Mathématiques II : corrigé

ECE3 Lycée Carnot

 $25~\mathrm{mai}~2012$

Problème 1

I. Étude des fonctions f_n .

- 1. Les fonctions h_n sont C^{∞} sur $]-1;+\infty[$, de dérivées $h'_n(x)=\frac{n}{1+x}+\frac{1+x-x}{(1+x)^2}=\frac{n(1+x)+1}{(1+x)^2}$. Le numérateur étant toujours positif sur $]-1;+\infty[$, les fonction h_n sont toutes strictement croissantes sur cet intervalle.
- 2. Calculons donc : $h_n(0) = n \ln 1 + 0 = 0$. Les fonctions h_n sont donc négatives sur $[0; +\infty[$.
- 3. (a) La fonction f_1 est C^{∞} sur son ensemble de définition comme produit et composée de fonctions usuelles. Sa dérivée est $f_1'(x) = \ln(1+x) + \frac{x}{1+x} = h_1(x)$.
 - (b) La fonction f_1 est donc décroissante sur]-1;0] et croissante sur $[0;+\infty[$. Elle admet en 0 un minimum de valeur $f_1(0)=0$, et a pour limite $+\infty$ en -1 et en $+\infty$.
- 4. (a) Comme f_1 , f_n est C^{∞} sur $]-1;+\infty[$, de dérivée $f'_n(x)=nx^{n-1}\ln(1+x)+\frac{x^n}{1+x}=x^{n-1}h_n(x).$
 - (b) Si n est impair, x^{n-1} est toujours positif et, comme pour f_1 , f_n est décroissante puis croissante, atteignant pour minimum 0 en 0, et ayant pour limite $+\infty$ aux deux bornes de son domaine de définition. Si n est pair, par contre, x^{n-1} change de signe en 0, et $x^{n-1}h_n(x)$ est toujours positif, donc f_n est strictement croissante sur $]-1;+\infty[$, avec pour limite $-\infty$ en -1 et $+\infty$ en $+\infty$.

II. Étude d'une suite.

A. Calcul de U_1 .

- 1. Procédons par identification : $ax + b + \frac{c}{x+1} = \frac{ax^2 + (a+b)x + b + c}{x+1}$, donc on aura égalité si a = 1, a + b = 0 et b + c = 0, soit a = c = 1 et b = -1, donc $\frac{x^2}{x+1} = x 1 + \frac{1}{x+1}$.
- 2. On a donc $\int_0^1 \frac{x^2}{x+1} dx = \int_0^1 x 1 + \frac{1}{x+1} dx = \left[\frac{x^2}{2} x + \ln(x+1) \right]_0^1 = \frac{1}{2} 1 + \ln 2 = \ln 2 \frac{1}{2}$
- 3. Par définition, $U_1 = \int_0^1 x \ln(1+x) dx$. Effectuons une intégration par partie en posant $u(x) = \ln(1+x)$ et v'(x) = x, donc $u'(x) = \frac{1}{x+1}$ et $v(x) = \frac{x^2}{2}$. On obtient $U_1 = \left[\frac{x^2}{2}\ln(1+x)\right]_0^1 \frac{1}{2}\int_0^1 \frac{x^2}{x+1} dx = \frac{\ln 2}{2} \frac{1}{2}\left(\ln 2 \frac{1}{2}\right) = \frac{1}{4}$.

B. Convergence de la suite (U_n) .

- 1. Pour tout entier naturel n, on a $\forall n \in \mathbb{N}$, $x^{n+1} \leq x^n$, donc $x^{n+1} \ln(1+x) \leq x^n \ln(1+x)$, d'où en intégrant l'inégalité sur [0;1], $U_{n+1} \leq U_n$. La suite (U_n) est donc décroissante.
- 2. Comme de plus (U_n) est une suite à valeurs positives (les fonctions f_n prennent toutes des valeurs positives sur [0;1]), la suite est décroissante minorée, donc convergente.
- 3. La positivité de U_n a déjà été justifiée. De plus, sur [0;1], $\ln(1+x) \leqslant \ln 2$, donc $U_n \leqslant \int_0^1 x^n \ln 2 = \ln 2 \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{\ln 2}{n+1}$.
- 4. Le théorème des gendarmes permet d'affirmer que $\lim_{n\to+\infty}U_n=0$.

