TD n°12 : corrigé

PTSI B Lycée Eiffel

24 mai 2013

Exercice

- 1. (a) On calcule sans difficulté, en exploitant la relation $\cos^2(\theta) + \sin^2(\theta) = 1$, $R_{\theta}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$. Toutes les matrices R_{θ} sont donc racines carrées de I, et il y en a une infinité puisque les valeurs de $\cos(\theta)$, par exemple, parcourrent tout l'intervalle [-1,1]. Les matrices R_{θ} sont par ailleurs des matrices de symétrie. Pour déterminer par rapport à quoi, on cherche les vecteurs invariants : $R_{\theta} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} \cos(\theta)x + \sin(\theta)y = x \\ \sin(\theta)x - \cos(\theta)y = y \end{cases}$. Si $\theta \not\equiv \pi[2\pi]$, $\cos(\theta) + 1 \not\equiv 0$, et on peut extraire de la deuxième équacion $\sin(\theta)$. tion $y = \frac{\sin(\theta)}{\cos(\theta) + 1}x$. En reportant dans la première, $\cos(\theta)x + \sin(\theta)y = \frac{\cos(\theta)(1+\cos(\theta)) + \sin^2(\theta)}{1+\cos(\theta)}x = \frac{1+\cos(\theta)}{1+\cos(\theta)}x = x$, et l'équation est donc toujours vérifiée. On effectue donc une symétrie par rapport à la droite d'équation $y = \frac{\sin(\theta)}{1 + \cos(\theta)} x$. Si $\theta \equiv \pi[2\pi]$, on trouve simplement comme condition x=0, la symétrie s'effectue par rapport à l'axe des ordonnées. Cherchons maintenant parallèlement à quoi on symétrise, en résolvant le système $\begin{cases} \cos(\theta)x + \sin(\theta)y = -x \\ \sin(\theta)x - \cos(\theta)y = -y \end{cases}$. Cette fois, c'est la valeur $\theta \equiv 0[2\pi]$ qui est particulière, et qui mène à l'axe des ordonnées. Sinon, la deuxième équation donne $y = \frac{\sin(\theta)}{\cos(\theta) - 1}x$, et l'autre équation est à nouveau vérifiée (c'est normal, les deux espaces étant supplémentaires dans \mathbb{R}^2 , ils sont chacun de dimension 1). On constate que la symétrie est toujours une symétrie orthogonale, puisque nos deux droites sont dirigées respectivement par $(\cos(\theta) + 1, \sin(\theta))$ et par $(\cos(\theta) - 1, \sin(\theta))$, deux vecteurs dont le produit scalaire vaut $\cos^2(\theta) - 1 + \sin^2(\theta) = 0$.
 - (b) Cherchons donc une racine carrée de A sous la forme $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on calcule $B^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$. La condition ab + bd = 1 impose que $a + d \neq 0$, ce qui implique à son tour, puisque ac + cd = 0, que c = 0. En regardant les coefficients diagonaux, on obtient alors $a^2 = d^2 = 0$, donc a = d = 0, ce qui contredit fortement le fait que $a + d \neq 0$. Il ne peut donc y avoir de racine carrée pour la matrice A (même pas dans $\mathcal{M}_2(\mathbb{C})$ d'ailleurs, où le même raisonnement par l'absurde fonctionne).
- 2. (a) Bon, c'est du cours : $\sqrt{1+t} = 1 + \frac{1}{2}t \frac{1}{8}t^2 + \frac{1}{16}t^3 + o(t^3)$. En élevant le tout au carré, on trouve donc $1 + t = \left(1 + \frac{1}{2}t \frac{1}{8}t^2 + \frac{1}{16}t^3\right)^2 + o(t^3)$. Or,

$$\left(1 + \frac{1}{2}X - \frac{1}{8}X^2 + \frac{1}{16}X^3\right)^2 + X^4Q(X).$$

Les plus bourrins d'entre vous pouvaient également calculer brutalement $1+t-\left(1+\frac{1}{2}t-\frac{1}{8}t^2+\frac{1}{16}t^3\right)^2=1+t-1-\frac{1}{4}t^2-\frac{1}{64}t^4-\frac{1}{256}t^6-t+\frac{1}{4}t^2-\frac{1}{8}t^3+\frac{1}{8}t^3-\frac{1}{16}t^4+\frac{1}{64}t^5=-\frac{5}{64}t^4+\frac{1}{64}t^5-\frac{1}{256}t^6,$ qui est bien de la forme souhaitée.

