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Excitonic magnet in external field: Complex order parameter and spin currents
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We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means
of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization
functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external
magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied
field and identify exceptions from this rule. For solutions exhibiting k-odd spin textures, we discuss the Bloch
theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current.
We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
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I. INTRODUCTION

In 1961, Mott [1] proposed that the condensation of
electron-hole pairs could lead to a new state of matter, the exci-
tonic insulator. Subsequent theoretical studies [2–5] revealed
a rich spectrum of possible excitonic phases. Recently, several
materials were proposed to exhibit excitonic condensation [6],
however, unambiguous experimental proof of excitonic con-
densate is available only for bilayer quantum well systems [7].
In tightly bound excitons the ferromagnetic Hund’s exchange
favors triplet S = 1 over spin-singlet state. Their condensa-
tion gives rise to several states with broken spin isotropy
[5,8,9].

Spin-triplet exciton condensates were investigated both
in models [9–15] and material specific studies [16–18]. A
combination of doping and various hopping patterns in the two-
orbital Hubbard model was used [15] to obtain excitonic phases
that exhibit a net magnetic polarization, antiferromagnetic
spin-wave structures, or reciprocal space spin textures. In
this paper we investigate the effect of an external magnetic
field on these states. While the behavior of the ferromagnetic
exciton condensate (FMEC) is obvious, the response of states
with no net magnetization is less clear and is studied using
the dynamical mean-field theory (DMFT). Calculations are
performed for a spin-isotropic SU(2) model, allowing for
complex off-diagonal hybridization functions in the auxiliary
impurity problem.

Particular attention is paid to the response of the state with
p-wave spin texture, which arises due to a dynamically gener-
ated spin-orbit (SO) entanglement [15]. The SO entanglement,
usually due to intrinsic SO coupling, is a prerequisite for
the control of spin polarization by charge currents and vice
versa [19]. The SO entanglement generated by spontaneous
symmetry breaking [15,20] is little explored. The breaking of
the inversion symmetry and of the spin isotropy in the state
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with p-wave spin texture allows the existence of a net spin
current in the system. However, the existence of a spontaneous
net spin current in the ground state or in thermal equilibrium is
forbidden by a variational principle. It is therefore interesting
to find out whether this is obeyed by DMFT. The investigation
of spontaneous currents in the ground state of quantum systems
has a long history, in the context of superconductivity [21–23],
exciton condensation [24–27], and systems of charged particles
in the presence of an external field [28]. Recently, spontaneous
currents in bilayer graphene [29] and superconducting systems
with SO coupling [30] were studied.

The paper is organized as follows. In Sec. II we introduce
the computational technique and the studied observables.
In Sec. III A we study in detail the evolution of the order
parameter across the different excitonic phases. In Sec. III B
we investigate the behavior of the excitonic condensate in a
magnetic field. In Sec. III C we interpret the numerical results
using a Ginzburg-Landau functional. Finally, we investigate
the presence of spin current in the state with p-wave spin
texture.

II. MODEL AND METHOD

A. CT-QMC with complex hybridization

We consider the two-band Hubbard model with nearest-
neighbor (NN) hopping on a bipartite (square) lattice. The
model Hamiltonian is given by

H = Ht + Hloc + Hext, (1)

with

Ht =
∑

ν=x,y

(Tν + T †
ν ),

Tν =
∑
i,σ

(
taa

†
i+eνσ

aiσ + tbb
†
i+eνσ

biσ

+V+νa
†
i+eνσ

biσ + V−νb
†
i+eνσ

aiσ

)
,
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Hext = −
∑
i,αβ

h · σ αβ(a†
iαaiβ + b

†
iαbiβ ). (2)

Here, eν stands for the lattice vector of the two-dimensional
(2D) square lattice, c

