Devoir Maison n°5 : corrigé

ECE3 Lycée Carnot

2 mai 2012

Exercice 1 (Ecricome 2005)

- 1. La fonction est évidemment continue sur \mathbb{R}_+^* , et de plus $\lim_{x\to 0} x \ln x = 0$ (croissance comparée), donc $\lim_{x\to 0} f(x) = -1$. Ceci prouve la continuité du prolongement effectué en posant f(0) = -1, donc la continuité de f sur \mathbb{R}_+ .
- 2. La fonction est dérivable sur \mathbb{R}_+^* , de dérivée $f'(x) = 2x \ln(x) 1$. Cette dérivée ayant une limite infinie en 0, le théorème de prolongement \mathcal{C}^1 permet d'affirmer que f n'est pas dérivable en 0, mais que sa courbe y admettra une tangente verticale.
- 3. Dérivons donc une deuxième fois sur $\mathbb{R}_+^*: f''(x) = 2 \frac{1}{x} = \frac{2x-1}{x}$. La courbe représentative de f admet donc un point d'inflexion en $x = \frac{1}{2}$, elle est concave sur $\left[0; \frac{1}{2}\right]$ et convexe sur $\left[\frac{1}{2}; +\infty\right[$. La dérivée f' est donc décroissante puis croissante, et admet en $\frac{1}{2}$ un minimum valant $f'\left(\frac{1}{2}\right) = 1 \ln\left(\frac{1}{2}\right) 1 = \ln 2 > 0$. On en déduit que f' est toujours positive, et f est donc strictement croissante sur \mathbb{R}_+ . Par croissance comparée, $f(x) \underset{+\infty}{\sim} x^2$, donc $\lim_{x \to +\infty} f(x) = +\infty$.
- 4. Au vu du calcul précédent, $\frac{f(x)}{x} \underset{+\infty}{\sim} x$, donc $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$, et la courbe de f admet donc une branche parabolique de direction (Oy).
- 5. La fonction étant continue et strictement croissante, elle est certainement bijective, et au vu des limites calculées, $J =]-1; +\infty[$.
- 6. D'après le théorème de la bijection, f^{-1} est bijective strictement croissante de $]-1;+\infty[$ vers $]0;+\infty[$, donc $\lim_{x\to+\infty}f^{-1}(x)=+\infty.$
- 7. L'existence de x_k est une conséquence de la bijectivité de f et du fait que bient entendu $k \ge -1$.
 - (a) Il suffir de savoir lire le tableau donné dans l'énoncé pour constater que $x_0 = 1$.
 - (b) De même, le tableau de valeurs et la croissance de f permettent de dire que $1, 5 \le x_1 \le 2$ et $2 \le x_2 \le 2, 5$.
 - (c) D'après la définition de x_k , on a $x_k=f^{-1}(k)$, donc, au vu de la limite donnée à la question $6, \ x_{k\to +\infty_k}=+\infty.$
- 8. (a) La fonction φ est dérivable sur \mathbb{R}_+^* , de dérivée $\varphi'(x) = -\frac{2}{x^2} + \frac{1}{x} = \frac{x-2}{x^2}$. La fonction φ est donc décroissante sur]0;2] et croissante sur $[2;+\infty[$. Si on tient à être complet, on peut ajouter que $\lim_{x\to +\infty} \varphi(x) = +\infty$, et $\lim_{x\to 0} \varphi(x) = +\infty$ (pour cette dernière limite, il faut un argument de croissance comparée).
 - (b) Comme $1,69 \in \left[\frac{3}{2};2\right], 1,73 \in \left[\frac{3}{2};2\right]$, et la fonction est croissante entre ces deux bornes, le résultat est évident.