(b) En appliquant ce qui précède à la matrice A-I, on trouve $I+(A-I)=\left(I+\frac{1}{2}(A-I)-\frac{1}{8}(A-I)^2+\frac{1}{16}(A-I)^3\right)+(A-I)^4Q(A-I)$. Puisque le membre de gauche est égal à A et que $(A-I)^4$ est supposée nulle, la matrice $B=I+\frac{1}{2}(A-I)-\frac{1}{8}(A-I)^2+\frac{1}{16}(A-I)^3$ est donc une racine carrée de A. Dans le cas concret présenté ensuite, on calcule (de préférence

à la calculatrice) :
$$(A - I)^2 = \begin{pmatrix} -5 & -1 & 2 & 2 \\ 15 & 3 & -6 & -6 \\ 19 & 4 & -7 & -7 \\ -24 & -5 & 9 & 9 \end{pmatrix}$$
, puis $(A - I)^3 = \begin{pmatrix} -5 & -1 & 2 & 2 \\ 15 & 3 & -6 & -6 \\ 19 & 4 & -7 & -7 \\ -24 & -5 & 9 & 9 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & -1 & -1 \\ -3 & 0 & 3 & 3 \\ -4 & 0 & 4 & 4 \\ 5 & 0 & -5 & -5 \end{pmatrix} \text{ et enfin } (A - I)^4 = 0, \text{ et on obtient ensuite } B = \\ \begin{pmatrix} \frac{3}{16} & \frac{9}{8} & \frac{27}{16} & \frac{35}{16} \\ \frac{31}{16} & -\frac{19}{8} & -\frac{73}{16} & -\frac{97}{16} \\ \frac{39}{8} & -4 & -\frac{47}{8} & -\frac{71}{8} \\ -\frac{91}{16} & \frac{41}{8} & \frac{137}{16} & \frac{193}{16} \end{pmatrix}. \text{ On v\'erifie bien s\^ur } \ll \text{ facilement } \gg \text{ que } B^2 = A$$

- 3. (a) La relation $B^2=A$ se traduit par $g\circ g=f$, donc $g\circ f=f\circ g=g^3$, les deux applications commutent.
 - (b) Il suffit en fait de constater qu'une matrice diagonale dont les coefficients diagonaux sont deux à deux distincts ne commute qu'avec les matrices diagonales. En effet, si on note d_1, \ldots, d_n les coefficients sur la diagonale de la matrice diagonale de f dans une bonne base (on notera cette matrice diagonale D), et si on note $M=(m_{ij})$ une matrice telle que $m_{ij} \neq 0$ pour un certain couple vérifiant $i \neq j$, alors $(DM)_{ij} = d_i m_{ij}$, et $(MD_{ij}) = m_{ij} d_j$, qui ne peuvent être égaux. La matrice C de g dans la base où f est représentée par D est donc diagonale.
 - (c) Si on veut avoir $g^2 = f$, il faut nécessairement que $C^2 = D$, c'est-à-dire, en notant c_i les coefficients diagonaux de C (les autres sont nuls!) que $c_i^2 = d_i$ pour chaque coeffient. Il y a une grosse imprécision dans l'énoncé, si on est

effectivement dans $\mathcal{M}_n(\mathbb{R})$, il faut absolument que les coefficients d_i soient strictement positifs pour que ça marche. On peut alors choisir $c_i = \pm \sqrt{d_i}$, ce qui laisse effectivement 2^n matrices C possibles. Reste à revenir dans la base canonique. On sait que $D = P^{-1}AP$ pour une certaine matrice inversible P, et $C^2 = D$. On peut alors constater que la condition $B^2 = A$ est équivalente à $P^{-1}B^2P = D$, soit $(P^{-1}BP)^2 = D$. Autrement dit, $P^{-1}BP$ doit être une des matrices C qu'on vient d'obtenir, c'est-à-dire que $B = PCP^{-1}$, ce qui donne également 2^n matrices B convenables.

