Devoir Surveillé n°2 : corrigé

PTSI B Lycée Eiffel

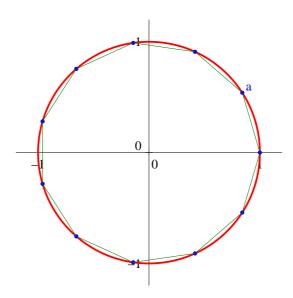
9 novembre 2013

Exercice 1

- 1. Calculons donc: $\sum_{1 \le i,j \le n} (i+j)^2 = \sum_{i=1}^n \sum_{j=1}^n i^2 + 2ij + j^2 = \sum_{i=1}^n ni^2 + n(n+1)i + \frac{n(n+1)(2n+1)}{6} = \frac{n^2(n+1)(2n+1)}{6} + \frac{n^2(n+1)^2}{2} + \frac{n^2(n+1)(2n+1)}{6} = \frac{n^2(n+1)(2(2n+1) + 3(n+1))}{6} = \frac{n^2(n+1)(7n+5)}{6}.$
- 2. Puisqu'on nous y invite si cordialement, prouvons donc par récurrence la propriété $P_n: u_n = 3-2^n$. Au rang $0, 3-2^0 = 3-1 = 2 = u_0$ donc la propriété est effectivement vraie. Supposons-la vérifie à un certain rang n, on peut alors écrire $u_{n+1}^= 2u_n 3 = 2 \times (3-2^n) 3 = 6 2^{n+1} 3 = 3 2^{n+1}$, ce qui prouve exactement P_{n+1} . Par principe de récurrence, la propriété P_n est donc vraie pour tout entier naturel n.
- 3. Procédons par étapes : $\left(\frac{1+x}{1-x}\right)' = \frac{1-x+1+x}{(1-x)^2} = \frac{2}{(1-x)^2}$, puis $\left(\sqrt{\frac{1+x}{1-x}}\right)' = \frac{1}{2\sqrt{\frac{1+x}{1-x}}} \times \frac{1}{2\sqrt{\frac{1+x}{1-x}}} \times \frac{2}{(1-x)^2} = \frac{1}{\sqrt{1+x}\times(1-x)\sqrt{1-x}} = \frac{1}{(1-x)\sqrt{1-x^2}}$. Enfin, $f'(x) = \frac{2}{1+\frac{1+x}{1-x}} \times \frac{1}{(1-x)\sqrt{1-x^2}} = \frac{2}{(1-x)^2} \times \frac{1}{(1-x)\sqrt{1-x^2}} = \frac{1}{\sqrt{1-x^2}}$. Autrement dit, la fonction f a la même dérivée que la fonction arcsin (qui est bien définie sur tout l'intervalle de définition de f). On en déduit que $f(x) = \arcsin(x) + k$, où k est une constante réelle qu'on détermine aisément en calculant une valeur particulière de la fonction : $f(0) = 2\arctan(1) = \frac{\pi}{2}$. Comme $\arcsin(0) = 0$, on peut conclure que $f(x) = \arcsin(x) + \frac{\pi}{2}$.
- 4. Soit on constate directement que -1 est racine évidente de l'équation, soit on sépare partie réelle et partie imaginaire dans l'équation $x^3+2x^2-3ix-1-3i=0$ pour obtenir les deux conditions $x^3+2x^2-1=0$ et -3x-3=0, qui sont toutes deux vérifiées par -1 puisque $(-1)^3+2(-1)^2-1=-1+2-1=0$, et $-3\times(-1)-3=3-3=0$. On peut donc factoriser : $z^3+2z^2-3iz-1-3i=(z+1)(az^2+bz+c)=az^3+(a+b)z^2+(b+c)z+c$. Par identification, on trouve les conditions a=1,b+a=2 donc b=1, et b+c=-3i, soit c=-3i-1. Reste à résoudre l'équation $z^2+z-3i-1=0$, dont le discriminant vaut $\Delta=1+4(3i+1)=5+12i$. On cherche une racine du discriminant sous la forme $\delta=a+ib$. La condition $(a+ib)^2=a^2-b^2+2iab=\Delta$ mène aux deux équations $a^2-b^2=5$ et 2ab=12, auxquelles on ajoute l'équation sur les modules $|\delta|^2=a^2+b^2=|\Delta|=\sqrt{5^2+12^2}=\sqrt{169}=13$. En ajoutant la troisième équation à la première, on trouve $2a^2=18$, soit $a=\pm 3$, et en les soustrayant $2b^2=8$, soit $b=\pm 2$. comme ab>0 d'après la deuxième équation, on peut choisir $\delta=3+2i$ ou $\delta=-3-2i$. Les deux solutions de l'équation sont alors $z_1=\frac{-1+3+2i}{2}=1+i$ et $z_2=\frac{-1-3-2i}{2}=-2-i$. L'équation initiale a donc pour ensemble de solutions $\mathcal{S}=\{-1,1+i,-2-i\}$.

