Interrogation Écrite n°2 : corrigé

ECE3 Lycée Carnot

8 octobre 2009

- 1. $A \cap B = \{2; 4; 6; 8\}$; $B \cup C = \{2; 3; 4; 5; 6; 7; 8; 9; 12; 15\}$; $C \cap \bar{A} = \{3; 9; 15\}$ et $(A \cup B) \cap C = (A \cap C) \cup (B \cap C) = \{3; 6; 9; 12\}$.
- 2. La suite (u_n) est géométrique de raison 2. On a donc $u_4 = 2^4 u_0$, soit $u_0 = \frac{16}{2^4} = 1$, puis $u_n = 2^n$.
- 3. La suite (u_n) est arithmético-géométrique, son équation de point fixe est $x=\frac{1}{2}x-2$, ce qui donne x=-4. On pose donc $v_n=x+4$, et on vérifie que cette suite auxiliaire est géométrique : $v_{n+1}=u_{n+1}+4=\frac{1}{2}u_n-2+4=\frac{1}{2}u_n+2=\frac{1}{2}(u_n+4)=\frac{1}{2}v_n$. La suite (v_n) est donc géométrique de raison $\frac{1}{2}$ et de permier terme $v_0=u_0+4=3$, d'où $v_n=\frac{3}{2^n}$, puis $u_n=v_n-4=\frac{3}{2^n}-4$. On en déduit que $S_n=\sum_{k=0}^{k=n}u_k=3\sum_{k=0}^{k=n}\left(\frac{1}{2}\right)^k-\sum_{k=0}^{k=n}4=3\left(\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}\right)-4(n+1)=6\left(1-\frac{1}{2^{n+1}}\right)-4n-4=2-\frac{3}{2^n}-4n$.
- 4. La suite (v_n) est récurrente linéaire d'ordre 2. Son équation caractéristique est $6x^2 5x + 1 = 0$, qui a pour discriminant $\Delta = 25 24 = 1$, elle admet deux racines réelles $r = \frac{5+1}{12} = \frac{1}{2}$ et $s = \frac{5-1}{12} = \frac{1}{3}$. On en déduit que le terme général de la suite est de la forme $u_n = \frac{\alpha}{2^n} + \frac{\beta}{3^n}$. En utilisant les valeurs de v_0 et v_1 , on obtient les conditions $\alpha + \beta = 1$ et $\frac{\alpha}{2} + \frac{\beta}{3} = 1$, soit $\alpha = 1 \beta$ et $\frac{1}{2} \frac{\beta}{2} + \frac{\beta}{6} = 1$, ce qui donne $-\frac{\beta}{6} = \frac{1}{2}$, puis $\beta = -3$, et enfin $\alpha = 4$. Conclusion : $u_n = \frac{4}{2^n} \frac{3}{3^n} = \frac{1}{2^{n-2}} \frac{1}{3^{n-1}}$.