Concours Blanc 2010 : corrigé

Lycée Carnot

6 janvier 2010

Problème 1 : Variations autour de la suite de Fibonacci

Première partie

Les murs de longueur n+2 peuvent être séparés en deux catégories disjointes : ceux qui débutent avec une brique verticale, et qui sont donc au nombre de a_{n+1} puisqu'il reste un mur de longueur n+1 à accoller à cette première brique ; et ceux débutant avec deux briques horizontales superposés, au nombre de a_n car il reste alors un mur de longueur n à construire. Conclusion : $a_{n+2} = a_{n+1} + a_n$.

Deuxième partie

- 1. C'est un récurrence double évidente : F_0 et F_1 sont entiers par hypothèse, et en supposant F_n et F_{n+1} entiers, leur somme F_{n+2} l'est également.
- 2. La suite est récurrente linéaire d'ordre 2, d'équation caractéristique $x^2 x 1 = 0$, dont le discriminant vaut $\Delta = 1 + 4 = 5$ et admettant donc deux racines $r = \frac{1 + \sqrt{5}}{2}$ et $s = \frac{1 \sqrt{5}}{2}$. La forme de F_n en découle, avec au vu des valeurs de F_0 et de F_1 les équations $\alpha + \beta = 1$ et $\alpha \times \frac{1 + \sqrt{5}}{2} + \beta \times \frac{1 \sqrt{5}}{2} = 1$, soit $\alpha \times \frac{1 + \sqrt{5}}{2} + (1 \alpha) \times \frac{1 \sqrt{5}}{2} = 1$, donc $\alpha \sqrt{5} = 1 \frac{1 \sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}$, soit $\alpha = \frac{1 + \sqrt{5}}{2\sqrt{5}}$, et $\beta = 1 \alpha = \frac{\sqrt{5} 1}{2\sqrt{5}}$. On a donc $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} \left(\frac{1 \sqrt{5}}{2} \right)^{n+1} \right)$.
- 3. C'est encore une récurrence : $F_1^2 F_0 F_2 = 1 2 = (-1)^1$. Supposons l'égalité vérifié au rang n, alors $F_{n+1}^2 F_n F_{n+2} = F_{n+1}^2 F_n (F_n + F_{n+1}) = F_{n+1} (F_{n+1} F_n) F_n^2 = F_{n+1} F_{n-1} F_n^2 = -(-1)^n = (-1)^{n+1}$, ce qui prouve l'hérédité et achève la démonstration.
- 4. La suite est somme de deux suites géométriques, l'une de raison $\frac{1-\sqrt{5}}{2} \in]-1;1[$ (en effet, $\sqrt{5} \in]2;3[$), et l'autre de raison strictement plus grande que 1. Comme $\alpha>0$, $\lim_{n\to+\infty}F_n=+\infty$.

La suite géométrique tendant vers 0 étant négligeable devant l'autre, $F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1}$.

Troisième partie

1. Une première récurrence : $a_0 = 1 = a_2 - 1$, et en supposant l'égalité vraie au rang n, $\sum_{k=0}^{k=n+1} a_k = 1$

 $\sum_{k=0}^{k=n} a_k + a_{n+1} = a_{n+2} + a_{n+1} - 1 = a_{n+3} - 1 \text{ au vu de la récurrence vérifiée par la suite } (a_n).$ Ce calcul prouve l'hérédité et achève la récurrence.