†
iσ (ciσ ) (c = a,b) are the creation (anni-

hilation) operators with spin σ at site i and nc
i,σ ≡ c

†
iσ ciσ . The

kinetic part Ht includes NN hopping between identical orbitals
ta and tb, as well as cross hopping between different orbitals
V±ν . We are going to study cross hopping (Vx,Vy,V−x,V−y)
with fixed amplitude V and various sign patterns: s-wave + +
++, p-wave + + −−, and d-wave + − +−. The local part
Hloc contains the crystal-field splitting �CF between orbitals a

and b, the Hubbard interaction U and Hund’s exchange J . The
parameters �CF and J are chosen such that the system is in
the vicinity of the low-spin (LS) and high-spin (HS) transition
[31,32]. Hext describes the coupling to the external magnetic
(Zeeman) field h. We will present the results of calculations
performed in the density-density approximation (λ = 0), as
well as with the SU(2) symmetric interaction (λ = 1). For the
density-density calculations, we employ the same parameters
as those used in Ref. [15]: U = 4, J = 1, U ′ = U − 2J ,
�CF = 3.4, ta = 0.4118, tb = −0.1882, V = 0.05, while for
the SU(2) symmetric calculations, we set V = 0 or V = 0.04.

The model is investigated in the DMFT approximation,
where the lattice model is mapped onto the Anderson impurity
model that interacts with an effective bath [33]. The auxiliary
impurity problem is solved numerically using the continuous-
time quantum Monte Carlo (CT-QMC) algorithm in the
hybridization expansion formalism [34]. The hybridization
function, which describes the interaction between the impurity
and the bath states, is defined by

Fγγ ′(τ ) = 1

β

∞∑
n=−∞

e−iωnτFγγ ′(iω), (3)

where τ is the imaginary time, and Fγγ ′(iω) is given by

Fγγ ′(iω) =
∑

k

V ∗
γ kVkγ ′

iωn − εk

. (4)

Here, ωn = (2n + 1)π/β (n: integer) is the Matsubara
frequency and β is the inverse temperature. The index γ

represents both the orbital and spin degrees of freedom of the
impurity, e.g., γ = {a, ↑}. The index k labels the bath state k

with energy εk . In model studies using DMFT, Fγγ ′(τ ) is often
considered (due to symmetry) or approximated to be diagonal
and real. In the present model, however, the finite off-diagonal
component of Fγγ ′ represents the Weiss field of the excitonic
phase and is, therefore, central to our study.

B. Excitonic order parameter and other observables

In the present model, the exciton condensate can be charac-
terized by inspecting the site-independent orbital-off-diagonal
elements of the local occupation matrix �αβ ≡ 〈a†

iαbiβ〉. In

the normal state, � is proportional to a unit matrix. In the
condensate, a spin triplet component appears, that can be
described by a complex vector order parameter

φγ ≡ tr(σγ ∗
�) =

∑
αβ

σ
γ

αβ〈a†
iαbiβ〉, (5)

where σγ (γ = x,y,z) denotes the Pauli matrices. In general
φ = R + iI, where the real vectors R and I transform accord-
ing to SO(3) group under spin rotations and as τ : φ → −φ∗

under time reversal. The complex nature of φ allows various
excitonic phases that can be distinguished by [35]

‖φ∗ × φ‖2 = (φ∗ · φ)2 − |φ · φ|2. (6)

For the phases with ‖φ∗ × φ‖ = 0 the name polar exciton
condensate [36] (PEC) or unitary phase [37] is used. The
order parameter in this case has the form φ = eiθ x, with
x a real vector, and thus the phase has a residual uniaxial
symmetry. If φ = iI the time-reversal symmetry is preserved.
Halperin and Rice [38] introduced the names spin-current-
density wave (SCDW) condensate for this case and spin-
density-wave (SDW) condensate for φ = R. The SDW phase
exhibits a spin density distribution polarized along R. The
SCDW phase possesses a pattern of spin current polarized
along I.

A finite ‖φ∗ × φ‖ implies that R ∦ I and so the condensate
has no axial symmetry. The most prominent feature of this
phase is the appearance of a finite spin moment M⊥ ∝ iφ∗ × φ

[8,39] perpendicular to both R and I, which gives this phase
its name ferromagnetic exciton condensate (FMEC) [36].

