Feuille d'exercices n°10 : séries

ECE3 Lycée Carnot

3 décembre 2009

Exercice 1 (**)

Etudier la nature et calculer la somme éventuelle des séries suivantes (distinguer selon la valeur de x pour les séries faisant intervenir un x):

- $\bullet \sum n^2 x^n \qquad \bullet \sum \frac{n-1}{3^n} \qquad \bullet \sum \frac{n(n-1)x^n}{n!} \qquad \bullet \sum \frac{n^2 8^n}{n!} \\
 \bullet \sum \frac{4n^2 + 5n}{5^n} \qquad \bullet \sum \frac{2n^2}{n^3 1} \qquad \bullet \sum \frac{(-1)^n n^2}{3^n} \qquad \bullet \sum \frac{4(-1)^n}{n!} \\
 \bullet \sum \frac{n}{3^{2n+1}} \qquad \bullet \sum \frac{n+7}{2^n n!} \qquad \bullet \sum \ln \left(\frac{n+1}{n}\right) \qquad \bullet \sum \ln \left(\frac{(n+1)^2}{n(n+2)}\right)$

Exercice 2 (**)

Déterminer la nature de la série de terme général $u_n = \frac{1}{n(n+1)(n+2)}$, puis calculer sa somme après avoir mis u_n sous la forme $\frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$.

Exercice 3 (**)

Calculer par une méthode similaire à celle de l'exercice précédent la somme de la série de terme général $\frac{1}{4n^2-1}$.

Exercice 4 (*)

On considère la série de terme général $u_n = \frac{1}{e^n + e^{-n}}$. Montrer que $\forall n \geqslant 1, 0 \leqslant$ $u_n \leq e^{-n}$, en déduire la nature et une majoration de la somme de la série.

Exercice 5 (***)

Soit (a_n) une suite décroissante convergeant vers 0. On note S_n et R_n les sommes partielles et restes de la série de terme général $(-1)^n a_n$.

- 1. Montrer que les suites (S_{2n}) et S_{2n+1} sont adjacentes.
- 2. En déduire que la série converge et que $|R_n| \leq a_{n+1}$.

Exercice 6 (**)

Soit u_n une suite définie par $u_0 > 0$ et $\forall n \ge 1, u_{n+1} = e^{-u_n} u_n$.

- 1. Montrer que la suite u_n est convergente et préciser sa limite.
- 2. En posant $v_n = \ln u_n$, calculer la somme partielle de la série de terme général u_n en fonction de v_0 et de v_{n+1} .
- 3. En déduire la nature de $\sum u_n$.

Exercice 7 (*)

On note S_n la somme partielle d'indice n de la série harmonique. Montrer que $S_{2n} - S_n \geqslant \frac{1}{2}$. En déduire une nouvelle preuve de la divergence de la série harmonique.

Exercice 8 (**)

On considère une suite (u_n) définie par $u_0 \in [0,1]$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$.

- 1. Montrer que la suite (u_n) est convergente et déterminer sa limite.
- 2. Déterminer la nature de la série de terme général u_n^2 et sa somme éventuelle.
- 3. Prouver que la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$ est divergente.