Feuilles d'exercices n°6 : Convergence de suites

ECE3 Lycée Carnot

4 novembre 2011

Exercice 1 (**)

Vrai ou faux?

- 1. Une suite croissante à partir d'un certain rang est minorée.
- 2. Une suite convergente est nécessairement monotone à partir d'un certain rang.
- 3. Une suite divergeant vers $+\infty$ est nécessairement croissante à partir d'un certain rang.
- 4. Si (v_n) est croissante, et $\forall n \in \mathbb{N}, u_n \geqslant v_n$, alors (u_n) est croissante.
- 5. Si $(|u_n|)$ converge, alors (u_n) aussi.
- 6. Si $(|u_n|)$ converge vers 0, alors (u_n) aussi.

Exercice 2 (* à **)

$$\bullet \ u_n = \frac{3^n - 2^n}{4^n}$$

$$\bullet \ u_n = (-n+2)e^{-n}$$

$$\bullet \ u_n = 2^n - e^{2n} + 1$$

$$\bullet \ u_n = \frac{n^2 - 3n + 2}{2n^2 + 5n - 34}$$

$$u_n = \ln n + e^{-3n}$$

•
$$u_n = \frac{2\sqrt{n} + 3\ln n - 5}{\ln(n^3) - 3n + 2}$$

$$\bullet \ u_n = \sqrt{n^2 - 1} - n$$

$$\bullet \ u_n = \frac{(n+2)!}{(n^2+1) \times n!}$$

•
$$u_n = e^{-\frac{1}{2n}} + \ln\left(\frac{n}{n+2}\right)$$

Exercice 3 (**)

On considère une suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$.

- 1. Montrer que tous les termes de la suite sont strictement positifs.
- 2. Déterminer la monotonie de la suite (u_n) .
- 3. Montrer par récurrence que, $\forall n \in \mathbb{N}, \, u_n^2 \geqslant 2n + u_0^2$. En déduire la limite de la suite.

Exercice 4 (***)

On considère une suite (u_n) définie par $u_n = \left(1 + \frac{a}{n}\right)^n$, avec $a \in \mathbb{R}_+$.

1. Montrer que la suite est croissante (pour cette question, on étudiera les variations de la fonction $f: x \mapsto x \ln\left(1 + \frac{a}{x}\right)$ en la dérivant deux fois).

1

- 2. Montrer que, $\forall x \ge 0$, $\frac{t}{1+t} \le \ln(1+t) \le t$.
- 3. En déduire que, $\forall n \in \mathbb{N}^*, \frac{na}{n+a} \leqslant \ln u_n \leqslant a$.
- 4. Montrer que la suite (u_n) est convergente.
- 5. Quel résultat obtient-on en prenant a = 1?

Exercice 5 (**)

On considère deux suites (u_n) et (v_n) définies de la façon suivante : $u_n = \sum_{k=0}^{k=n} \frac{1}{k!}$, et $v_n =$

 $u_n + \frac{1}{n \times n!}$. Montrer que ces deux suites sont adjacentes (les curieux seront contents d'apprendre que leur limite commune vaut e). Question subsidiaire (difficulté ****) : montrer que la limite commune des ces deux suites est un nombre irrationnel (quon ne peut pas écrire sous la forme d'un quotient d'entiers) en faisant un raisonnement par l'absurde.

Exercice 6 (**)

On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sum_{k=1}^{k=n} \frac{n}{n^2 + k}$.

- 1. Montrer que $\frac{n^2}{n^2+n} \leqslant u_n \leqslant \frac{n^2}{n^2+1}$.
- 2. Déduire de l'encadrement précédent que la suite est convergente, et préciser sa limite.

Exercice 7 (***)

Soient a et b deux réels vérifiant 0 < a < b. On définit deux suites de la façon suivante : $u_0 = a$; $v_0 = b$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

2

- 1. Vérifier que ces deux suites sont bien définies.
- 2. Montrer que, $\forall n \in \mathbb{N}, u_n \leq v_n$ (pour une fois, pas besoin de récurrence).
- 3. Déterminer la monotonie de chacune des deux suites.
- 4. En déduire que (u_n) et (v_n) convergent vers la même limite.