- (c) Dérivons donc à nouveau sur $\mathbb{R}_+^*: \varphi''(x) = \frac{x^2 + 2x(x-2)}{x^4} = \frac{3x-4}{x^3}$. La fonction φ' est donc croissante (et négative au vu des variations de φ) sur $\left[\frac{3}{2}; 2\right]$. Comme $\varphi'\left(\frac{3}{2}\right) = \frac{-\frac{1}{2}}{\frac{9}{4}} = -\frac{2}{9}$, on a donc $-\frac{2}{9} \leqslant \varphi'(x) \leqslant 0$ sur $\left[\frac{3}{2}; 2\right]$, et en particulier $|\varphi'(x)| = \frac{2}{9}|$.
- (d) En effet, si f(x) = 1, alors $x^2 x \ln(x) = 2$, et on peut diviser par x (quiç ne peut de toute façon pas être nul) pour obtenir $x = \ln(x) + \frac{2}{x}$, soit $\varphi(x) = x$. Comme on a vu plus haut que x_1 était l'unique solution de l'équation f(x) = 1, il s'agit donc également de l'unique point fixe de la fonction φ .
- (e) C'est une récurrence utilisant le résultat du $b: u_0 = \frac{3}{2}$ appartient sûrement à l'intervalle $\left[\frac{3}{2}; 2\right]$, et en supposant que $u_n \in \left[\frac{3}{2}; 2\right]$, on aura, au vu du $b, f(u_n) \in \left[\frac{3}{2}; 2\right]$, c'est-àdire que $u_{n+1} \in \left[\frac{3}{2}; 2\right]$, ce qui achève la récurrence.
 - On a tous les éléments pour appliquer l'IAF à la fonction φ entre x_1 et u_n : la valeur absolue de φ' est majorée par $\frac{2}{9}$ sur l'intervalle $\left[\frac{3}{2};2\right]$, on vient de prouver que u_n appartenait à l'intervalle, et on a vu à la question 7.b que c'était aussi le cas de x_1 . On en déduit que $|f(u_n) f(x_1)| \leq \frac{2}{9}|u_n x_1|$, c'est-à-dire, puisque $f(x_1) = x_1$ et $f(u_n) = u_{n+1}, |u_{n+1} x_1| \leq \frac{2}{9}|u_n x_1|$.
 - Une dernière récurrence pour la route. Au rang 0, comme $x_1 \in \left[\frac{3}{2}; 2\right]$, on a certainement $|u_0 x_1| \leqslant \frac{1}{2}$, donc a fortiori $|u_0 x_1| \leqslant \left(\frac{2}{9}\right)^0$. Si on suppose désormais l'inégalité vérifiée au rang n, alors $|u_{n+1} x_1| \leqslant \frac{2}{9}|u_n x_1|$ (question précédente) et $|u_n x_1| \leqslant \left(\frac{2}{9}\right)^n$ (hypothèse de récurrence) donc $|u_{n+1} x_1| \leqslant \frac{2}{9} \times \left(\frac{2}{9}\right)^n = \left(\frac{2}{9}\right)^{n+1}$.
- (f) Puisque $\lim_{n\to+\infty} \left(\frac{2}{9}\right)^n = 0$, d'après le théorème des gendarmes, $\lim_{n\to+\infty} |u_n x_1| = 0$. Autrement dit, $\lim_{n\to+\infty} u_n = x_1$.

Exercice 2 (Ecricome 2011)

Partie I. Un jeu en ligne.

- 1. Il y a neuf cases, trois jetons à placer dans des cases distinctes, avec un ordre qui n'est pas important, donc le nombre de possibilités est $\binom{9}{3} = \frac{9!}{6! \times 3!} = \frac{9 \times 8 \times 7}{3 \times 2} = 4 \times 4 \times 7 = 84$.
- 2. Sur les 84 placements possibles au total, il y en a trois pour lesquels les jetons sont alignés horizontalement, trois pour lesquels ils sont alignés verticalement et deux pour lesquels ils sont alignés en diagonale, donc $P(H) = P(V) = \frac{3}{84} = \frac{1}{28}$, et $P(D) = \frac{2}{84} = \frac{1}{42}$.
- 3. Les événements N, V, H et D forment un système complet d'événements, donc $P(N) = 1 P(H) P(V) P(D) = 1 \frac{8}{84} = 1 \frac{2}{21} = \frac{19}{21}$.
- 4. (a) Au vu des données de l'énoncé et des calculs précédents, $Z_i(\Omega) = \{-2; 18\}$, et $P(Z_i = -2) = \frac{19}{21}$; $P(Z_i = 18) = \frac{2}{21}$. On en déduit que $E(Z_i) = -2 \times \frac{19}{21} + 18 \times \frac{2}{21} = -\frac{2}{21}$.

(b) Si on note Z le gain journalier, on a manifestement $Z=-\sum_{i=1}^{i=10\ 000}Z_i$, donc par linéarité de l'espérance, $E(Z)=-10\ 000\times E(Z_i)=\frac{20\ 000}{21}$.

Partie II. Cas de joueurs invétérés.

