Devoir Maison n°1 : corrigé

ECE3 Lycée Carnot

30 septembre 2011

Exercice 1

- 1. C'est bien évidemment vrai, il suffit de prendre n = -12 par exemple (ou tout autre entier négatif).
- 2. Là, c'est faux, une fois l'entier n fixé, on peut toujours trouver un autre entier naturel qui sera strictement plus petit. Une façon de voir les choses est d'écrire la négation de notre énoncé : $\forall n \in \mathbb{Z}, \exists p \in \mathbb{Z}, p < n$, ce qui est vrai en posant p = n 1.
- 3. C'est vrai, il suffit de prendre $y = e^x$, qui sera en effet toujours strictement positif.
- 4. Non, c'est faux, car il existe un (et un seul!) contre-exemple pour x = 0, qui est tout seul à avoir pour valeur absolue 0. L'affirmation serait vraie en mettant $\forall x \in \mathbb{R}^*$.
- 5. C'est bien évidemment faux, car on peut certainement trouver des valeurs de x et de y qui ne vérifient pas l'inégalité x < y.
- 6. C'est vrai, une fois x et y fixés strictement positifs, on peut toujours trouver un z suffisamment grand pour que son produit par x soit plus grand que y. Les plus courageux vérifieront que $z = x \times \left(Ent\left(\frac{1}{y}\right) + 1\right)$ convient toujours.

Exercice 2

- 1. La seule valeur pouvant poser problème est celle qui annule le dénominateur, donc $\mathcal{D}_f = \mathbb{R} \setminus \{2\}$.
- 2. Le plus simple est de faire un tableau de signe de ce qui se trouve dans la valeur absolue. Le numérateur a pour discriminant $\Delta=9-4=5$, donc s'annule pour $x_1=\frac{3-\sqrt{5}}{2}$ et $x_2=\frac{3+\sqrt{5}}{2}$. Le dénominateur s'annule évidemment en 2, qui est compris entre x_1 et x_2 . D'où les signes suivants :

x		x_1	, 2	2	x_2	
$x^2 - 3x + 1$	+	0	_		0	+
x-2	_		- () +		+
f(x)	$\frac{x^2 - 3x + 1}{2 - x}$	0	$\frac{x^2 - 3x + 1}{x - 2}$	$\frac{x^2 - 3x + 1}{2 - x}$	0	$\frac{x^2 - 3x + 1}{x - 2}$

3. Les antécédents de 0 ont déjà été déterminés, il s'agit de x_1 et de x_2 . Pour les antécédents de 2, il s'agit en fait de résoudre deux équations, tout d'abord $\frac{x^2-3x+1}{2-x}=2$, qui donne $x^2-3x+1=4-2x$ puis $x^2-x-3=0$, équation dont le discriminant vaut $\Delta=1+12=13$, et admet donc deux solutions $x_3=\frac{1+\sqrt{13}}{2}$ et $y_2=\frac{1-\sqrt{13}}{2}$; et $\frac{x^2-3x+1}{x-2}=2$, qui donne $x^2-3x+1=2x-4$, puis $x^2-5x+5=0$, équation dont le discriminant vaut $\Delta=25-20=5$,

1

qui admet également deux racines $x_5 = \frac{5 + \sqrt{5}}{2}$ et $x_6 = \frac{5 - \sqrt{5}}{2}$. Tout cela nous donne donc quatre antécédents pour 2 (que je n'ai pas envie de réécrire).

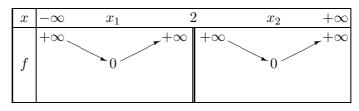
Même méthode pour 5, la première équation donne $x^2-3x+1=10-5x$, soit $x^2+2x-9=0$, dont le discriminant vaut 4+36=40, et admet deux racines $x_7=\frac{-2+2\sqrt{10}}{2}=\sqrt{10}-1$, et $x_8=-1-\sqrt{10}$; la deuxième équation donne $x^2-3x+1=5x-10$, soit $x^2-8x+11=0$, dont le discriminant vaut 64-44=20, et qui a deux racines $x_9=\frac{8-2\sqrt{5}}{2}=4-2\sqrt{5}$ et $x_{10}=4+2\sqrt{5}$. Le réel 5 a donc également quatre antécédents par f.

