Feuilles d'exercices n° 23 : Polynômes

ECE3 Lycée Carnot

 $24~\mathrm{mai}~2011$

Exercice 1 (*)

Soit P et Q les deux polynômes définis par $P(X) = 2X^3 + 5X - 1$ et $Q(X) = -X^2 + 3X$. Déterminer chacun des polynômes suivants : P+Q; PQ; $P^2(X)$; $P(X^2)$; $P\circ Q$; $Q\circ P$; $3P^3Q-Q\circ P^2$.

Exercice 2 (*)

Déterminer le degré et le coefficient dominant de chacun des polynômes suivants : P(X) = k=n

$$(X+2)^n - (X+3)^n$$
; $Q(X) = \prod_{k=0}^{k=n} (2X-k)$; $R(X) = \prod_{k=0}^{k=n} (X-2)^k$.

Exercice 3 (* à ***)

Déterminer tous les polynômes réels vérifiant chacune des conditions suivantes :

- 1. P(1) = 0 et P(2) = 0
- 2. P(1) = 1 et P(2) = 2
- 3. XP' = P
- 4. $(X^2+1)P''=6P$
- 5. P(0)0; P(1) = 1; P'(0) = 2 et P'(1) = 3.

Exercice 4 (**)

Soit
$$P(X) = X^3 - 2X^2 - 5X + 6$$
.

- 1. Déterminer une racine évidente du polynôme P.
- 2. Factoriser P sous la forme (X+2)Q(X), où Q est un polynôme de degré 2.
- 3. En déduire le tableau de signe de P sur \mathbb{R} .
- 4. Résoudre les inéquations $(\ln x)^3 2(\ln x)^2 5\ln x + 6 > 0$ et $e^{2x} 2e^x \le 5 6e^{-x}$

Exercice 5 (**)

Factoriser les polynômes suivants et dresser leur tableau de signe sur $\mathbb{R}: P(X) = -X^3 - 3X^2 + 6X + 8$; $Q(X) = X^3 - 6X^2 + 13X - 10$.

Exercice 6 (* à **)

Dans chacun des cas suivants, effectuer la division euclidienne de P par Q.

1.
$$P(X) = 3X^3 - 5X^2 + X + 2$$
 et $Q(X) = X - 2$

2.
$$P(X) = 1 + 6X^2 + 4X^3 - 5X^4$$
 et $Q(X) = X^2 - 5X + 3$.

3.
$$P(X) = X^5 - 7X^4 - X^2 - X + 9$$
 et $Q(X) = X^2 - 5X + 4$.

4.
$$P(X) = X^{n+2} - 3X^n + 2X + 3$$
 et $Q(X) = X^2 - 3$.

Exercice 7 (* à ***)

Factoriser le plus possible chacun des polynômes suivants :

1.
$$P(X) = 2X^4 - 3X^2 - 2$$

2.
$$P(X) = X^8 + X^4 + 1$$

3.
$$P(X) = X^9 + X^6 + X^3 + 1$$

4.
$$P(X) = (1+X)^3 + 8X^3$$

Exercice 8 (**)

Déterminer un polynôme P de degré 3 vérifiant $P(X+1)-P(X)=X^2$. En déduire une nouvelle façon de prouver la formule bien connue pour $\sum_{k=0}^{k=n} k^2$.

En utilisant une méthode similaire, déterminer une jolie formule pour $\sum_{k=0}^{k=n} k^4$ (attention, il y a du calcul en perspective).

Exercice 9 (***)

Déterminer tous les polynômes P de degré 3 tels que $(X-1)^2$ divise P-1 et $(X+1)^2$ divise P+1.

Exercice 10 (***)

Soit $n \in \mathbb{N}$, montrer qu'il existe un unique polynôme P vérifiant $P' - P = X^n$, et exprimer ses coefficients à l'aide de factorielles.