Pour s'échauffer avant le DS...

ECE3 Lycée Carnot

28 septembre 2010

Quelques (in)équations

1. Commençons par constater que x=1 est une racine évidente du membre de gauche. On a donc $x^3-2x^2+1=(x-1)(ax^2+bx+c)=ax^2+(b-a)x^2+(c-b)x-c$, d'où par identification des coefficients a=1; b=-1 et c=-1. On a donc $x^3-2x^2+1=(x-1)(x^2-x-1)$. Ce dernier facteur a pour discriminant $\Delta=1+4=5$, et admet deux racines $x_1=\frac{1+\sqrt{5}}{2}$ et $x_2=1-\sqrt{5}2$. Il ne reste plus qu'à faire un petit tableau :

On en conclut que $S = \left[\frac{1-\sqrt{5}}{2};1\right] \cup \left[\frac{1+\sqrt{5}}{2};+\infty\right[$.

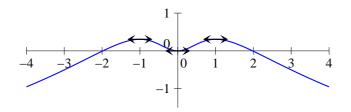
- 2. Cela revient à demander $-2 \leqslant x^2 2 \leqslant 2$, soit $0 \leqslant x^2 \leqslant 4$, donc $\mathcal{S} = [-2; 2]$.
- 3. Notons que, si m=11, l'équation se simplifie en 36x+16=0, d'où $\mathcal{S}=-\frac{16}{36}=-\frac{4}{9}$. Dans tous les autres cas, on a une équation du second degré qui a pour discriminant $\Delta=4(m+7)^2-20(m-11)=4m^2+36m+416=4(m^2+9m+104)$, trinôme donc le discriminant est toujours positif, donc lui-même toujours positif. L'équation admet donc toujours deux solutions (qu'on peut expliciter, mais ça n'a vraiment aucun intérêt).

Un exercice classique

- 1. Comme $1 + x^2$ est toujours plus grand que 1, la fonction g est toujours définie. De plus, elle est assez manifestement paire (son expression ne dépend que de x^2).
- 2. Un petit calcul : $g'(x) = \frac{4x(1+x^2)-2x\times 2x^2}{(1+x^2)^2} \frac{2x}{1+x^2} = \frac{4x+4x^3-4x^3-2x-2x^3}{(1+x^2)^2} = \frac{2x-2x^3}{(1+x^2)^2} = \frac{2x(1-x)(1+x)}{(1+x^2)^2}.$
- 3. La dérivée s'annule en 1, la fonction est croissante sur [0;1] et décroissante sur $[1;+\infty[$.
- 4. Puisque g(0) = 0, on aura g(1) > 0, et comme $\lim_{x \to +\infty} g(x) = -\infty$ (le quotient tend vers 2 et le ln vers $-\infty$), la fonction g s'annulera nécessairement une fois entre 1 et $+\infty$ (si on veut être très rigoureux, c'est une application du théorème des valeurs intermédiaires).

1

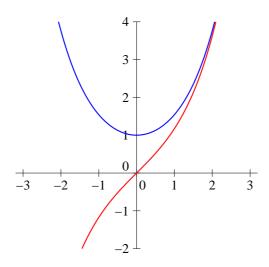
- 5. La fonction g est donc positive sur $[0; \alpha]$ et négative sur $[\alpha; +\infty[$.
- 6. Ca ressemble à ça :



- 7. On a $\mathcal{D}_f = \mathbb{R}^*$, et la fonction f est impaire (numérateur pair, dénominateur impair).
- 8. Calculons: $f'(x) = \frac{\frac{2x}{1+x^2} \times x \ln(1+x^2)}{x^2} = \frac{g(x)}{x^2}$.
- 9. Au vu des questions précédentes, f est croissante sur $[0; \alpha]$ et décroissante sur $[\alpha; +\infty[$. Par imparité, f est décroissante également sur $]-\infty; -\alpha]$ et croissante sur $[-\alpha; 0]$.

