Devoir Maison n°2 : corrigé

ECE3 Lycée Carnot

5 novembre 2010

Exercice 1

- 1. Essayons donc d'exprimer v_{n+1} en fonction de $v_n: v_{n+1} = u_{n+1} (n+1) + 2 = 3u_n 2n + 4 n + 1 = 3u_n 3n + 5 = 3v_n 1$. La suite (v_n) est donc une suite arithmético-géométrique. Son équation de point fixe est x = 3x 1, qui donne $x = \frac{1}{2}$. Posons donc $w_n = v_n \frac{1}{2}$, on a alors $w_{n+1} = v_{n+1} \frac{1}{2} = 3v_n \frac{3}{2} = 3w_n$. La suite (w_n) est donc géométrique de raison 3 et de premier terme $w_0 = v_0 \frac{1}{2} = u_0 + 2 \frac{1}{2} = \frac{5}{2}$. Concluion: $w_n = \frac{5 \times 3^n}{2}$, puis $v_n = \frac{5 \times 3^n + 1}{2}$.
- 2. La relation entre u_n et v_n permet d'obtenir $u_n = v_n + n 2 = \frac{5 \times 3^n 3}{2} + n$.
- 3. C'est un calcul un peu brutal, mais qui ne fait intervenir que des sommes classiques : $\sum_{k=0}^{k=n} u_k =$

$$\frac{5}{2} \sum_{k=0}^{k=n} 3^k - \sum_{k=0}^{k=n} \frac{3}{2} + \sum_{k=0}^{k=n} k = \frac{5}{2} \frac{1 - 3^{n+1}}{1 - 3} - \frac{3(n+1)}{2} + \frac{n(n+1)}{2} = \frac{5 \times 3^{n+1} - 5 - 6n - 6 + 2n^2 + 2n}{4} = \frac{5 \times 3^{n+1} + 2n^2 - 4n - 11}{4}.$$

Exercice 2

- 1. Un calcul sommaire donne $\mathcal{D}_f = \mathbb{R} \setminus \{-1; 1\}$.
- 2. Pour voir si f est injective, considérons deux réels x et x' tels que f(x) = f(x'), soit $\frac{2x^2}{x^2 1} = \frac{2x'^2}{x'^2 1}$, ce qui donne $2x^2(x'^2 1) = 2x'^2(x^2 1)$ puis $-2x^2 = -2x'^2$. Ceci n'implique pas que x = x' (on peut aussi avoir x = -x'), la fonction n'est pas injective. On a par exemple $f(2) = f(-2) = \frac{8}{3}$. Pour la surjectivité, cherchons les antécédents d'un réel quelconque y, et partons donc de $y = \frac{2x^2}{x^2 1}$. Cela implique $yx^2 y = 2x^2$, soit $x^2(y 2) = y$, ou encore $x^2 = \frac{y}{y-2}$. Cette équation n'a pas de solution lorsque y = 2 (mais aussi lorsque $y \in]0; 2[$), donc la fonction f n'est pas non plus surjective.
- 3. Sur l'ensemble en question, f devient injective puisque seul l'antécédent positif de y est valable (et il y en a toujours un positif et un négatif parmi les deux). Reste à déterminer quels sont les valeurs de y pour lesquelles $x^2 = \frac{y}{y-2}$ admet une solution, c'est-à-dire les valeurs pour lesquelles $\frac{y}{y-2} \geqslant 0$. Un petit tableau de signe permet de déterminer que l'ensemble d'arrivée de f sera $]-\infty;0]\cup]2;+\infty[$.

4. D'après les calculs précédents, g est définie sur $]-\infty;0]\cup]1;+\infty[$ par $g(y)=\sqrt{\frac{y}{y-2}}$ (on garde l'antécédent positif de y).