Exercice 2

1. On sait que les éléments de \mathbb{U}_{11} sont les nombres complexes $e^{i\frac{2k\pi}{11}}$, pour $k \in \{0, \dots, 10\}$. Comme $e^{i\frac{2k\pi}{11}} = (e^{\frac{2i\pi}{11}})^k$, on peut également les décrire sous la forme $\mathbb{U}_{11} = \{a^k \mid a \in \{0,\dots,10\}\}$. Par ailleurs, $a^{11}=e^{i\frac{22\pi}{11}}=e^{2i\pi}=1$. Pour placer les points, on trace un hendécagone (polygone régulier à 11 côtés, pour ceux qui ne connaitraient pas le terme) inscrit dans le cercle trigonométrique en partant de 1 :



- 2. Commençons par constater que $\overline{a}=e^{-\frac{2i\pi}{11}}=e^{\frac{20i\pi}{11}}=a^{10}$. De même, on vérifie aisément que $\overline{a^2}=a^9, \ \overline{a^3}=a^8, \ \overline{a^4}=a^7$ et $\overline{a^5}=a^6$ (une autre façon de présenter le calcul est de dire que $\overline{a^k} = \frac{1}{a^k} = a^{11-k}$ en utilisant le fait que tous ces nombres sont de module 1 puis que $a^{11} = 1$). On peut alors écrire $\overline{S} = \overline{a} + \overline{a^3} + \overline{a^4} + \overline{a^5} + \overline{a^9} = a^{10} + a^8 + a^7 + a^6 + a^2 = T$.
- 3. On constate aisément que $S+T=\sum_{k=1}^{10}a^k$. Or on sait que la somme des racines 11-èmes de l'unité est égale à 0, c'est-à-dire que $\sum_{k=0}^{11} a^k = 0$. On en déduit que $S+T = 0-a^0 = -1$. Pour le produit,

on n'échappe pas à un calcul laborieux : $ST = (a + a^3 + a^4 + a^5 + a^9)(a^2 + a^6 + a^7 + a^8 + a^{10}) = a^3 + a^7 + a^8 + a^9 + a^{11} + a^5 + a^9 + a^{10} + a^{11} + a^{13} + a^6 + a^{10} + a^{11} + a^{12} + a^{14} + a^7 + a^{11} + a^{12} + a^{13} + a^{15} + a^{11} + a^{12} + a^{13} + a^{14} + a^{14}$ $a^{11}+a^{15}+a^{16}+a^{17}+a^{19}$. On peut remplacer tous les a^{11} par des 1, et de même $a^{12}=a^{11}\times a=a$, $a^{13}=a^2$ etc. Ce qui permet, en regroupant au maximum, d'écrire le produit sous la forme $ST=2a+2a^2+2a^3+2a^4+2a^5+2a^6+2a^7+2a^8+2a^9+2a^{10}+5=2(S+T)+5=5-2=3$.

4. Les deux nombres S et T sont donc solutions de l'équation du second degré $x^2 + x + 3 = 0$, qui a pour discriminant $\Delta = -11$ et pour solutions $x_1 = \frac{-1 + i\sqrt{11}}{2}$ et $\frac{-1 - i\sqrt{11}}{2}$. Reste à déterminer si $S = x_1$ ou $S = x_2$. En observant la figure faite à la première question, il est clair que c'est S qui a une partie imaginaire positive, prouvons le rigoureusement : Im (S) $\sin\left(\frac{2\pi}{11}\right) + \sin\left(\frac{6\pi}{11}\right) + \sin\left(\frac{8\pi}{11}\right) + \sin\left(\frac{10\pi}{11}\right) + \sin\left(\frac{18\pi}{11}\right). \text{ Or, } \sin\left(\frac{6\pi}{11}\right) = \sin\left(\pi - \frac{6\pi}{11}\right) = \sin\left(\frac{5\pi}{11}\right), \text{ et } \sin\left(\frac{18\pi}{11}\right) = -\sin\left(\frac{4\pi}{11}\right) > -\sin\left(\frac{5\pi}{11}\right), \text{ donc } \sin\left(\frac{6\pi}{11}\right) + \sin\left(\frac{18\pi}{11}\right) > 0. \text{ Les}$ trois termes restants étant des sinus d'angles compris entre 0 et $\hat{\pi}$, donc positifs, Im (S) > 0, donc $S = x_1 = \frac{-1 + i\sqrt{11}}{2}$, et donc $T = \frac{-1 - i\sqrt{11}}{2}$.

