Feuille d'exercices n°19 : suites récurrentes

ECE3 Lycée Carnot

19 mars 2011

Exercice 1 (**)

Soit (u_n) la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{4}(2 - u_n^2)$.

- 1. On note f la fonction définie par $f(x) = x + \frac{1}{4}(2-x^2)$. Étudier les variations de f et déterminer ses points fixes.
- 2. Montrer que $\forall x \in [1;2], |f'(x)| \leq \frac{1}{2}$, et que $f([1;2]) \subset [1;2]$.
- 3. En déduire que $\forall n \in \mathbb{N}, u_n \in [1; 2], \text{ et que } |u_{n+1} \sqrt{2}| \leq \frac{1}{2}|u_n \sqrt{2}|.$
- 4. Prouver par récurrence que $\forall n \in \mathbb{N}, |u_n \sqrt{2}| \leq \frac{1}{2^n}$, et en déduire la limite de la suite (u_n) .
- 5. À partir de quel rang a-t-on $|u_n \sqrt{2}| \le 10^{-9}$?

Exercice 2 (**)

On considère la fonction f définie sur $]0; \frac{1}{e}[\cup]\frac{1}{e}; +\infty[$ par $f(x) = \frac{x}{\ln x + 1}$.

- 1. Montrer que f est prolongeable par continuité en 0. La fonction prolongée est-elle dérivable en 0?
- 2. Étudiez les variations de f et tracer l'allure de sa courbe représentative.
- 3. Déterminer les points fixes de f.
- 4. On définit une suite (x_n) par $x_0 = 2$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$.
 - (a) Étudiez sur \mathbb{R}_+ la fonction $g: x \mapsto \frac{x}{(x+1)^2}$, en déduire que $\forall x \in]1; +\infty[$, $0 \le f'(x) \le \frac{1}{4}$.
 - (b) En déduire que $\forall n \in \mathbb{N}, |x_{n+1} 1| \le \frac{1}{4}|x_n 1|$, puis que $|x_n 1| \le \frac{1}{4^n}$.
 - (c) En déduire la limite de la suite (x_n) .

Exercice 3 (**)

Soit f la fonction définie sur \mathbb{R}_- par $f(x)=\frac{e^x-3}{2}$. Le but de l'exercice est de calculer une valeur approchée de la solution de l'équation $e^x=3+2x$.

- 1. Montrer que cette équation admet une unique solution négative, que l'on notera α , et que $f(\alpha) = \alpha$.
- 2. Montrer que $]-\infty;0]$ est un intervalle stable par la fonction f.
- 3. Prouver que, $\forall x \in]-\infty;0], |f'(x)| \leq \frac{1}{2}.$

- 4. On définit désormais une suite (u_n) par $u_0 = -1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Montrer que, $\forall n \in \mathbb{N}, u_n \leq 0$.
- 5. Prouver que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- 6. En déduire que $\forall n \in \mathbb{N}, |u_n \alpha| \leq \frac{1}{2^n}$.
- 7. Montrer que la suite (u_n) converge vers α .
- 8. Écrire un programme Pascal déterminant une valeur approchée de α à ε près, où ε est un réel positif choisi par l'utilisateur.

Exercice 4 (d'après ESCL 2001) (***)

On considère l'application f définie sur \mathbb{R}_+ par $f(x) = \frac{x}{e^x - 1}$ si x > 0, et f(0) = 0.

- 1. (a) Montrer que f est continue sur \mathbb{R}_+ .
 - (b) Montrer que f est de classe \mathcal{C}^1 sur $]0; +\infty[$, et calculer sa dérivée sur cet intervalle.
 - (c) En admettant que $e^x = 1 + x + \frac{x^2}{2} + o(x)$, étudier la limite de f' quand x tend vers 0.
 - (d) En déduire que f est en fait \mathcal{C}^1 sur \mathbb{R}_+ .
 - (e) Déterminer $\lim_{x \to +\infty} f'(x)$.
- 2. (a) Montrer que f est de classe C^2 sur $]0; +\infty[$ et que

$$f''(x) = \frac{e^x}{(e^x - 1)^3} (xe^x - 2e^x + x + 2)$$

- (b) Étudier les variations de la fonction g définie sur \mathbb{R}_+ par $g(x) = xe^x 2e^x + x + 2$. En déduire le signe de f''.
- (c) En déduire le sens de variation de f, préciser sa limite en $+\infty$, et dresser son tableau de variations.
- (d) Tracer une allure de la courbe représentative de f.
- 3. On définit la suite (u_n) par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Montrer que $\forall x \in \mathbb{R}_+$, $|f'(x)| \le \frac{1}{2}$ et $0 \le f(x) \le 1$.
 - (b) Résoudre l'équation f(x) = x.
 - (c) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \ln 2| \le \frac{1}{2}|u_n \ln 2|.$
 - (d) En déduire que (u_n) converge et préciser sa limite.

Exercice 5 (***)

On considère une suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, avec $f: x \mapsto \frac{x^3 + 3x}{3x^2 + 1}$. Déterminer la nature de la suite (u_n) en distinguant éventuellement plusieurs cas selon la valeur de u_0 .

2