C. Calcul de U_n pour $n \ge 2$.

- 1. Inutile de faire une récurrence, il s'agit d'une somme géométrique de raison -x, donc $S_n(x) = \frac{1 (-x)^{n+1}}{1 (-x)} = \frac{1}{1+x} + \frac{(-1)^n x^{n+1}}{1+x}$.
- 2. Intégrons donc l'égalité précédente : par linéarité $\int_0^1 S_n(x) = \sum_{k=0}^{k=n} (-1)^k \int_0^1 x^k dx = \sum_{k=0}^{k=n} \frac{(-1)^k}{k+1}$. À droite, on a $\int_0^1 \frac{1}{1+x} + \int_0^1 \frac{(-1)^n x^{n+1}}{1+x} dx = [\ln(1+x)]_0^1 + (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} dx = \ln 2 + (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} dx$.
- 3. On va effectuer une intégration par parties en posant $u(x) = \ln(x+1)$ et $v'(x) = x^n$, donc $u'(x) = \frac{1}{1+x}$ et $v(x) = \frac{x^{n+1}}{n+1}$. On obtient $U_n = \left[\frac{x^{n+1}}{n+1}\ln(1+x)\right]_0^1 \frac{1}{n+1}\int_0^1 \frac{x^{n+1}}{1+x} = \frac{\ln 2}{n+1} \frac{(-1)^n}{n+1}\left(\sum_{k=0}^{k=n}\frac{(-1)^k}{k+1} \ln 2\right)$, ce qui donne bien la formule annoncée.

Problème 2

I. Convergence de la suite (u_n) .

- 1. La foc
ntion f étant la composée de l'exponentielle et de la fonction $x \mapsto a(x-1)$, qui sont toutes deux strictement croissantes sur $\mathbb R$ puisque a>0, elle est strictement croissante sur $\mathbb R$.
- 2. Prouvons donc par récurrence la propriété $P_n: u_n \in [0;1]$ et $u_n \leqslant u_{n+1}$. Puisque $u_0 = 0 \in [0;1]$ et $u_1 = f(0) = e^{-a} > 0$, la propriété P_0 est vérifiée. Supposons désormais P_n vérifiée, alors en exploitant l'hypothèse de récurrence et la croissance de f, $f(0) \leqslant f(u_n) \leqslant f(1)$, et $f(u_n) \leqslant f(u_{n+1})$, c'est-à-dire $e^{-a} \leqslant u_{n+1} \leqslant 1$ et $u_{n+1} \leqslant u_{n+2}$. La propriété P_{n+1} est bien vérifiée, et la récurrence achevée.
- 3. La suite étant croissante et majorée par 1, elle converge.

II. Limite de la suite (u_n) lorsque a < 1.

- 1. La fonction f est \mathcal{C}^{∞} sur \mathbb{R} , et $f'(x) = ae^{a(x-1)} = af(x)$. La fonction f' est donc croissante comme f et, $\forall x \in [0;1]$, $f'(0) \leq f'(x) \leq f'(1)$. Comme $f'(0) = ae^{-a} > 0$ et f'(1) = a, on a donc $0 \leq f'(x) \leq a$ sur [0;1].
- 2. On a prouvé dans la première partie du problème que $u_n \in [0;1]$, et on vient d'encadrer f' sur cet intervalle, on peut donc appliquer l'IAF entre u_n et 1 pour obtenir, puisque $u_n \leq 1$, que $0 \leq f(1) f(u_n) \leq a(1 u_n)$. Comme $f(u_n) = u_{n+1}$ et f(1) = 1, l'encadrement souhaité en découle.

3. Prouvons par récurrence la propriété $P_n: 0 \leqslant 1-u_n \leqslant a^n$. Comme $1-u_0=1=a^0$, la propriété P_0 est vérifiée. Supposons maintenant P_n vraie, alors d'après la question précédente $0 \leqslant 1-u_{n+1} \leqslant a(1-u_n)$, avec par hypothèse $1-u_n \leqslant a^n$. On en déduit que $0 \leqslant 1-u_{n+1} \leqslant a \times a^n=a^{n+1}$, ce qui prouve P_{n+1} et achève la récurrence. Si a<1, on aura $\lim_{n\to +\infty}a^n=0$ donc, en appliquant le théorème des gendarmes, $\lim_{n\to +\infty}1-u_n=0$, soit $\lim_{n\to +\infty}u_n=1$.