Exercice 8 (*)

Donner un équivalent, le plus simple possible, de chacune des suites suivantes :

1.
$$u_n = \frac{5n - n^2 + 2n^7}{n^8 - 3n + 12}$$

$$2. \ u_n = \sqrt{n+3} - \sqrt{n}$$

3.
$$u_n = \frac{n^2}{\sqrt{n^2 + n + 1}}$$

4.
$$u_n = e^{-n} + e^{-2n}$$

5.
$$u_n = \frac{2\sqrt{n} + e^{3n} - 5\ln n}{n^2 - 3\ln(2n^4)}$$

6.
$$u_n = \frac{1}{n^2} + e^{-3n}$$

7.
$$u_n = \ln\left(1 - \frac{2}{n^2} + \frac{1}{n}\right)$$

8.
$$u_n = \ln(1 + n^3)$$

$$9. \ u_n = \left(1 + \frac{1}{n^2}\right)^n$$

Exercice 9 (**)

On considère la suite (S_n) définie pour $n \ge 1$ par $S_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{k}}$.

- 1. Montrer que $\forall n \geqslant 1$, $\frac{1}{\sqrt{n+1}} \leqslant 2(\sqrt{n+1} \sqrt{n}) \leqslant \frac{1}{\sqrt{n}}$.
- 2. À l'aide de la question précédente, déterminer la limite de la suite (S_n) .
- 3. On pose désormais $u_n = S_n 2\sqrt{n}$. Démontrer à l'aide du théorème de convergence monotone que (u_n) converge.
- 4. En déduire un équivalent simple de S_n .

Exercice 10 (d'après EDHEC) (***)

On considère, pour tout entier naturel n, la fonction f_n définie par $f_n(x) = x^5 + nx - 1$.

- 1. Étudier les variations de f_n .
- 2. Montrer que, $\forall n \geq 1$, il existe un unique réel u_n tel que $f_n(u_n) = 0$.
- 3. Montrer que $u_n \leqslant \frac{1}{n}$ et en déduire la convergence de la suite (u_n) .
- 4. Montrer que $u_n \sim \frac{1}{n}$.
- 5. Déterminer un équivalent simple de $\frac{1}{n} u_n$.

Exercice 11 (****)

Soit (u_n) une suite convergeant vers une limite finie l. Montrer que la suite (v_n) définie par $v_n = \frac{1}{n} \sum_{k=1}^{k=n} u_k$ (autrement dit, v_n est la moyenne des n premiers termes de la suite (u_n)) converge également vers l (commencez par le cas plus facile où l=0, et revenez à la définition de la limite).

Et pour finir en beauté, deux (extraits de) sujets de concours, à peine retouchés (une ou deux questions que vous ne pouvez pas faire ont été supprimées).

Problème 1 (premier exercice Ecricome 99) (***)

Préliminaire

Soit (x_n) une suite numérique qui vérifie, pour tout entier naturel n, la relation :

$$x_{n+2} = \frac{1}{3}x_{n+1} + \frac{1}{3}x_n$$

- 1. Résoudre l'équation caractéristique de cette suite et, sans chercher à déterminer les coefficients α et β , donner l'allure du terme général de la suite.
- 2. En déduire la limite de la suite (x_n) .

On étudie désormais la suite numérique (u_n) définie par : $u_0 = a \ge 1$; $u_1 = b \ge 1$, et pour tout entier naturel n,

$$u_{n+2} = \sqrt{u_n} + \sqrt{u_{n+1}}$$

Question 1

1.a: Montrer que, pour tout entier naturel n, u_n est bien défini et vérifie : $u_n \ge 1$.

1.b: Ecrire un programme en Turbo Pascal qui calcule et affiche la valeur de u_n pour des valeurs de a et b réelles supérieures ou égales à 1 et de n entier supérieur ou égal à 2, entrées par l'utilisateur.

Question 2

On se propose d'établir la convergence de la suite (u_n) par l'étude d'une suite auxiliaire (v_n) définie, pour tout entier naturel n, par $v_n = \frac{1}{2}\sqrt{u_n} - 1$

2.a: Montrer que si $\lim_{n\to+\infty} v_n = 0$ alors $\lim_{n\to+\infty} u_n = 4$

2.b: Vérifier, pour tout entier n, que $v_{n+2} = \frac{v_{n+1} + v_n}{2(2 + v_{n+2})}$. En déduire que : $|v_{n+2}| \leq \frac{1}{3}(|v_n| + |v_{n+1}|)$.

2.c: On note (x_n) la suite définie par : $x_0 = |v_0|$, $x_1 = |v_1|$ et pour tout entier naturel n:

$$x_{n+2} = \frac{1}{3}x_{n+1} + \frac{1}{3}x_n$$

Montrer que, pour tout entier naturel n, $|v_n| \leq x_n$ et conclure quant à la convergence de la suite (u_n) .