- 2. Une deuxième récurrence : $\frac{1}{a_1a_3} = \frac{1}{3}$ et $\frac{1}{2} \frac{1}{a_2a_3} = \frac{1}{2} \frac{1}{6} = \frac{1}{3}$, donc l'égalité est vraie au rang 1. Si on la suppose vraie au rang n alors $\frac{1}{a_1a_3} + \dots + \frac{1}{a_na_{n+2}} + \frac{1}{a_{n+1}a_{n+3}} = \frac{1}{2} \frac{1}{a_{n+1}a_{n+2}} + \frac{1}{a_{n+1}a_{n+3}} = \frac{1}{2} + \frac{1}{a_{n+1}} \left(\frac{1}{a_{n+3}} \frac{1}{a_{n+2}} \right) = \frac{1}{2} \frac{a_{n+3} a_{n+2}}{a_{n+1}a_{n+2}a_{n+3}} = \frac{1}{2} \frac{1}{a_{n+2}a_{n+3}},$ puisque $a_{n+3} a_{n+2} = a_{n+1}$. Ceci achève la récurrence.
- 3. Pour changer, une récurrence double : $a_2=2>1=\left(\frac{3}{2}\right)^0$ et $a_3=3>\frac{3}{2}$. Supposons l'inégalité vraie au rang n, alors $a_{n+4}=a_{n+3}+a_{n+2}>\left(\frac{2}{3}\right)^{n+1}+\left(\frac{3}{2}\right)^n=\left(\frac{3}{2}\right)^{n+2}\left(\frac{2}{3}+\frac{4}{9}\right)$. Comme $\frac{2}{3}+\frac{4}{9}=\frac{10}{9}>1,\ a_{n+4}>\left(\frac{3}{2}\right)^{n+2}$ et la récurrence fonctionne.
- 4. On sait que $\lim_{n\to+\infty} \frac{1}{a_{n+1}a_{n+2}} = 0$ puisque la suite (a_n) tend vers $+\infty$, donc le résultat de la question 2 permet d'affirmer que la série de terme général $\frac{1}{a_n a_{n+2}}$ converge vers $\frac{1}{2}$.
- 5. C'est un pur résultat combinatoire : on peut séparer les murs en catégorie suivant le nombre de briques verticales et le nombre de duos de briques horizontales superposées qu'ils contiennent. Si un mur de longueur 2n contient k duos de briques horizontales, il contient 2n-2k briques verticales, et on peut placer les k duos à 2n-k emplacements différents (puisque le mur contient au total 2n-k briques/duos), ce qui fait $\binom{2n-k}{k}$ possibilités. En sommant cette expression entre 0 et n, on obtient le nombre total de murs de longueur 2n, soit a_{2n} .

Problème 2 : Nombre de surjections entre ensembles finis

1 Exemples et généralités

- 1. Soit f une application surjective de $\{(1;2;3)\}$ dans $\{(1;2)\}$. Les triplets possibles pour (f(1);f(2);f(3)) sont (1;1;2); (1;2;1); (1;2;2); (2;1;1); (2;1;2) et (2;2;1), ce qui nous donne $S_{3,2}=6$. De même, si g est une application surjective de $\{(1;2;3;4)\}$ dans $\{(1;2)\}$, les quadruplets possibles pour (g(1);g(2);g(3);g(4)) sont (1;1;1;2); (1;1;2;1); (1;1;2;2); (1;2;1;1); (1;2;1;2); (1;2;2;1); (1;2;2;2); (2;1;1;1); (2;2;1;2) et (2;2;2;1), d'où $S_{4,2}=14$.
- 2. Une application ayant pour ensemble de départ $\{1; 2; ...; n\}$ ne peut prendre qu'au plus n valeurs différentes, donc ne pourra pas être surjective dans $\{1; 2; ...; p\}$ si n < p. Autrement dit, $S_{n,p} = 0$ dans ce cas.
- 3. La seule application ayant pour ensemble d'arrivée l'ensemble réduit à un seul élément $\{1\}$ est l'application constante égale à 1 (quel que soit l'ensemble de départ). Elle est par ailleurs surjective dès que $n \ge 1$, donc $S_{n,1} = 1$ pour $n \ge 1$.
- 4. Une application surjective de $\{1; 2; ...; n\}$ dans lui-même n'est autre qu'une permutation de l'ensemble $\{1; 2; ...; n\}$, qui sont au nombre de n!, donc $S_{n,n} = n!$.

2 Détermination de $S_{n,2}$

- 1. On a vu plus haut que $S_{2,2} = 2! = 2$.
- 2. Considérons une application surjective f de $\{1; 2; ...; n+1\}$ dans $\{1; 2\}$, et supposons que f(n+1)=1. Pour que f soit surjective, il suffit alors que la restriction de f à $\{1; 2; ...; n\}$ soit déjà surjective (u_n) possibilités) ou que $f(1)=f(2)=\cdots=f(n)=2$. Il y a de même

- $u_n + 1$ applications surjectives pour lesquelles f(n+1) = 2, ce qui nous donne bien au total $u_{n+1} = 2(u_n + 1)$.
- 3. La suite (u_n) est une suite arithmético-géométrique. Son équation de point fixe, x=2x+2, a pour solution x=-2. Posons donc $v_n=u_n+2$, on a alors $v_{n+1}=u_{n+1}+2=2u_n+2+2=2(u_n+2)=2v_n$. La suite (v_n) est donc une suite géométrique de raison 2 et vérifiant $v_2=u_2+2=4$. On en déduit que $\forall n \geq 2$, $v_n=4\times 2^{n-2}=2^n$, puis $u_n=v_n-2=2^n-2$.
- 4. Il y a au total 2^n applications de $\{1; 2; ...; n\}$ dans $\{1; 2\}$. Parmi celles-ci, les seules qui ne sont pas surjectives sont les deux applications constantes respectivement égales à 1 et à 2. Le nombre d'applications surjectives est donc $2^n 2$.