donc
$$S = x_1 = \frac{-1 + i\sqrt{11}}{2}$$
, et donc $T = \frac{-1 - i\sqrt{11}}{2}$.

5. Utilisons donc l'indication qui nous est donnée :
$$i \tan \left(\frac{3\pi}{11}\right) = i \frac{\sin(\frac{3\pi}{11})}{\cos(\frac{3\pi}{11})} = \frac{i \times \frac{e^{i\frac{2\pi}{11}} - e^{-i\frac{3\pi}{11}}}{2i}}{\frac{e^{i\frac{3\pi}{11}} (e^{i\frac{6\pi}{11}} - 1)}{2}} = \frac{a^3 - 1}{a^3 + 1}.$$

Par ailleurs, par un calcul de somme géométrique,
$$\sum_{k=1}^{10} (-a^3)^k = \sum_{k=0}^{10} (-a^3)^k - 1 = \frac{1 - (-a^3)^{11}}{1 + a^3} - 1 = \frac{2}{1 + a^3} - 1 = \frac{1 - a^3}{1 + a^3}$$
, ce qui est exactement l'opposé de $i \tan \left(\frac{3\pi}{11}\right)$.

- 6. C'est un bête calcul : $a a^{10} = e^{\frac{2i\pi}{11}} e^{\frac{20i\pi}{11}} = e^{\frac{2i\pi}{11}} e^{\frac{-2i\pi}{11}} = 2i\sin\left(\frac{2\pi}{11}\right)$ en appliquant les formules d'Euler. Il suffit de tout multiplier par deux pour obtenir la formule demandée.
- 7. D'après les deux questions précédentes, $\tan\left(\frac{3\pi}{11}\right) + 4\sin\left(\frac{2\pi}{11}\right) = -\frac{1}{i}\sum_{k=1}^{10}(-a^3)^k + \frac{2}{i}(a-a^{10}) = i(-a^3+a^6-a^9+a^{12}-a^{15}+a^{18}-a^{21}+a^{24}-a^{27}+a^{30}-2a+2a^{10}) = i(-a+a^2-a^3-a^4-a^5+a^6+a^7+a^8-a^9+a^{10}) = i(T-S)$. Il ne reste plus qu'à reprendre les expressions explicites de T et S pour constater que $T-S=\frac{-2i\sqrt{11}}{2}=-i\sqrt{11}$, donc $i(T-S)=\sqrt{11}$.