Besides the order parameter φ and the local occupation
matrix we evaluate the reciprocal space spin texture

mk =
∑
αβ

σ αβ〈a†
kαakβ + b

†
kαbkβ〉, (7)

where k is the reciprocal space vector and the k-indexed
operators are Fourier transforms of their local counterparts,
ak = 1√

N

∑
i exp−ik·i ai. Following the notation of Ref. [15]

we mark the polar phases with finite mk with apostrophe. A
finite k-odd contribution to mk may indicate the existence of
a net spin current, which we evaluate from

J γ
ν = −2

∑
k,αβ

sin kν(ta〈a†
kαakβ〉 + tb〈b†kαbkβ〉)σγ

αβ

− i
∑
k,αβ

(V+νe
−ikν − V−νe

ikν )〈a†
kαbkβ〉σγ

αβ + c.c. (8)

The derivation can be found in Appendix A.

III. RESULTS AND DISCUSSION

A. h = 0 case

First, we discuss the order parameter φ and the net spin
polarization M in various excitonic phases in the absence of
external field. Although there is no continuum spin density
defined in our lattice model, one can say whether a continuum
spin density exists or identically vanishes assuming our model
is built on real Wannier orbitals. Generally, a finite φ gives
rise to a spin density proportional (and parallel) to R and spin
current density proportional to I [38,39].

155114-2



EXCITONIC MAGNET IN EXTERNAL FIELD: COMPLEX … PHYSICAL REVIEW B 97, 155114 (2018)

We start with the density-density form of the on-site
interaction (λ = 0), which effectively introduces an easy-axis
magnetocrystalline anisotropy and restricts φ to the hard (xy)
plane. Later we present results obtained with the rotationally
invariant interaction and show that they exhibit the same
qualitative behavior. The density-density interaction allows
comparison with our previous work [15] and takes advantage of
the faster computational algorithm as well as higher transition
temperatures. The present results were obtained with two
independent implementations of the complex hybridization in
the CT-QMC algorithm [40,41].

1. s-wave cross hopping

The s-wave cross hopping is distinguished from the other
hopping patterns by a finite and real expectation value of φ0 ≡
〈a†

i↑bi↑ + a
†
i↓bi↓〉. This can be viewed as a spin-singlet com-

ponent of the exciton condensate generated by a source field
present in the Hamiltonian. Exciton condensates with finite
singlet and triplet components were shown [8,42–44] to host a
ferromagnetic polarization with components M⊥ ∝ iφ∗ × φ,
M‖ ∝ φ∗

0φ + φ0φ
∗. The same spin polarization pattern may be

expected here.
In Fig. 1 we show the phase diagram as a function of

temperature and hole doping (relative to the half-filling of two
electrons per atom) and summarize the evolution of the order
parameter φ and of the net spin moment M along two cuts
crossing the SCDW, FMEC, and SDW′ phases.

In the SCDW phase φ = iI, implying Re(φ · φ) < 0 and
Im(φ · φ) = 0. The net moment M = 0. The state is time-
reversal invariant and thus the continuous spin density vanishes
as well. The spin currents present in this state do not give rise
to any spin texture, mk = 0 [Figs. 4(c)–4(e)]. In the SU(2)
symmetric model (Fig. 4) there are two broken generators
of the SU(2) symmetry with vanishing expectation value of
their commutator (no net moment). This implies two linear
Goldstone modes [45].

In the SDW′ phase φ = R, implying Re(φ · φ) > 0,
Im(φ · φ) = 0. There is a net spin moment M parallel to R
(M⊥ = 0). There is naturally a finite spin texture mk parallel
to R [Figs. 6(c)–6(e)], but no texture in the perpendicular direc-
tion. In the SU(2) symmetric case Fig. 6 there are two broken
generators of the SU(2) symmetry with finite expectation value
of their commutator (the same as in a normal ferromagnet)
implying a single quadratic Goldstone mode [45].