3 Détermination de $S_{n,3}$

- 1. Toujours en revenant à la dernière question de la première partie, $v_3 = S_{3,3} = 3! = 6$.
- 2. Soit g une application surjective de $\{1; 2; \ldots; n+1\}$ dans $\{1; 2; 3\}$ telle que g(n+1)=3. Il y a alors deux possibilités pour la restriction de g à $\{1; 2; \ldots; n\}$: soit elle est surjective dans $\{1; 2; 3\}$, soit elle est surjective dans $\{1; 2\}$ (sans prendre la valeur 3). Ces deux possibilités ne pouvant se produire simultanément, il y a $v_n + u_n$ applications g convenables. Un raisonnement identique dans le cas où g(n+1)=1 et g(n+1)=2 nous permet d'obtenir au total $v_{n+1}=3(v_n+u_n)$. Comme $u_n=2^n-2$, on a donc $v_{n+1}=3v_n+3\times 2^n-6$.
- 3. PROGRAM recurrence;

```
\begin{split} & \text{USES wincrt}\,;\\ & \text{VAR i,n,v,w}: \text{integer}\,;\\ & \text{BEGIN}\\ & \text{WriteLn('Choisissez la valeur de l'entier n} >= 3')\,;\\ & \text{ReadLn(n)}\,;\\ & \text{v}:=6\,;\,\text{w}:=3^*8\,;\\ & \text{FOR i}:=4\,\,\text{TO n DO}\\ & \text{BEGIN}\\ & \text{v}:=3^*\text{v+w-6}\,;\,\text{w}:=2^*\text{w}\,;\\ & \text{END}\,;\\ & \text{WriteLn('La valeur de v\_',n,' est de ',v)}\,;\\ & \text{END}. \end{split}
```

- 4. D'après le résultat de la question 2, $w_{n+1} = v_{n+1} 3 = 3v_n + 3 \times 2^n 6 3 = 3(v_n 3 + 2^n) = 3(w_n + 2^n)$.
- 5. Calculons $t_{n+1} = w_{n+1} + 3 \times 2^{n+1} = 3(w_n + 2^n + 2^{n+1}) = 3(w_n + 2^n + 2 \times 2^n) = 3(w_n + 3 \times 2^n) = 3t_n$. La suite (t_n) est donc bien géométrique de raison 3.
- 6. Il ne reste plus qu'à remonter : $t_3 = w_3 + 3 \times 2^3 = w_3 + 24 = v_3 3 + 24 = v_3 + 21 = 6 + 21 = 27$. On en déduit que $t_n = 27 \times 3^{n-3} = 3^n$, puis $w_n = 3^n 3 \times 2^n$ et enfin $v_n = 3^n 3 \times 2^n + 3$.
- 7. Les applications de $\{1; 2; \ldots n+1\}$ dans $\{1; 2; 3\}$ peuvent être classées selon le nombre de valeurs différentes qu'elles prennent : soit elle prennent les trois valeurs possibles, et il y a par définition v_n telles applications; soit elles en prennent exactement deux, qu'on peut choisir de $\binom{3}{2} = 3$ façons différentes, et il y a à chaque fois u_n telles applications, donc $3u_n$ au total; soit elles sont constantes, ce pour quoi on a 3 possibilités. Comme il y a un total de 3^n applications de $\{1; 2; \ldots; n\}$ dans $\{1; 2; 3\}$, on obtient la relation $3^n = v_n + 3u_n + 3$, donc $v_n = 3^n 3u_n 3 = 3^n 3(2^n 2) 3 = 3^n 3 \times 2^n + 3$.

4 Détermination de $S_{n+1,n}$

- 1. L'application f étant surjective, tout élément de $\{1;2;\ldots;n\}$ admet (au moins) un antécédent par f. Choisissons donc un antécédent pour chaque élément de l'ensemble d'arrivée, cela nous donne n éléments de $\{1;2,\ldots;n+1\}$ ayant des images distinctes par f. Le dernier élément de $\{1;2;\ldots;n+1\}$ a une image identique à l'un des autres éléments de $\{1;2;\ldots;n+1\}$ (puisqu'on a déjà épuisé tous les éléments de l'ensemble d'arrivée), et cette image est bien l'unique élément de notre ensemble d'arrivée ayant exactement deux antécédents.
- 2. Il faut choisir deux éléments dans un ensemble en contenant n+1, il y a donc $\binom{n+1}{2} = \frac{n(n+1)}{2}$ possibilités.
- 3. Une fois choisis l'élément de l'ensemble d'arrivée ayant deux antécédents (n possibilités) et les deux antécédents en question, les n-1 éléments restants dans chaque ensemble sont reliés de façon bijective par f, ce qui laisse (n-1)! possibilités. On a donc $S_{n+1,n} = n \times \frac{n(n+1)}{2} \times (n-1)! = \frac{n(n+1)!}{2}$.

