TD n°2

PTSI B Lycée Eiffel

12 septembre 2013

Exercice 1

Soient A et B deux sous-ensembles d'un même ensemble E. On note $B \setminus A$ le complémentaire de A dans B, et différence symétrique de A et de B l'ensemble noté $A \Delta B$ et défini par $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

- 1. Montrer qu'on a également $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- 2. Montrer que la différence symétrique est associative (c'est-à-dire que $(A\Delta B)\Delta C = A\Delta(B\Delta C)$).
- 3. Montrer que, si A, B et C sont trois sous-ensembles de E, $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.
- 4. Montrer que $\overline{A\Delta B} = A\Delta \overline{B} = \overline{A}\Delta B$.
- 5. Montrer que, l'ensemble A étant fixé, il existe un unique ensemble B tel que $A\Delta B = \emptyset$.
- 6. Montrer de même qu'il existe un unique B tel que $A\Delta B = E$.
- 7. Plus généralement, montrer que, quel que soit le sous-ensemble X de E, il existe un unique B tel que $A\Delta B = X$ (en termes plus savants, l'application $B \mapsto A\Delta B$ est une bijection de $\mathcal{P}(E)$ dans lui-même).

Exercice 2

On cherche dans cet exercice à majorer le produit $P_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$.

- 1. Calculer les réels P_1 , P_2 et P_3 .
- 2. Montrer que, $\forall x \in]-1, +\infty[$, $\ln(1+x) \leq x$.
- 3. Montrer que, $\forall k \geqslant 2$, $\frac{1}{k^2} \leqslant \frac{1}{k-1} \frac{1}{k}$.
- 4. En déduire que, $\forall n \in \mathbb{N}^*, P_n \leqslant e^2$.
- 5. Pour obtenir une meilleure majoration, démontrer désormais que $\forall k \ge 2, 1 + \frac{1}{k^2} \le \frac{k^2}{(k-1)(k+1)}$.
- 6. En déduire que, $\forall n \in \mathbb{N}^*, P_n \leq 4$.
- 7. Expliquer pourquoi la suite (P_n) admet nécessairement une limite quand n tend vers $+\infty$ (pour les plus curieux, la limite en question est égale à $\frac{e^{\pi} + e^{-\pi}}{2\pi} \simeq 3.68$).

1