III. Limite de la suite (u_n) lorsque $a \ge 1$.

- 1. (a) Pour cela, introduisons donc la fonction $g: a \mapsto 1 \frac{\ln a}{a}$. Cette fonction g est certainement dérivable sur $[1; +\infty[$, et $g'(a) = -\frac{1-\ln a}{a^2}$. La fonction g est donc décroissante sur [1; e] et croissante sur $[e; +\infty[$. Elle admet pour minimum sur $[1; +\infty[$ la valeur $g(e) = 1 \frac{1}{e} > 0$. De plus, $g(1) = \lim_{a \to +\infty} g(a) = 1$ (croissance comparée pour cette dernière limite), donc $0 < g(a) \leqslant 1$ sur $[1; +\infty[$.
 - (b) Nous avons déjà calculé f', résolvons donc l'équation $ae^{a(x-1)}=1$. Le plus simple est de passer au logarithme (tout est positif) pour obtenir $\ln a + a(x-1) = 0$, soit $x-1 = -\frac{\ln a}{a}$, donc $x=1-\frac{\ln a}{a}$.
 - (c) On a déjà vu plus haut que la dérivée f' était strictement croissante sur \mathbb{R} , donc f'(x)-1, qui est la dérivée de f(x)-x, également. Si a=1, la solution obtenue à la question précédente vaut 1, et f'(x)-1 est donc négative sur $]-\infty;1]$ et positive ensuite. La fonction $x\mapsto f(x)-x$ est donc strictement décroissante sur $]-\infty;1]$ et strictement croissante sur $[1;+\infty[$. Elle admet pour minimum f(1)-1=0.

Si a < 1, c'est très similaire, $x \mapsto f(x) - x$ est décroissante sur $\left[-\infty; 1 - \frac{\ln a}{a} \right]$, et croissante sur $\left[1 - \frac{\ln a}{a}; +\infty \right[$. On ne cherchera pas à calculer son minimum, ça ne sert à rien!

- (d) Les solutions de l'équation f(x) = x sont les valeurs d'annulation de la fonction qu'on vient d'étudier. Si a = 1, puisqu'on a un minimum valant 0, 1 est la seule solution de l'équation. Par contre, si a < 1, 1 est toujours solution, mais la fonction atteint son minimum avant, et ce minimum est donc strictement négatif. Comme par ailleurs on sait que f(0) 0 > 0 (cf calculs en début de problème) la fonction s'annule une deuxième fois entre 0 et 1. Cette valeur correspond à r(a) (il ne peut pas y avoir d'autres points d'annulation au vu des variations de la fonction), qui vérifie donc 0 < r(a) < 1.
- 2. (a) Cette fonction est évidemment dérivable sur $[0; +\infty[$, de dérivée $\varphi'(x) = e^{-x} xe^{-x} = (1-x)e^{-x}$. La fonction est donc croissante sur [0; 1] et décroissante sur $[1; +\infty[$. De plus, $\varphi(0) = 0$ et $\lim_{x \to +\infty} \varphi(x) = 0$ (par croissance comparée). Pour compléter le graphique, on peut ajouter que $\varphi'(0) = 1$, ce qui permet de placer la tangente à la courbe à l'origine. Voici ladite courbe :



(b) On a $\varphi(a) = ae^{-a}$ et $\varphi(ar(a)) = ar(a)e^{-ar(a)}$. Mais rappelons-nous que, par définition, f(r(a)) = r(a), c'est-à-dire que $e^{a(r(a)-1)} = r(a)$, donc $\varphi(ar(a)) = ae^{ar(a)-a}e^{-ar(a)} = r(a)$

 $ae^{-a} = \varphi(a)$. Les deux images sont tout simplement égales. Si a > 1, on peut en déduire, au vu du tableau de variations de φ , que ar(a) < 1 (chaque valeur autre que le maximum est prise exactement deux fois par φ , une fois sur]0;1[et une autre sur $]1;+\infty[$, et on ne peut bien sûr avoir a = ar(a), puisque r(a) < 1 par construction si a > 1).