Exercice 3

- 1. Si $A = \emptyset$, $f(C) = (C \cap \emptyset) \cup B = \emptyset \cup B = B$, quel que soit le sous-ensemble C. L'application f est donc constante égale à B.
- 2. Dans ce deuxième cas particulier, on aura toujours $f(C) = \mathbb{R}$, l'application est à nouveau constante. Ces deux cas ne sont pas du tout les seuls. Par exemple, lorsque A = B, on aura toujours $C \cap A \subset A = B$, donc $(C \cap A) \cup B = B$. Ainsi, si A = B = [0, 1], f est constante égale à [0, 1] (pour donner un exemple concret parmi tant d'autres).
- 3. Calculons donc : $f(\emptyset) = \emptyset \cup B = B$; $f(A) = A \cup B$; $f(B) = (B \cap A) \cup B = B \cap (A \cup B) = B$; et enfin $f(\mathbb{R}) = A \cup B$.
- 4. C'est essentiellement évident : si $C \subset D$, alors $C \cap A \subset D \cap A$ (en effet, si $x \in C \cap A$, $x \in C \subset D$ donc $x \in D$ et $x \in A$ par hypothèse), puis $f(C) \subset f(D)$ (démonstration tout aussi triviale pour l'union avec B que pour l'intersection avec A).
- 5. Supposons donc que E admette un antécédent par f, que nous noterons C: on a donc $(C \cap A) \cup B = E$. Manifestement, $B \subset B \cup (C \cap A)$, donc $B \subset E$. De plus, $(C \cap A) \subset A$, donc $E = f(C) \subset A \cup B$. Réciproquement, supposons $B \subset E \subset A \cup B$, et prouvons que f(E) = E, ce qui prouvera en passant que E admet un antécédent par f. Soit $x \in E$. Si $x \in B$, nécessairement $x \in f(E)$ (les images par f contiennent toujours tout l'ensemble B), sinon $x \in A$ puisque puisque $E \subset A \cup B$, donc $x \in E \cap A$, et $x \in f(E)$. On en déduit que $E \subset f(E)$. Supposons désormais $x \in f(E)$. Soit $x \in (E \cap A)$, et donc $x \in E$, soit $x \in E$ donc $x \in E$. On en déduit que $x \in E$ donc $x \in E$.
- 6. D'après la question précédente, une condition nécessaire pour que A puisse avoir des antécédents par f est que $B \subset A$. Si c'est le cas, $f(C) \subset A$ quel que soit le sous-ensemble C (puisque $C \cap A$ et B sont tous deux inclus dans A), et f(C) = A si et seulement si $A \setminus B \subset C \cap A$ (pour récuper dans l'union avec B tous les éléments de A n'appartenant pas à B). Il suffit donc d'avoir $A \setminus B \subset C$. Tous les sous-ensembles vérifiant cette condition seront antécedents de A. Pour B (qui est toujours sa propre image et a donc toujours des antécédents), on doit cette fois-ci avoir $C \cap A \subset B$, c'est-à-dire $C \cap (A \setminus B) = \emptyset$. Si on préfère, une condition nécessaire est suffisante est $C \subset B \cup \bar{A}$.

- 7. Puisque f(B) est toujours égale à B, f ne peut être constante que si tout le monde est antécédent de B, c'est-à-dire si tout sous-ensemble C vérifie la condition $C \subset B \cup \bar{A}$. Il faut donc avoir $B \cup \bar{A} = \mathbb{R}$, ce qui revient exactement à dire que $A \subset B$. On vérifie aisément que cette condition est en effet nécessaire et suffisante : si $A \subset B$, on aura toujours $C \cap A \subset B$, donc f(C) = B, et f est constante ; réciproquement, s'il existe un élément $x \in A \setminus B$, $f(\{x\}) = \{x\} \cup B \neq f(B)$, donc f n'est pas constante.
- 8. Toujours en reprenant les résultats de la question 5., l'application sera surjective si tout sous-ensemble E vérifie les conditions $B \subset E \subset A \cup B$. Ceci n'est possible que si $B = \emptyset$ et $A \cup B = \mathbb{R}$, c'est-à-dire $B = \emptyset$ et $A = \mathbb{R}$. Dans ce cas très particulier, on a $f(C) = (C \cap \mathbb{R}) \cup \emptyset = C$, et l'application f est donc l'identité, qui est certainement surjective! Pour l'injectivité, il faut déjà que B admette un seul antécédent par f (B a toujours au moins un antécédent puisque f(B) = B), ce qui revient à dire qu'un seul sous-ensemble C vérifie $C \subset B \cup \bar{A}$. Pour cela, il faut nécessairement que $B \cup \bar{A} = \emptyset$, donc que $B = \bar{A} = \emptyset$, ce qui revient bien à dire que $B = \emptyset$ et $A = \mathbb{R}$.
- 9. Quel que soit le sous-ensemble C, on a toujours $B \subset f(C)$, mais aussi $f(C) \subset A \cup B$ puisque $C \cap A \subset A$. Autrement dit, f(C) vérifie toujours les conditions de la question 5., et en reprenant les conclusions de cette même question, on a nécessairement f(f(C)) = f(C). Autrement dit, $f \circ f$ (pour faire savant, f est donc une application idempotente).

Exercice 4

On considère dans tout cet exercice l'application $f: \mathbb{C}\setminus\{i\} \to \mathbb{C}^*$ définie par $f(z) = \frac{1}{z+i}$.