Problème

I. Relations sur les polynômes L_n .

- 1. Calculons: $L_0(x) = e^x f_0(x) = e^x e^{-x} = 1$; $f_1(x) = x e^{-x}$, donc $f'_1(x) = (1 x) e^{-x}$ et $L_1 = 1 X$; enfin, $f_2(x) = \frac{x^2}{2} e^{-x}$ donc $f'_2(x) = \left(x \frac{x^2}{2}\right) e^{-x}$, $f''_2(x) = \left(1 x x + \frac{x^2}{2}\right) e^{-x}$, et enfin $L_2 = 1 2X + \frac{1}{2}X^2$.
- 2. On peut appliquer la formule de Leibniz au produit $\frac{x^n}{n!} \times e^{-x}$. Les dérivées successives de e^{-x} sont simplement de la forme $(-1)^k e^{-x}$, celles de $\frac{x^n}{n!}$ peuvent s'écrire $\frac{n(n-1)\dots(n-k+1)}{n!}x^{n-k} = \frac{x^{n-k}}{(n-k)!}$ (pour la dérivée k-ème). On en déduit que $f_n^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} (e^{-x})^{(k)} \left(\frac{x^n}{n!}\right)^{(n-k)} = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k e^{-x}$, d'où la formule pour L_n . Il s'agit bien d'un polynôme, manifestement de degré n et de coefficient dominant $\frac{(-1)^n}{n!}$ (c'est cohérent avec les calculs effectués à la première question).
- 3. Un calcul gentil pour commencer, une dérivée de produit : $f'_{n+1}(x) = \frac{x^n}{n!}e^{-x} \frac{x^{n+1}}{(n+1)!}e^{-x} = f_n(x) f_{n+1}(x)$. Dérivons cette égalité n+1 fois et multiplions par e^x pour obtenir $e^x f_{n+1}^{(n+2)}(x) = e^x f_n^{n+1}(x) e^x f_{n+1}^{(n+1)}(x)$. On reconnait dans le dernier terme $L_{n+1}(x)$, mais les deux premiers ne sont pas directement identifiables : $f_{n+1}^{(n+2)}(x) = (e^{-x}L_{n+1}(x))' = -e^{-x}L_{n+1}(x) + e^{-x}L'_{n+1}(x)$. De même, $e^x f_n^{(n+1)}(x) = L'_n(x) L_n(x)$, et notre relation devient $L'_{n+1} L_{n+1} = L'_n L_n L_{n+1}$, ce qui correspond bien à ce qui est demandé.
- 4. La première moitié du calcul est encore plus facile que ci-dessus : $\frac{x}{n+1} \times \frac{x^n}{n!} e^{-x} = \frac{x^{n+1}}{(n+1)!} e^{-x}$, ça marche. On dérive cette identité n fois et on utilise le même calcul que ci-dessus (pour le membre de droite, on applique la formule de Leibniz) : $f_{n+1}^{(n+1)}(x) = \frac{x}{n+1} f_n^{(n+1)}(x) + (n+1) \times \frac{1}{n+1} f_n^{(n)}(x)$. On multiplie tout par $(n+1)e^x : (n+1)L_{n+1}(x) = x(L'_n(x) L_n(x)) + (n+1)L_n(x)$, soit $(n+1)L_{n+1}(x) = xL'_n(x) + (n+1-x)L_n(x)$.
- 5. Il faut mixer les deux relations précédentes : si on dérive celle qu'on vient d'obtenir, $(n+1)L'_{n+1}(x) = L'_n(x) + xL''_n(x) + (n+1-x)L'_n(x) L_n(x)$. Remplaçons maintenant $L'_{n+1}(x)$ par $L'_n(x) L_n(x)$ (relation de la question 3), pour obtenir $(n+1)L'_n(x) (n+1)L_n(x) = xL''_n(x) + (n+2-x)L'_n(x) L_n(x)$, soit en effet $xL''_n(x) + (1-x)L'_n(x) + nL_n(x) = 0$.