4. La fonction g a le même domaine de définition que f, et $g'(x) = \frac{(2x-3)(x-2)-(x^2-3x+1)}{(x-2)^2} = \frac{x^2-4x+5}{(x-2)^2}$. Le discriminant du numérateur vaut $\Delta = 16-20 = -4$, donc ce numérateur est toujours positif. La fonction g est donc strictement croissante sur $]-\infty; -2[$ et sur $]2; +\infty[$. Les limites en $\pm \infty$ se calculent par la méthode des termes de plus haut degré. Elles valent $-\infty$ et

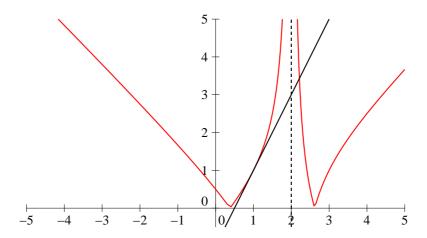
limites en $\pm \infty$ se calculent par la méthode des termes de plus haut degré. Elles valent $-\infty$ et $+\infty$ respectivement. En 2, le numérateur tend vers -1, et le dénominateur vers 0, on en déduit facilement que $\lim_{x\to 2^-} g(x) = +\infty$ et $\lim_{x\to 2^+} g(x) = -\infty$. Soit le tableau de variations suivant :

\boldsymbol{x}	$-\infty$	$+\infty$
g	+∞	+∞

5. Il suffit d'inverser les variations de g sur les intervalles où f est négative, ce qui donne :



- 6. Pour x = 1, on a f(1) = 1, et f'(1) = g'(1) = 2 puisque 1 se situe dans un intervelle où f et g coincident. L'équation de la tangente est donc y = 2(x 1) + 1 = 2x 1.
- 7. Voila la courbe, avec la tangente en noir et l'asymptote verticale en pointillés. Sur votre feuille, vous pouviez bien sûr essayer de placer les antécédents de 2 et de 5 le plus précisément possible :

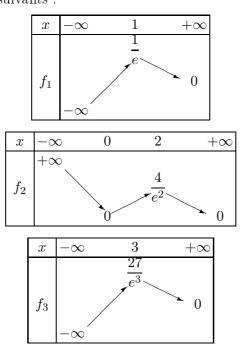


Exercice 3 (d'après vieux sujet de bac)

On considère la famille de fonctions f_k (k étant un entier naturel) définie par les équations $f_k(x) = x^k e^{-x}$.

1. Toutes ces fonctions sont définies sur \mathbb{R} . La fonction $f_1: x \mapsto xe^{-x}$ a pour dérivée $f_1'(x) = e^{-x} - xe^{-x} = (1-x)e^{-x}$. L'exponentielle étant évidemment toujours positive, la fonction f_1 est croissante sur $]-\infty;1]$ et décroissante sur $[1;+\infty[$. Elle admet en 1 un maximum de valeur $f_1(1) = e^{-1} = \frac{1}{e} \simeq 0,4$. La fonction $f_2: x \mapsto x^2e^{-x}$ a pour dérivée $f_2'(x) = 2xe^{-x} - x^2e^{-x} = x(2-x)e^{-x}$. On peut faire un tout petit tableau de signes pour vérifier que f est décroissante sur $]-\infty;0]$ et sur $[2;+\infty[$ et croissante sur [0;2]. On calcule également $f_2(0) = 0$ (toutes les fonctions f_k s'annulent en 0) et $f_2(2) = \frac{4}{e^2} \simeq 0,5$. Enfin, la fonction $f_3: x \mapsto x^3e^{-x}$ a pour dérivée $f_3'(x) = 3x^2e^{-x} - x^3e^{-x} = x^2(3-x)e^{-x}$. La dérivée est du signe de 3-x, donc f_3 est croissante sur $]-\infty;3]$ et décroissante sur $[3;+\infty[$. Elle admet un maximum en 3 de valeur $f_3(3) = \frac{27}{e^3} \simeq 1,3$.