Exercice 3

1. Un peu de calcul, ça ne peut pas faire de mal :

$$\frac{a}{k} + \frac{b}{k+2} + \frac{c}{k+4} = \frac{a(k+2)(k+4) + bk(k+4) + ck(k+2)}{k(k+2)(k+4)}$$

$$= \frac{a(k^2 + 6k + 8) + b(k^2 + 4k) + c(k^2 + 2k)}{k(k+2)(k+4)}$$

$$= \frac{(a+b+c)k^2 + (6a+4b+2c)k + 8a}{k(k+2)(k+4)}$$

Par identification, on obtient donc a+b+c=6a+4b+2c=0 et 8a=1, soit $a=\frac{1}{8}$, puis en divisant la deuxième équation par 2, 3a+2b+c=0. Il ne reste plus qu'à soustraire la première équation pour avoir 2a+b=0, soit $b=-2a=-\frac{1}{4}$, puis $c=-a-b=\frac{1}{8}$. Finalement,

$$\frac{1}{k(k+2)(k+4)} = \frac{1}{8k} - \frac{1}{4(k+2)} - \frac{1}{8(k+4)}$$

2. La somme en question est une somme télescopique (mais oui!) :

$$\sum_{k=1}^{k=n} \frac{1}{k(k+2)(k+4)} = \sum_{k=1}^{k=n} \frac{1}{8k} - \sum_{k=1}^{k=n} \frac{1}{4(k+2)} + \sum_{k=1}^{k=n} \frac{1}{8(k+4)} = \frac{1}{8} \sum_{k=1}^{k=n} \frac{1}{k} - \frac{1}{4} \sum_{k=3}^{k=n+2} \frac{1}{k} + \frac{1}{8} \sum_{k=5}^{k=n+4} \frac{1}{k} = \frac{1}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) - \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{n+1} + \frac{1}{n+2} \right) + \frac{1}{8} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} \right) = \frac{1}{8} + \frac{1}{16} + \frac{1}{24} + \frac{1}{32} - \frac{1}{12} - \frac{1}{16} + \frac{1}{8} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{12+4+3-8}{96} + \frac{1}{8} \left(\frac{(n+1)(n+2)(n+4) + (n+1)(n+2)(n+3) - (n+2)(n+3)(n+4) - (n+1)(n+3)(n+4)}{(n+1)(n+2)(n+3)(n+4)} = \frac{1}{8} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{12+4+3-8}{96} + \frac{1}{8} \left(\frac{(n+1)(n+2)(n+3)(n+4) - (n+1)(n+3)(n+4)}{(n+1)(n+2)(n+3)(n+4)} \right) = \frac{1}{8} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+4} - \frac{1}{n+4} \right) = \frac{1}{96} \left(\frac{1}{n+3} + \frac{1}{n+4} - \frac{1}{n+4} -$$

3. Notons
$$P_n$$
 la propriété :
$$\sum_{k=1}^{k=n} \frac{1}{k(k+2)(k+4)} = \frac{11}{96} - \frac{2n^2 + 10n + 11}{4(n+1)(n+2)(n+3)(n+4)}.$$
 Pour $n=1$, le membre de gauche vaut
$$\frac{1}{1 \times 3 \times 5} = \frac{1}{15},$$
 et le membre de droite vaut
$$\frac{11}{96} - \frac{23}{4(2 \times 3 \times 4 \times 5)} = \frac{11}{96} - \frac{23}{480} = \frac{55 - 23}{480} = \frac{32}{480} = \frac{1}{15}.$$
 Ouf, ça marche! Supposons désormais P_n vérifiée, on a alors
$$\sum_{k=1}^{k=n+1} \frac{1}{k(k+2)(k+4)} = \sum_{k=1}^{k=n} \frac{1}{k(k+2)(k+4)} + \frac{1}{(n+1)(n+3)(n+5)} = (\text{par hypothèse de récurrence})$$