5 Cas général

1. Considérons une application surjective f de $\{1; 2; ...; n\}$ dans $\{1; 2; ...; p\}$. On a p choix possibles pour l'image de n par cette application, et la restriction de f à $\{1; 2; ...; n-1\}$ est soit surjective vers $\{1; 2; ...; p\}$ (il y a pour cela $S_{n-1,p}$ possibilités), soit elle prend toutes les valeurs sauf f(n) (il y a pour cela $S_{n-1,p-1}$ possibilités). Cela nous donne bien la relation de récurrence $S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$.

2.

$S_{n,p}$	p = 0	p = 1	p=2	p = 3	p=4	p=5
n = 0	0	0	0	0	0	0
n=1	0	1	0	0	0	0
n=2	0	1	2	0	0	0
n=3	0	1	6	6	0	0
n=4	0	1	14	36	24	0
n=5	0	1	30	150	240	120

- 3. Calculons séparément les membres de gauche et de droite : $\binom{p}{k}\binom{k}{j} = \frac{p!}{k!(p-k)!}\frac{k!}{j!(k-j)!} = \frac{p!}{(p-k)!(k-j)!j!}.$ De l'autre côté, $\binom{p}{j}\binom{p-j}{k-j} = \frac{p!}{j!(p-j)!}\frac{(p-j)!}{(k-j)!(p-k)!} = \frac{p!}{j!(k-j)!(p-k)!}.$ Les deux membres sont bien égaux.
- 4. On a, en utilisant l'égalité précédente, $\sum_{k=q}^{k=p} (-1)^k \binom{p}{k} \binom{k}{q} = \sum_{k=q}^{k=p} (-1)^k \binom{p}{q} \binom{p-q}{k-q}$. Le premier coefficient binomial ne dépendant pas de k, on peut le sortir de la somme. On va par ailleurs effectuer le changement d'indice j=k-q pour se ramener à $\binom{p}{q} \sum_{j=0}^{j=p-q} (-1)^{j+q} \binom{p-q}{j} = \binom{p-q}{j}$

$$\binom{p}{q} \sum_{j=0}^{j=p-q} \binom{p-q}{j} 1^j (-1)^{j+q}. \text{ Comme } (-1)^{j+q} = (-1)^{j+q-2j} = (-1)^{q-j}, \text{ on peut reconnaitre } (-1)^{j+q-2j} = (-1)^{q-j}, \text{ on peut reconnaitre } (-1)^{j+q-2j} = (-1)^{q-j}, \text{ on peut reconnaitre } (-1)^{q-j}, \text{ on peut reconnaitre$$

dans la somme une formule du binome de Newton égale à $(1-1)^{p-q} = 0$, d'où la nullité de la somme initiale.

4

- 5. Il faut choisir les j valeurs qui seront prises par notre application (il y a pour cela $\binom{p}{j}$ choix), et il reste ensuite à choisir une application surjective d'un ensemble à n éléments vers un ensemble à j éléments, ce pour quoi on a par définition $S_{n,j}$ possibilités. Les applications prenant exactement j valeurs sont donc au nombre de $\binom{p}{j}S_{n,j}$.
- 6. Il y a au total p^n applications de $\{1; 2; \ldots; n\}$ vers $\{1; 2; \ldots; p\}$, et chacune d'elle prend un nombre de valeurs compris entre 1 et p. En sommant les expressions obtenues à la question précédente pour j variant de 1 à p, on obtiendra donc p^n (on ne compte manifestement pas deux fois une même application).
- 7. Tentons donc de calculer la somme de droite, en inversant la somme double qui apparait dès que possible :

$$(-1)^p \sum_{k=0}^{k=p} (-1)^k \binom{p}{k} k^n = (-1)^p \sum_{k=0}^{k=p} (-1)^k \binom{p}{k} \sum_{j=1}^{j=k} \binom{k}{j} S_{n,j} = (-1)^p \sum_{j=1}^{j=p} S_{n,j} \sum_{k=j}^{k=p} (-1)^k \binom{p}{k} \binom{k}{j}$$

La somme de droite est justement celle dont on a montré qu'elle était nulle pour toutes les valeurs de j inférieures ou égales à p-1. Le seul terme restant est donc $(-1)^p S_{n,p} \sum_{k=p}^{k=p} (-1)^k \binom{p}{k} \binom{k}{p} = 0$

 $(-1)^{2p}S_{n,p}=S_{n,p}$. L'égalité demandée est donc prouvée.