Devoir Maison n°2

PTSI B Lycée Eiffel

à rendre au plus tard le 14 octobre 2013

Exercice 1

Étudier le plus complètement possible la fonction $f: x \mapsto \cos(x) - \cos(3x)$.

Exercice 2

Cet exercice présente deux méthodes de calcul de la valeur de $\cos\left(\frac{\pi}{5}\right)$. Les deux questions sont complètement indépendantes l'une de l'autre. Pour tout l'exercice, on pose $\alpha = \cos\left(\frac{\pi}{5}\right)$.

- 1. (a) Exprimer, pour un réel x quelconque, $\cos(4x)$ en fonction de $\cos(x)$.
 - (b) En déduire que α est solution de l'équation $8x^4 8x^2 + x + 1 = 0$.
 - (c) En trouvant deux racines évidentes à cette équation (l'un des deux n'est pas un nombre entier), factorisez-là.
 - (d) Déterminer la valeur exacte de α .
- 2. (a) Démontrer la formule $\cos(x) + \cos(3x) = \frac{\sin(4x)}{2\sin(x)}$ (quand cela a un sens).
 - (b) En déduire la valeur de $\alpha + \cos\left(\frac{3\pi}{5}\right)$.
 - (c) Calculer $\alpha \times \cos\left(\frac{3\pi}{5}\right)$ (on doit obtenir une valeur rationnelle simple).
 - (d) En déduire une équation du second degré vérifiée par α , et sa valeur exacte (on rappelle que deux nombres dont la somme vaut S et le produit P sont solutions de l'équation $x^2 Sx + P = 0$).

Exercice 3 (pour ceux qui ont trouvé le 2 vraiment trop facile)

Pour tous réels a et h, et pour tout entier n, on pose $C_n(a,h) = \sum_{k=0}^{n-1} \cos(a+kh)$

et
$$S_n(a,h) = \sum_{k=0}^{n-1} \sin(a+kh)$$
. On note par ailleurs pour la suite de l'exercice $\theta = \frac{\pi}{17}$.

- 1. Calculer ces deux sommes dans le cas où $\sin \frac{h}{2} = 0$.
- 2. Dans le cas contraire, prouver que $C_n(a,h) = \frac{\sin \frac{nh}{2} \cos \left(a + (n-1)\frac{h}{2}\right)}{\sin \frac{h}{2}}$

et $S_n(a,h) = \frac{\sin \frac{nh}{2} \sin \left(a + (n-1)\frac{h}{2}\right)}{\sin \frac{h}{2}}$ (le plus rapide est de passer par les nombres complexes, mais on peut aussi s'en sortir par récurrence).

- 3. On pose $x_1 = \cos(3\theta) + \cos(5\theta) + \cos(7\theta) + \cos(11\theta)$ et $x_2 = \cos\theta + \cos(9\theta) + \cos(13\theta) + \cos(15\theta)$. Montrer que $x_1 > 0$.
- 4. Calculer la somme $x_1 + x_2$ (assez facile).
- 5. Calculer le produit x_1x_2 (beaucoup plus pénible, n'hésitez pas à faire des calculs violents).
- 6. En déduire les valeurs exactes de x_1 et de x_2 .
- 7. On pose maintenant $y_1 = \cos(3\theta) + \cos(5\theta)$; $y_2 = \cos(7\theta) + \cos(11\theta)$; $y_3 = \cos\theta + \cos(13\theta)$ et $y_4 = \cos(9\theta) + \cos(15\theta)$. Calculer les produits y_1y_2 et y_3y_4 .
- 8. En déduire les valeurs exactes de y_1 , y_2 , y_3 et y_4 .
- 9. Calculer le produit $\cos\theta\cos(13\theta)$ et en déduire une méthode pour obtenir une valeur exacte de $\cos\theta$ (pour les plus masochistes courageux, finir les calculs et donner cette valeur).