Un problème un peu moins classique

- 1. On a $sh(x) = 0 \Leftrightarrow e^x = e^{-x}$, ce qui donne en prenant les logarithmes, x = -x, soit x = 0, donc $S = \{0\}$.
- 2. $\mathcal{D}_{sh} = \mathcal{D}_{ch} = \mathbb{R}$ (puisque la fonction exponentielle est définie partout); et d'après la question précédente, $\mathcal{D}_f = \mathbb{R}^*$.
- 3. Calculons $ch(-x) = \frac{e^{-x} + e^x}{2} = ch(x)$, donc ch est paire, et $sh(-x) = \frac{e^{-x} e^x}{2} = -sh(x)$ donc sh est impaire. Quant à f, c'est le quotient de deux fonction impaires, elle est donc paire (on peut refaire le calcul si on veut).
- 4. Calculons donc : $sh'(x) = \frac{e^x (-e^{-x})}{2} = \frac{e^x + e^{-x}}{2} = ch(x)$. Cette dérivée est toujours positive (c'est une somme de deux exponentielles), donc sh est strictement croissante sur \mathbb{R} . Comme elle s'annule en 0, elle est donc négative sur $]-\infty;0]$ et positive sur $[0;+\infty[$. Passons à la deuxième fonction : $ch'(x) = \frac{e^x + (-e^{-x})}{2} = sh(x)$. D'après la remarque que nous venons de faire, ch est donc décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.
- 5. Encore un petit calcul: $ch(x) sh(x) = \frac{e^x + e^{-x}}{2} \frac{e^x e^{-x}}{2} = \frac{e^x + e^{-x} e^x + e^{-x}}{2} = e^{-x} > 0$, donc on a bien ch(x) > sh(x).
- 6. La tangente à ch en -2 a pour équation $y = sh(-2)(x+2) + ch(-2) = \frac{e^{-2} e^2}{2}(x+2) + \frac{e^{-2} + e^2}{2} = \frac{e^{-2} e^2}{2}x + \frac{3}{2}e^{-2} \frac{1}{2}e^2 \simeq -3,65x 3,55$. Pour sh, on a l'équation suivante : $y = \frac{e^{-2} + e^2}{2}(x+2) + \frac{e^{-2} e^2}{2} = \frac{e^{-2} + e^2}{2}x + \frac{3}{2}e^{-2} + \frac{1}{2}e^2 \simeq 3,75x + 3,85$.
- 7. En utilisant les limites de l'exponentielle en $\pm \infty$, on obtient sans difficulté $\lim_{x \to -\infty} ch(x) = +\infty$; $\lim_{x \to +\infty} ch(x) = +\infty$; $\lim_{x \to -\infty} sh(x) = -\infty$ et $\lim_{x \to -\infty} sh(x) = +\infty$.
- 8. Voici les deux courbes demandées :



- 9. C'est un calcul de dérivée de quotient tout simple, à tel point qu'il est difficile de le détailler.
- 10. On a g'(x) = ch(x) ch(x) x sh(x) = -x sh(x). On a vu un peu plus haut que sh(x) est toujours du même signe que x, donc x sh(x) est toujours positif, et g'(x) est toujours négatif. Autrement dit, g est une fonction décroissante sur \mathbb{R} .
- 11. Comme on a par ailleurs g(0) = 0 0 = 0, on peut en déduire que f', qui est du même signe que g, est positive sur $]-\infty;0[$, et négative sur $]0;+\infty[$. Si on tient absolument à compléter le tableau de variations, on peut prouver que f a pour limite 0 en $+\infty$ et en $-\infty$ par croissance comparée. Pour ce qui se passe en 0, c'est l'objet de la dernière question ci-dessous.
- 12. Oui, mais ce n'est pas si facile à calculer! Une astuce est d'écrire que $\frac{1}{f(x)} = \frac{e^x e^{-x}}{2x} = \frac{e^x 1}{2x} \frac{e^{-x} 1}{2x}$. La première moitié a pour limite $\frac{1}{2}$ (je rappelle que $\lim_{x \to 0} \frac{e^x 1}{x} = 1$, c'est une des limites classiques vues en cours). La deuxième moitié tend aussi vers $\frac{1}{2}$ pour la même raison (il suffit de remplacer x par -x, qui tend tout autant vers 0), donc on a en fait $\lim_{x \to 0} f(x) = 1$.