trouver le signe : g_a est dérivable et $g_a'(x) = \frac{1}{x-a} + \frac{x-a-x}{(x-a)^2} = \frac{x-2a}{(x-a)^2}$. Cette dérivée étant strictement positive sur $]a, +\infty[$, g_a est strictement croissante sur son domaine de définition. De plus, $\lim_{x\to +\infty} g_a(x) = +\infty$, et, en écrivant par exemple $g_a(x) = \frac{(x-a)\ln(x-a)+a}{x-a}$, la croissance comparée permet d'affirmer que le numérateur de la fraction tend vers a quand x tend vers a, et donc que $\lim_{x\to a} g_a(x) = -\infty$. La fonction g_n effectue donc une bijection de $[a, +\infty[$ vers \mathbb{R} , et s'annule en particulier une seul fois sur cet intervalle. Peut-on savoir quand? Non, c'est trop compliqué. Contentons-nous donc de constater que $g_a(0) = \ln(-a)$, et constater que $g_a(0) > 0$ si et seulement si a < -1. Dans ce cas, le minimum de g_a sera atteint dans l'intervalle $g_a(0) = 1$, $g_$
- 5. Dans le cas où a>0, le calcul effectué pour la dérivée de g_a reste valable, et cette dérivée est décroissante sur]a,2a], et croissante ensuite. Les limites de g_a en a et en $+\infty$ sont toutes deux égales à $+\infty$ (mêmes calculs que ci-dessus). Le signe de g_a dépend donc du signe de son minimum, c'est-à-dire de $g_a(2a) = \ln(a) + 2$. Pour que g_a (et donc f'_a) s'annule une unique fois, il faut avoir $g_a(2a) = 0$, c'est-à-dire $\ln(a) + 2 = 0$. La valeur recherchée est donc $\alpha = e^{-2} = \frac{1}{e^2}$.
- 6. Si $a > \alpha$, par croissance de la fonction ln, $g_a(2a) = \ln(a) + 2 > 0$, et la fonction g_a est donc toujours strictement positive, ce qui implique bien que f_a sera strictement croissante sur son domaine de définition.
- 7. Au contraire, si $a < \alpha$, g_a a un minimum strictement négatif, et (d'après le théorème de la bijection), sera donc bijective d'une part de]a,2a] vers un intervalle $[g_a(2a),+\infty[$ contenant 0, d'autre part de $[2a,+\infty[$ vers ce même intervalle. En particulier, g_a et f'_a s'annulent donc exactement deux fois, une fois dans l'intervalle]a,2a], une autre dans l'intervalle $[2a,+\infty[$, ce qui correspond à ce que demande l'énoncé.
- 8. À nouveau une question facile : si a < b, on aura toujours $\ln(x-a) < \ln(x-b)$ pour les valeurs de x pour lesquelles ces deux expressions sont définies, et donc $f_a(x) < f_b(x) \Leftrightarrow x > 0$. La courbe représentative de f_a est donc en-dessous de celle de f_b sur \mathbb{R}^{+*} (ou sur un le sousensemble de \mathbb{R}^{+*} sur lequel les deux fonctions sont définies), et au-dessus quand x < 0. Les courbes qui sont définies en 0 se coupent au point de coordonnées (0,1), comme on l'a déjà signalé plus haut.

9. On a déjà donné le tableau de variations complet de f_0 , ainsi que toutes les information intéressantes concernant f_{-1} . La fonction f_1 est strictement croissante sur $]1, +\infty[$, avec une limite nulle en 1. Enfin, $f_{\frac{1}{10}}$ est croissante sur $]\frac{1}{10}, x_1]$, pour une valeur de x_1 comprise entre $\frac{1}{10}$ et $\frac{1}{5}$ (et avec une limite nulle en $\frac{1}{10}$), puis décroissante sur $[x_1, x_2]$ avec $x_2 > \frac{1}{5}$ (mais on n'en sait pas beaucoup plus) et à nouveau croissante ensuite. Voici les courbes tracées sur ordinateur, a=0 en rouge, a=-1 en bleu, a=1 en vert et $a=\frac{1}{10}$ en orange (exceptionnellement sans tangentes horizontales pour ne pas surcharger):