$$\frac{11}{96} - \frac{2n^2 + 10n + 11}{4(n+1)(n+2)(n+3)(n+4)} + \frac{1}{(n+1)(n+3)(n+5)} = \frac{11}{96} - \frac{(2n^2 + 10n + 11)(n+5) - 4(n+2)(n+4)}{4(n+1)(n+2)(n+3)(n+4)} = \frac{11}{96} - \frac{2n^3 + 20n^2 + 61n + 55 - 4n^2 - 24n - 32}{4(n+1)(n+2)(n+3)(n+4)(n+5)} = \frac{11}{96} - \frac{2n^3 + 16n^2 + 37n + 23}{4(n+1)(n+2)(n+3)(n+4)(n+5)}.$$
 Si on veut que la formule soit vraie au rang $n+1$, le numérateur devrait être égal à $(n+1)(2(n+1)^2 + 10(n+1) + 11) = (n+1)(2n^2 + 4n + 2 + 10n + 10 + 11) = (n+1)(2n^2 + 14n + 23) = 2n^3 + 16n^2 + 37n + 23.$ 9a marche! La propriété est donc bien prouvée par récurrence (qui a dit que cet exercice était immonde?).

Problème

- 1. Le réel 1 est racine évidente de l'équation. On a donc $x^3 x^2 4x + 4 = (x-1)(ax^2 + bx + c) = ax^3 + (b-a)x^2 + (c-b)x c$. Par identification, on obtient a = 1; b a = -1 donc b = 0; c b = -4 donc c = -4. Conclusion : $x^3 x^2 4x + 4 = (x-1)(x^2-4) = (x-1)(x-2)(x+2)$. Les solutions sont donc $S = \{-2; 1; 2\}$.
- 2. Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. On a donc $u_n = u_0 \times q^n$, et de même pour les termes suivants. Pour que (u_n) vérifie la relation, il faut donc avoir $\forall n \in \mathbb{N}$, $u_0q^{n+3} u_0q^{n+2} 4u_0q^{n+1} + 4u_0q^n = 0$, soit $u_0q^n(q^3 q^2 4q + 4) = 0$. En supposant la suite non nulle, on en déduit que q est solution de l'équation précédente, donc q = -2, q = 1 ou q = 2.
- 3. (a) Il s'agit de résoudre ce magnifique système. La différence des deux premières lignes donne $b-3c=u_1-u_0$; la différence des deux dernières donne $2b+6c=u_2-u_1$. En soustrayant à cette dernière relation la précédente multipliée par deux, on a $12c=u_2-u_1-2u_1+2u_0=2u_0-3u_1+u_2$, donc $c=\frac{u_0}{6}-\frac{u_1}{4}+\frac{u_2}{12}$; puis $b=3c+u_1-u_0=-\frac{u_0}{2}+\frac{u_1}{4}+\frac{u_2}{4}$; et enfin $a=u_0-b-c=\frac{4u_0}{3}-\frac{u_2}{3}$.
 - (b) Par hypothèse, (u_n) vérifie (R), et les suites constantes et géométriques de raison 2 ou -2 également. La suite (v_n) est donc une somme de quatre suites vérifiant la relation (R). Il n'est alors pas difficile de se convaincre que (v_n) également vérifie la relation (R) (la relation étant linéaire, une somme de suites la vérifiant la vérifiera également).
 Prouvons donc par récurrence triple la propriété P_n: v_n = 0. Il faut faire une unitialisation triple: v₀ = u₀ a b c = 0; v₁ = u₁ a 2b + 2c = 0 et v₂ = u₂ a 4b 4c = 0 par définition des réels a, b et c. Supposons maintenant P_n, P_{n+1} et P_{n+2} vérifiées, alors, la suite vérifiant la relation (R), on a v_{n+3} = v_{n+2} + 4v_{n+1} 4v_n = 0 + 0 + 0 = 0, donc P_{n+3} est vérifiée, et (v_n) est bien la suite nulle.
 - (c) Conclusion : $u_n = a + b2^n + c(-2)^n$. On peut expliciter u_n à l'aide de u_0 , u_1 et u_2 en reprenant les formules obtenues pour a, b et c, mais ce n'est finalement pas très intéressant. Ce qui l'est plus, c'est de voir que les suites récurrentes linéaires d'ordre 3 se comportent comme celles d'ordre 2 : les solutions sont sommes de suites géométriques dont les raisons sont solutions de l'équation caractéristique de la relation.