II. Un produit scalaire et une application sur $\mathbb{R}_n[X]$.

- 1. L'application φ est clairement symétrique, contentons-nous de vérifier la linéarité à gauche : $\varphi(\lambda P_1 + \mu P_2, Q) = \lim_{n \to +\infty} \int_0^n (\lambda P_1(x) + \mu P_2(x)) Q(x) e^{-x} \ dx = \lambda \lim_{n \to +\infty} \int_0^n P_1(x) Q(x) e^{-x} \ dx + \mu \lim_{n \to +\infty} \int_0^n P_2(x) Q(x) e^{-x} \ dx$ par linéarité de l'intégrale et du calcul de limites. L'application φ esyt positive car $\varphi(P, P)$ est une limite d'intégrales de fonctions positives, donc positive. Supposons que $\varphi(P, P) = 0$. Cela signifie que la suite définie par $u_n = \int_0^n P^2(x) e^{-x} \ dx$ tend vers 0, alors qu'elle est consituée de réels positifs et surtout croissante (en effet, $u_{n+1} u_n = \int_n^{n+1} P^2(x) e^{-x} \ dx \geqslant 0$). La suite est donc nulle, ce qui impose la nullité de P^2 sur tous les intervalles de la forme [0,n], ce qui fait vraiment braucoup trop de racines pour un polynôme. L'application φ est donc définie positive, c'est bien un produit scalaire.
- 2. C'est évident, f(P) est toujours un polynôme et $f(\lambda P + \mu Q) = X(\lambda P + \mu Q)'' (X-1)(\lambda P + \mu Q)' = \lambda X P'' + \mu X Q'' \lambda (X-1)P' \mu (X-1)Q' = \lambda f(P) + \mu f(Q)$ par linéarité de la dérivation.
- 3. Dérivons donc : $(xP'(x)e^{-x})' = P'(x)e^{-x} + xP''(x)e^{-x} xP'(x)e^{-x} = f(P)(x)e^{-x}$.
- 4. Il suffit de faire une intégration par parties dans la définition de f(P).Q, en posant $v'(x) = f(P)(x)e^{-x}$, donc $v(x) = xP'(x)e^{-x}$ d'après la question précédente ; et u(x) = Q(x), soit u'(x) = Q'(x). On trouve alors $f(P).Q = \lim_{n \to +\infty} [xP'(x)Q(x)e^{-x}]_0^n \lim_{n \to +\infty} \int_0^n xP'(x)Q'(x)e^{-x} dx$. Le crochet s'annule en 0, et a une limite nulle quand n tend vers $+\infty$ par croissance comparée. Il ne reste donc que le deuxième terme, ce qui correspond à la formule de l'énoncé.
- 5. La formule obtenue à la question précédente est symétrique en P et Q, ce qui prouve que P.f(Q) = f(Q).P = f(P).Q.
- 6. Encore une question triviale : $f(L_n) = XL''_n (X-1)L'_n = -nL_n$ d'après la dernière question de la première partie.
- 7. Appliquons le résultat de la question 6 à L_n et L_p , pour des valeurs distinctes de n et $p: f(L_n).L_p = (-nL_n).L_p = -nL_n.L_p$, et $L_n.f(L_p) = L_n.(-pL_p) = -pL_n.L_p$. Si ces deux quantités sont égales, on doit avoir $L_n.L_p$, ce qui prouve l'orthogonalité de la famille.
- 8. C'est encore assez évident, le degré de XP'' est plus petit que celui de P, celui de (X-1)P' ne peut pas être plus grand, donc $f(P) \in \mathbb{R}_n[X]$ si $P \in \mathbb{R}_n[X]$.
- 9. Il suffit de dire que (L_0, \ldots, L_n) est une famille de polynômes échelonnée pour en déduire qu'il s'agit d'une base. Puisqu'on a prouvé un tout petit peu plus haut que $f(L_n) = -L_n$, la matrice de f dans cette base est la matrice diagonale

$$\begin{pmatrix}
0 & & & & & \\
& -1 & & & & \\
& & -2 & & & \\
& & & \ddots & & \\
& & & & -n
\end{pmatrix}.$$

10. L'application n'est pas bijective, plus précisément $\ker(f) = \operatorname{Vect}(L_0)$. Quant à trouver une base dans laquelle la matrice est diagonale, on se moque du monde, on vient d'en donner une!

4