- 1. Soit $a \in \mathbb{C}^*$, alors f(z) = a si $\frac{1}{\bar{z}+i} = a$, soit $\bar{z}+i = \frac{1}{a}$. En passant au conjugué, $z-i = \frac{1}{\bar{a}}$, soit $z = i + \frac{1}{\bar{a}}$. L'application f est bien bijective à valeurs dans \mathbb{C}^* , et $f^{-1}(a) = i + \frac{1}{\bar{a}}$.
- 2. Calculons: $f(2) = \frac{1}{2+i} = \frac{2-i}{3} = \frac{2}{3} \frac{1}{3}i$; $f(1+i) = \frac{1}{1-i+i} = 1$; $f^{-1}(2) = \frac{1}{2} + i$ et $f^{-1}(1+i) = i + \frac{1}{1-i} = i + \frac{1+i}{2} = \frac{1}{2} + \frac{3}{2}i$.
- 3. (a) Exprimons donc f(z) sous forme algébrique : en posant z = a + ib, alors $f(z) = \frac{1}{a ib + i} = \frac{1}{a + i(1 b)} = \frac{a + i(b 1)}{a^2 + (1 b)^2}$. Le dénominateur est un réel strictement positif (lorsque $z \neq i$ bien entendu). Le nombre f(z) est donc réel si b 1 = 0, soit Im (z) = 1. Géométriquement, l'image de z doit être située sur la droite horizontale d'équation y = 1 dans le plan complexe.
 - (b) En reprenant le calcul de la question précédente, $f(z) \in i\mathbb{R}$ si a = 0, c'est-à-dire si z luimême est imaginaire pur. Pour avoir $f(z) \in \mathbb{U}$, on doit avoir |z+i| = 1, ce qui correspond à l'équation d'un cercle de centre -i et de rayon 1 dans le plan complexe (pas besoin de développer puisque l'équation est déjà une équation de cercle sous cette forme!).
- 4. (a) Soit $z = a\lambda i$, avec $\lambda \in \mathbb{R}\setminus\{1\}$, alors $f(z) = \frac{1}{i(-\lambda+1)} = \frac{i}{\lambda-1}$. On obtient ainsi tout l'axe imaginaire pur, sauf l'origine du repère (qui correspondrait à $\lambda=1$).
 - (b) Si $x \in \mathbb{R}$, $f(x) = \frac{1}{x+i}$. Vérifions que cette image, appartient au cercle indiqué, en calculant sa distance au centre : $\left|\frac{1}{x+i} + \frac{i}{2}\right| = \left|\frac{2+i(x+i)}{2(x+i)}\right| = \left|\frac{1+ix}{2x+2i}\right| = \frac{\sqrt{1+x^2}}{\sqrt{4x^2+4}} = \frac{1}{2}$. L'image de l'axe réel est donc incluse dans le cercle de centre $-\frac{i}{2}$ et de rayon $\frac{1}{2}$. Réciproquement, supposons que z soit l'affixe d'un point de ce cercle, alors $z = -\frac{i}{2} + \frac{e^{i\theta}}{2}$,

et
$$f^{-1}(z)=i+\frac{2}{e^{-i\theta}+i}=i+\frac{2}{\cos(\theta)+i(1-\sin(\theta))}=i+\frac{2(\cos(\theta)+i(\sin(\theta)-1))}{\cos^2(\theta)+(1-\sin(\theta))^2}=\frac{2\cos(\theta)+i(2-2\sin(\theta)+2\sin(\theta)-2)}{2-2\sin(\theta)}\in\mathbb{R}.$$
 Tout point du cercle (sauf 0) a donc un antécédent dans \mathbb{R} , ce qui prouve que l'image de \mathbb{R} est bien tout le cercle privé de l'origine.