Les limites en $+\infty$ peuvent se calculer simultanément pour toutes les fonctions, puisqu'on a, quelle que soit la valeur de k, une croissance comparée qui permet d'affirmer que $\lim_{x\to+\infty} f_k(x) = 0$. En $-\infty$, e^{-x} tendra vers $+\infty$, et est multiplié par x^k qui tend vers $+\infty$ ou $-\infty$ selon la parité de k. On a donc $\lim_{x\to-\infty} f_1(x) = \lim_{x\to-\infty} f_3(x) = -\infty$ et $\lim_{x\to-\infty} f_2(x) = +\infty$. On peut résumer tout ceci avec les trois tableaux suivants :



Restent les tangentes à l'origine : on a déjà signalé qu'on aurait toujours $f_k(0) = 0$, et $f'_k(0) = 0$ dès que $k \ge 1$ car il y aura toujours un facteur x dans la dérivée. La tangente est alors horizontale. Par contre, $f'_0(0) = 1$, donc la tangente à l'origine de cette courbe a pour équation y = x.

- 2. Nous avons déjà vu que l'origine était un point commun à toutes les courbes. C'est également le cas du point de coordonnées (1,1), puisqu'on aura toujours $f_k(1) = 1$ (et ce sont les seuls, car 0 et 1 sont les seules valeurs qui ont toutes leurs puissances égales).
- 3. Il s'agit simplement de généraliser ce qui a été fait plus faut. La fonction f_k a pour dérivée $f'_k(x) = kx^{k-1}e^{-x} x^ke^{-x} = x^{k-1}(k-x)e^{-x}$. Lorsque k est impair, le signe de la dérivée est celui de k-x (car x^{k-1} est toujours positif), donc f_k est croissante sur $]-\infty;k]$ et décroissante

sur $[k; +\infty[$. Elle admet un maximum pour x=k, de valeur $f_k(k)=\frac{k^k}{e^k}$ (ces maxima sont de plus en plus grands et tendent vers $+\infty$ quand k tend vers $+\infty$). Lorsque k est pair, la dérivée change également de signe en 0, la fonction est alors décroissante sur $]-\infty;0]$, admet un minimum à l'origine, est croissante sur [0;k] puis à nouveau décroissante ensuite, avec un maximum donné par la même formule que dans le cas impair. Les limites ont déjà été données dans le cas général un peu plus haut : toujours 0 en $+\infty$ et $-\infty$ ou $+\infty$ selon la parité de k en $-\infty$.

- 4. Pour cela le plus simple est de déterminer le signe de $f_{k+1}(x) f_k(x) = x^{k+1}e^{-x} x^ke^{-x} = x^k(x-1)e^{-x}$. Les courbes sont donc de plus en plus bas sur [0;1], et de plus en plus haut sur $[1;+\infty[$. Du côté de \mathbb{R}^- , c'est un peu plus compliqué, puisque les courbes sont alternativement au-dessus et en-dessous de l'axe des abscisses. Il est en fait plus cohérent de comparer dans ce cas f_k et f_{k+2} (deux courbes se trouvant du même côté de l'axe), dont la différence vaut $x^k(x^2-1)e^{-x}$. Les courbes correspondant à des valeurs paires de k sont donc de plus en plus haut sur $]-\infty;-1]$ et de plus en plus bas sur [-1;0], et c'est le contraire pour les valeurs impaires de k.
- 5. Voici donc les trois courbes, f_1 en rouge, f_2 en bleu et f_3 en vert, les tangentes en noir :