At low temperatures the transition between the SCDW and
SDW′ phase is of the first order. A continuous transition that
we find at higher temperatures and study here can possibly
proceed via an intermediate polar phase or an FMEC phase.
The latter is actually realized. As the transition advances, R and
I remain approximately perpendicular while changing their
magnitudes [46]. In the FMEC phase both M‖ and M⊥ are
finite and the net magnetization M lies at a general angle to
both R and I. The spin texture mk is found in both directions,
parallel and perpendicular to M, but with different structure
[Figs. 5(c)–5(e)]. In the SU(2) symmetric case, see Fig. 5,
all three generators of the SU(2) symmetry are broken. The
finite expectation value of their commutator(s) (M) implies
one quadratic and one linear Goldstone mode [45].

FIG. 1. Evolution of the order parameter φ and the net spin
moment M along the constant doping (a), (c) and constant temperature
(b), (d) cuts of the phase diagram (e) of the model with s-wave
cross-hopping pattern and density-density interaction. (f) A cartoon
view of the Nambu-Goldstone modes of the SU(2) symmetric model.

2. p,d-wave cross hopping

In the models with higher-l cross-hopping pattern, the local
expectation value φ0 is zero in both the normal and the ordered
phases, and polar phases have vanishing ordered moments. In
Fig. 2 we show the evolution of φ along a cut in the phase
diagram. Note that the SDW and SCDW phases are exchanged

FIG. 2. Evolution of the order parameter φ (a) and the net spin
moment M (b) at a constant temperature T = 0.017 for the model
with p-wave cross-hopping pattern and density-density interaction
[15].
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relative to the s-wave case, due to the opposite sign of V+νV−ν

[15,16].
The SDW phase is characterized by φ = R, implying

Re(φ · φ) > 0, Im(φ · φ) = 0. Both M and mk are absent
[Figs. 7(c)–7(e)]. There is, however, a local (antiferromagnetic)
distribution of continuum spin density around each lattice site
polarized along R. The Goldstone spectrum consists of two
linear modes.

The SCDW′ phase is characterized by φ = iI, implying
Re(φ · φ) < 0, Im(φ · φ) = 0. The continuum spin density
vanishes everywhere and the state is time-reversal invariant.
Unlike the SCDW′ phase in the s-wave case, there is a finite
spin texture mk with p-wave symmetry [15] [Figs. 9(c)–9(e)],
which can be viewed as a k-space antiferromagnet. The
Goldstone spectrum again consists of two linear modes.

Similar to the s-wave case, the transition between the SDW
and SCDW′ phases is of first order at low temperatures, and
continuous via an intermediate FMEC phase at higher tem-
peratures. Unlike the s-wave case, M‖ = 0 and Im(φ · φ) = 0
along the path. The vectors M, R, and I thus remain mutually
orthogonal along the whole path through the FMEC phase. The
transition proceeds by shrinking of R accompanied by growth
of I. There is a p-wave spin texture mk in the R-I plane and an
s-wave texture for perpendicular polarization, Figs. 8(c)–8(e).
The Goldstone spectrum is the same as in the FMEC phase of
the s-wave model.

The model with d-wave cross hopping is expected to show
a behavior similar to the p-wave one, i.e., M‖ = 0 and R ⊥ I.
The roles of the SDW and SCDW phases are exchanged due
to the same sign of V+νV−ν as in the s-wave case. The spin
texture mk exhibits a d-wave symmetry in the SDW′ phase.
We have not performed a systematic study, but confirmed this
conclusion by inspecting a selected point in each of the FMEC
and SDW′ phases.

3. Rotationally invariant interaction

Figure 3 illustrates the modification of the phase boundaries
due to the spin-flip term. Figures 3(a) and 3(c) show the
Vν = 0 case, while Figs. 3(b) and 3(d) correspond to the
p-wave cross-hopping pattern. The results for the SU(2) sym-
metric model are qualitatively similar to the density-density
case, but the extent of the excitonic phase is reduced. This can
be traced back to the higher local degeneracy of the Heisenberg
HS state, which favors the normal phase.