- (c) La fonction est strictement croissante sur cet intervalle, elle y est certainement bijective. Tout le reste découle du théorème de la bijection : φ^{-1} est continue, strictement croissante, et vérifie $\varphi^{-1}(0) = 0$, et $\varphi^{-1}\left(\frac{1}{e}\right) = 1$.
- (d) On a vu plus haut que $\varphi(ar(a)) = ae^{-a}$. Comme $ar(a) \in [0; 1]$, cela équivaut à dire que $ar(a) = \varphi^{-1}(ae^{-a})$, d'où l'égalité demandée. Comme la fonction φ^{-1} est bornée par 0 et 1, on a donc $0 \leqslant r(a) \leqslant \frac{1}{a}$ et, par théorème des gendarmes, $\lim_{a \to +\infty} r(a) = 0$.
- 3. (a) C'est exactement la même récurrence qu'à la toute première question du sujet : $0 \le u_0 \le r(a)$ est évident, et en supposant $0 \le u_n \le r(a)$, il suffit d'invoquer la croissance de f pour obtenir $e^{-a} \le u_{n+1} \le f(r(a))$. Comme r(a) est un point fixe de f, cela prouve l'encadrement pour u_{n+1} et achève la récurrence.
 - (b) On sait déjà que la suite converge vers une limite L(a), et l'encadrement précédent permet d'affirmer que $0 \le L(a) \le r(a)$. Or, la limite de la suite est nécessairement un point fixe de f, et r(a) est le plus petit de ces points fixes. Conclusion : u_n converge nécessairement vers r(a). Autrement dit, L(a) = r(a).
 - (c) Il y a à peu près douze mille façons d'obtenir ce qui est demandée. Une façon un peu brutale utilisant le fait que la fonction $x \mapsto f(x) x$ change pour la première fois de signe en r(a) est de calculer toutes les valeurs de f(x) x en partant de x = 0 et en augmentant à chaque étape x de 0.01, jusqu'à obtenir le changement de signe. Voici un programme convenable :

```
\begin{split} & PROGRAM \ approxra\,; \\ & USES \ wincrt\,; \\ & VAR \ a,x: real\,; \\ & BEGIN \\ & WriteLn('Choisissez \ la \ valeur \ de \ a')\,; \\ & ReadLn(a)\,; \\ & x:=0\,; \\ & REPEAT \ x:=x+0.01 \\ & UNTIL \ exp(a^*(x-1))-x<0\,; \\ & WriteLn(x)\,; \\ & END. \end{split}
```

IV. Courbe représentative de la fonction $a \mapsto L(a)$ pour a > 0.

On sait que la fonction L est constante égale à 1 sur [0;1] (puisqu'on a L(a)=1 si $a\leqslant 1$). On a également vu que $\lim_{a\to +\infty} L(a)=0$. On a bien sûr toujours $0\leqslant L(a)\leqslant 1$ puisque L(a)=r(a). On sait également que $ar(a)\leqslant 1$, donc $L(a)=r(a)\leqslant \frac{1}{a}$. On aimerait bien avoir les variations de L pour confimer l'hypothèse raisonnable que la fonction sera décroissante. Pour cela, on peut se battre avec l'expression obtenue à la fin de la question b, ou bien être malin : si on prend deux valeurs du paramètre a, qu'on note a_1 et a_2 , telles que $a_1\leqslant a_2$, alors on aura $\forall x\in [0;1],\ e^{a_1(x-1)}\geqslant e^{a_2(x-1)}$ (puisque x-1 est alors négatif). En notant (v_n) la suite récurrente associée à la valeur a_1 et (w_n) celle associée à a_2 , on prouve alors par une récurrence facile que, $\forall n\in\mathbb{N},\ v_n\geqslant w_n$ (en effet, si $v_n\geqslant w_n$, alors $v_{n+1}=e^{a_1(v_n-1)}\geqslant e^{a_1(w_n-1)}\geqslant e^{a_2(w_n-1)}=w_{n+1}$). Par passage à la limite, on aura $L(a_1)\geqslant L(a_2)$, ce qui prouve la décroisance de la fonction L. On peut donc imaginer une allure

ressemblant à ceci (on peut calculer la pente de la demi-tangente à la courbe à droite de 1, mais cela dépasse largement nos capacités actuelles) :