- 1. (a) On a vu plus haut que chaque partie avait une probabilité $\frac{2}{21}$ d'être gagnée. Puisqu'on répète 100 expériences indépendantes, on est dans un schéma de loi binomiale. Plus précisément, $X \sim \mathcal{B}\left(100; \frac{2}{21}\right)$.
 - (b) Cela découle de la question précédente : $E(X) = 100 \times \frac{2}{21} = \frac{200}{21}$, et $V(X) = 100 \times \frac{2}{21} \times \frac{19}{21} = \frac{3800}{441}$.
 - (c) Le perd 2 euros pour chaque partie perdue, et en perd -18 (puisqu'il en gagne 18) quand il gagne. Puisqu'il y a X parties gagnées, et donc 100-X parties perdues, T=2(100-X)-18X=200-20X.
- 2. La probabilité de perdre les k premières parties (avec $k \ge 1$) est de $\left(\frac{19}{21}\right)^k$ (les parties sont indépendantes) donc celle de gagner au moins une partie sur les k premières vaut $1 \left(\frac{19}{21}\right)^k$. On cherche donc à résoudre l'inéquation $1 \left(\frac{19}{21}\right)^k \ge \frac{1}{2}$, soit $\left(\frac{19}{21}\right)^k \le \frac{1}{2}$. On peut prendre les ln pour obtenir la condition $k \ln \frac{19}{21} \le -\ln(2)$, soit encore, puisque $\ln \frac{19}{21} < 0$, $k \ge -\frac{\ln 2}{\ln \frac{19}{21}} \simeq -\frac{0.7}{0.1} \simeq 7$. Il faudra donc environ 7 parties pour avoir plus d'une chance sur deux d'en gagner au moins une.
- 3. Jouer au plus k parties avant d'en gagner une est exactement équivalent à gagner au moins une partie lors des k premières, le calcul de cette probabilité a donc déjà été effectué.

Partie III. Contrôle de la qualité du jeu.

- 1. Une fois qu'on suppose qu'un des trois jetons se situe en haut à gauche, il reste $\binom{8}{2} = \frac{8 \times 7}{2} = 28$ façons de placer les deux autres. Parmi ces 28 positions, une seule permet d'aligner les trois étoiles horizontalement, une autre verticalement, et une dernière horizontalement. Ce qui donne $P_{\Delta}(H) = P_{\Delta}(V) = P_{\Delta}(D) = \frac{1}{28}$.
- 2. En faisant ce qui nous est demandé, on obtient $P(N) = P(\Delta) \times P_{\Delta}(N) + P(\overline{\Delta}) \times P_{\overline{\Delta}}(N)$. Or, $P(\Delta) = x$ d'après l'énoncé, donc $P(\overline{\Delta}) = 1 x$, et $P_{\overline{\Delta}}(N) = \frac{19}{21}$ (c'est la situation étudiée dans la première partie), et enfin $P_{\Delta}(N) = 1 \frac{3}{28} = \frac{25}{28}$ d'après les calculs de la question précédente. On obtient finalement $P(N) = x \times \frac{25}{28} + (1 x) \times \frac{19}{21} = \frac{75x}{84} + \frac{19}{21} \frac{76x}{84} = -\frac{x}{84} + \frac{19}{21}$.
- 3. Comme dans la première partie, la variable G prend les valeurs 2 et -18 avec probabilité respective P(N) et 1-P(N), donc $E(G)=2P(N)-18(1-P(N))=20P(N)-18=-\frac{20x}{84}+20\times\frac{19}{21}-18=-\frac{5x}{21}+\frac{20\times19-18\times21}{21}=\frac{2-5x}{21}$ (pour ceux que ça rebute de calculer $20\times19-18\times21$, on peut noter que c'est de la forme $x(x-1)-(x-2)(x+1)=x^x-x-(x^2-x-2)=2$). L'espérance de gain reste donc positive tant que $x<\frac{2}{5}$.

4. On cherche à calculer
$$P_{\overline{N}}(\Delta)$$
, c'est une application classique de la formule de Bayes : $P_{\overline{N}}(\Delta) = \frac{P(\Delta) \times P_{\Delta}(\overline{N})}{P(\overline{N})} = \frac{x \times \frac{3}{28}}{1 + \frac{x}{84} - \frac{19}{21}} = \frac{9x}{84 + x - 76} = \frac{9x}{x + 8}$.