Pour s'échauffer avant le DS...

ECE3 Lycée Carnot

28 septembre 2010

Quelques (in)équations

- 1. Résoudre l'inéquation $x^3 2x^2 + 1 > 0$.
- 2. Résoudre l'inéquation $|x^2 2| \leq 2$.
- 3. Résoudre, en distinguant des cas selon la valeur prise par le paramètre m, l'équation $(m-11)x^2+2(m+7)x+m+5=0$.

Un exercice classique

Soient les fonctions f et g définies par $f(x) = \frac{\ln(1+x^2)}{x}$ et $g(x) = \frac{2x^2}{1+x^2} - \ln(1+x^2)$.

- 1. Déterminer l'ensemble de définition de g et montrer que g est une fonction paire.
- 2. Montrer que, $\forall x \in \mathbb{R}, g'(x) = \frac{2x(1-x)(1+x)}{(1+x^2)^2}$.
- 3. Dresser le tableau de variations de g sur $[0; +\infty[$.
- 4. Montrer que l'équation g(x) = 0 admet une unique solution sur $[1; +\infty[$, que l'on appellera α (et qu'on ne cherchera pas à déterminer).
- 5. En déduire le signe de g sur $[0; +\infty[$.
- 6. En utilisant la parité de g, donner l'allure de la courbe de g.
- 7. Préciser l'ensemble de définition de f et déterminer sa parité.
- 8. Calculer f', et exprimer f' en fonction de g.
- 9. En déduire le tableau de variations de la fonction f.

Un problème un peu moins classique

On définit deux fonctions notées ch (pour cosinus hyperbolique) et sh (pour sinus hyperbolique) de la façon suivante : $ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$. On note également $f(x) = \frac{x}{sh(x)}$.

- 1. Résoudre l'équations sh(x) = 0.
- 2. Déterminer le domaine de définition de chacune de ces trois fonctions.
- 3. Déterminer la parité de chacune de ces trois fonctions.
- 4. À l'aide d'un calcul de dérivée, déterminer les variations de la fonction sh, puis celles de la fonction ch.
- 5. Montrer que $\forall x \in \mathbb{R}, ch(x) > sh(x)$.
- 6. Calculer l'équation de la tangente à chacune des deux courbes en leur point d'équation x = -2 (garder les valeurs exactes, puis donner des valeurs approchées des coefficients directeurs, sachant que $e^2 \simeq 7, 4$ et $e^{-2} \simeq 0, 1$.

- 7. Déterminer les limites de ch et sh en $+\infty$ et en $-\infty$.
- 8. Tracer dans un même repère les représentations graphiques des fonctions sh et ch.
- 9. Montrer que $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{sh(x) x \, ch(x)}{(sh(x))^2}$.
- 10. Étudier les variations de $g: x \mapsto sh(x) x \, ch(x)$.
- 11. En déduire le tableau de variations de la fonction f.
- 12. La fonction f admet-elle une limite lorsque x tend vers 0?