Problème 2 (début de Maths III HEC/ESCP 2002) (****)

Pour toutes suites numériques $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$, on définit la suite $u\times v=w$ par :

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k \, v_{n-k}$$

Partie A: Exemples

1. Premiers exemples

Pour tout entier naturel n, calculer w_n en fonction de n dans chacun des cas suivants :

- (a) pour tout entier naturel n, $u_n = 2$ et $v_n = 3$.
- (b) pour tout entier naturel n, $u_n = 2^n$ et $v_n = 3^n$.

2. Programmation

Dans cette question, les suites u et v sont définies par : $\forall n \in \mathbb{N}, \ u_n = \ln(n+1)$ et $v_n = \frac{1}{n+1}$. Écrire un programme en Turbo-Pascal qui demande à l'utilisateur une valeur de l'entier naturel n, qui calcule et affiche les valeurs w_0, w_1, \ldots, w_n .

3. Un résultat de convergence

Dans cette question, la suite u est définie par : $\forall n \in \mathbb{N}, \ u_n = \left(\frac{1}{2}\right)^n$ et v est une suite de réels positifs, décroissante à partir du rang 1 et de limite nulle.

4

(a) Établir, pour tout couple d'entiers naturels (n, m) vérifiant n < m, l'inégalité :

$$\sum_{k=n+1}^{m} u_k \leqslant u_n$$

(b) Soit n un entier strictement supérieur à 1. Prouver les inégalités :

$$w_{2n} \leqslant v_0 u_{2n} + 2v_n + v_1 u_n$$
 et $w_{2n+1} \leqslant v_0 u_{2n+1} + 2v_{n+1} + v_1 u_n$

- (c) En déduire que les deux suites $(w_{2n})_{n\in\mathbb{N}}$ et $(w_{2n+1})_{n\in\mathbb{N}}$ convergent vers 0 ainsi que la suite $(w_n)_{n\in\mathbb{N}}$.
- (d) Soit u' la suite définie par : $\forall n \in \mathbb{N}, \ u'_n = \left(-\frac{1}{2}\right)^n$. À l'aide de la question précédente, montrer que la suite $u' \times v$ est convergente et de limite nulle.

Partie B: Application à l'étude d'un ensemble de suites

Dans cette partie, A désigne l'ensemble des suites $a=(a_n)_{n\in\mathbb{N}}$ de réels positifs vérifiant :

$$\forall n \in \mathbb{N}^{\times}, \quad a_{n+1} \leqslant \frac{1}{2}(a_n + a_{n-1})$$

- 1. Montrer que toute suite décroissante de réels positifs est élément de A et qu'une suite strictement croissante ne peut appartenir à A.
- 2. Soit $z = (z_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant : $\forall n \in \mathbb{N}^{\times}, \ z_{n+1} = \frac{1}{2}(z_n + z_{n-1}).$
 - (a) Montrer qu'il existe deux constantes réelles α et β telles que l'on a :

$$\forall n \in \mathbb{N}, \quad z_n = \alpha + \beta \left(-\frac{1}{2}\right)^n$$

- (b) En déduire qu'il existe des suites appartenant à A et non monotones.
- 3. Soit $a = (a_n)_{n \in \mathbb{N}}$ un élément de A et b la suite définie par : $\forall n \in \mathbb{N}, \ b_n = \left(-\frac{1}{2}\right)^n$.

On définit alors la suite c par : $c_0 = a_0$ et $\forall n \in \mathbb{N}^{\times}$, $c_n = a_n + \frac{1}{2}a_{n-1}$.

- (a) Montrer que la suite c est décroissante à partir du rang 1 et qu'elle converge vers un nombre ℓ que l'on ne cherchera pas à calculer.
- (b) Pour tout entier naturel n, établir l'égalité : $\sum_{k=0}^{n} \left(-\frac{1}{2}\right)^k c_{n-k} = a_n.$ Que peut-on en déduire pour les suites $b \times c$ et a?
- (c) Soit ε la suite définie par : $\forall n \in \mathbb{N}$, $\varepsilon_n = c_n \ell$ et d la suite $b \times \varepsilon$. En utilisant le résultat de la question 3. de la Partie 1, montrer que la suite d converge vers 0.
- (d) Pour tout entier naturel n, établir l'égalité : $d_n = a_n \frac{2}{3}\ell\left(1 \left(-\frac{1}{2}\right)^{n+1}\right)$.

5