- (c) Calculons donc : $f(e^{i\theta}) = \frac{1}{\cos(\theta) + i(1 \sin(\theta))} = \frac{\cos(\theta) i(1 \sin(\theta))}{2(1 \sin(\theta))}$. La partie imaginaire de f(z) vaut effectivement $-\frac{1}{2}$, et la partie réelle est égale à $\frac{1}{2} \times \frac{\cos(\theta)}{1 \sin(\theta)}$. Or, $\frac{1}{2} \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1}{2} \frac{\sin(\frac{\pi}{4} + \frac{\theta}{2})}{\cos(\frac{\pi}{4} + \frac{\theta}{2})} = \frac{1}{2} \times \frac{\frac{\sqrt{2}}{2} \cos(\frac{\theta}{2}) + \frac{\sqrt{2}}{2} \sin(\frac{\theta}{2})}{\frac{\sqrt{2}}{2} \cos(\frac{\theta}{2}) \frac{\sqrt{2}}{2} \sin(\frac{\theta}{2})} = \frac{1}{2} \frac{\sin(\frac{\theta}{2}) + \cos(\frac{\theta}{2})}{\cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})} = \frac{1}{2} \frac{\cos(\theta)}{1 2\cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})} = \frac{1}{2} \frac{\cos(\theta)}{1 \sin(\theta)}$ en utilisant les formules de duplication. Ouf, ça marche! Puisque $\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ parcourt \mathbb{R} lorsque θ varie dans \mathbb{R} (privé des valeurs interdites), les images sont donc tous les de la droite sur laquelle $\operatorname{Im}(z) = -\frac{1}{2}$ (droite horizontale d'équation $y = -\frac{1}{2}$).
- 5. (a) Il s'agit de résoudre l'équation $\frac{1}{\bar{z}+i}=z$, soit $z\bar{z}+iz-1=0$. En posant z=a+ib, on trouve l'équation $a^2+b^2+ia-b-1=0$. La partie imaginaire qui s'annule impose a=0, ensuite on doit avoir en prenant la partie réelle $b^2-b-1=0$. Cette équation a pour discriminant $\Delta=5$, et admet pour racines $b_1=\frac{1+\sqrt{5}}{2}$ et $b_2=\frac{1-\sqrt{5}}{2}$. On en déduit, avec les notations de l'énoncé, que $a=\frac{(1+\sqrt{5})i}{2}$, et $b=\frac{(1-\sqrt{5})i}{2}$.
 - (b) Surtout pas de calcul explicite, on ne s'en sortirait pas. Tout ce dont on a besoin, c'est de se rappeler que a et b sont tous deux solutions de l'équation $z\bar{z}+iz-1=0$, donc $ia-1=a\bar{a}$ et $ib-1=b\bar{b}$. On peut alors écrire : $\frac{b-f(z)}{a-f(z)}=\frac{b-\frac{1}{\bar{z}+1}}{a-\frac{1}{\bar{z}+1}}=\frac{b\bar{z}+bi-1}{a\bar{z}+ai-1}=\frac{b\bar{z}-b\bar{b}}{a\bar{z}-a\bar{a}}=\frac{b}{a}\times\frac{\bar{z}-\bar{b}}{\bar{z}-\bar{a}}=\frac{b}{a}\times\frac{b+\bar{z}}{a+\bar{z}}$, puisque a et b sont tous deux imaginaires purs, donc égaux à l'opposé de leur conjugué.
 - (c) Le vecteur \overrightarrow{IM} a pour affixe $z i = \frac{|z i|}{\overline{z} + i}$, il est donc colinéaire (avec un rapport positif) au vecteur \overrightarrow{OM}' qui a pour affixe $\frac{1}{\overline{z} + i}$.
 - (d) La question précédente n'a pas besoin d'être interprétée, c'est déjà fait! Par contre, pour le b), il faut réfléchir un peu : le membre de gauche a pour argument $(\overrightarrow{M'A}, \overrightarrow{M'B})$ (en notant A et B les points du plan d'affixes respectives a et b). Quant au membre de droite, comme le quotient $\frac{b}{a}$ est un nombre réel, son argument (modulo π , car le quotient en question est négatif) est égal à $(\overrightarrow{NA}, \overrightarrow{NB})$, où N est le point du plan complexe d'affixe $-\overline{z}$, c'est-à-dire le symétrique de M par rapport à l'axe des ordonnées. L'égalité des deux angles signifie exactement que les quatre points A, B, M' et N sont cocycliques (situés sur un même cercle), sauf si A, B et N sont alignés, auquel cas N' appartiendra simplement à la même droite qu'eux. Dans tous les cas, on obtient facilement N comme intersection de la demi-droite d'origine O dirigée par \overrightarrow{IM} , et du cercle circonscrit (ou de la droite) au triangle ABN. Ci-dessous, la construction géométrique pour z=1+i (dont on a calculé l'image plus haut). La demi-droite sur laquelle se situe le point M' est simplement l'axe réel (du côté des nombres positifs) dans ce cas.