B. Spin-triplet condensate in external field

Next, we study the condensate in small magnetic (Zeeman)
fields. In particular, we want to investigate the orientation of the
order parameter φ with respect to the net moment M (parallel
to the external field). To this end we use the SU(2) symmetric
interaction (λ = 1). We start from a converged h = 0 result
with φ pointing in a general direction. Then a magnetic field
h pointing along the x axis is applied and convergence to the
new equilibrium monitored. The field magnitude is chosen to
be smaller than the excitonic Weiss field, estimated as the value
of the high-frequency limit of the off-diagonal self-energy, but
large enough to achieve reasonably fast convergence of the
DMFT iterative procedure. For each excitonic phase we show
the convergence of φ, the spin texture mk in zero and finite h

FIG. 3. Comparison of models with density-density (a), (b) and
SU(2) symmetric (c), (d) interaction. (a) and (c) correspond to zero
cross hopping. (b) and (d) were obtained with a p-wave cross-hopping
pattern. The dots mark the points for which the calculations were
actually performed.

and the angles �MR , �MI , and �RI between the vectors M,
R, and I.

1. s-wave cross hopping

Starting from a small doping we first visit the SCDW phase,
see Fig. 4. As with the density-density interaction at h = 0, this
phase is characterized by R = M = mk = 0 and a pattern of
local spin currents polarized parallel to I, as discussed in the
previous section. The dominant effect of the external field h is
to rotate I perpendicular to h. This behavior, reminiscent of an
antiferromagnet, will be observed also in other cases. A small R
component is induced, which is approximately perpendicular
to h and I.

The FMEC state obtained at higher doping carries a finite
net moment M, see Figs. 5(c)–5(e). The main effect of the
external field h is to align M along its direction. The finite
component of R perpendicular to M gives rise to an s-wave
spin texture that is not parallel to M and thus integrates to zero
over the Brillouin zone, see Figs. 5(g)–5(h).

The SDW′ phase also carries a finite spin polarization M,
Figs. 6(c)–6(e). While a vanishingly small h would just rotate
the ground state to align M with h, the finite field has a more
profound effect. It gives rise to a sizable I and effectively
induces a transition to an FMEC-like state. It is interesting
to point out that while in zero field the SDW′ phase has
the same uniaxial symmetry as an ordinary ferromagnet, this
symmetry is lost in a finite field. It is instructive to inspect the
convergence of the iterative procedure, after h is turned on.
First, the system remains in a unstable SDW′-like state (I ≈ 0
and R ‖ h) to eventually settle in an FMEC-like state. Although
the convergence does not represent any real dynamics of the
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FIG. 4. The SCDW phase of the SU(2) symmetric model with
s-wave cross hopping with and without an external magnetic field.
(a), (b) Convergence of the order parameter φ. The gray area marks
the converged h = 0 solution with arbitrary φ orientation. The white
area shows the convergence after a field along the x axis is turned
on. (c)–(e) show the spin texture mk in the initial h = 0 state. (f)–(h)
show mk in the converged solution with finite field. In (e) and (h)
we show the angles �MR , �MI and �RI between the vectors M,
R, and I (omitted if corresponding vectors vanish) in zero and finite
field, respectively. The calculations were performed for hx = −0.006,
nh = 0.03, T = 0.0125, V = 0.04.

system, it suggests the existence of a metastable SDW′-like
phase.

2. p-wave cross hopping

At small doping and h = 0 the system is in the SDW phase
characterized by I = M = mk = 0 and finite intra-atomic
(collinear antiferromagnetic) spin polarization parallel to R.
In the external field h, R turns perpendicular to h, see Fig. 7.
A small I component perpendicular to R and h is induced
together with a small net moment.

Applying finite h in the FMEC phase aligns the spontaneous
polarization M with the external field h as expected, while the
mutual orthogonality of M, R, and I is preserved. The polar-
ization of the p-wave spin texture thus remains perpendicular
to h, see Fig. 8.

Finally, the SCDW′ phase at h = 0 is invariant with respect
to time reversal and thus carries no spin polarization. Neverthe-
less, the spin-rotational symmetry is broken, as demonstrated
by the presence of the spin texture mk. A finite external field h
generates a state similar to the FMEC case with the spin texture
polarized perpendicular to M, see Fig. 9.

In fact, with finite h, all the excitonic phases become
equivalent to the FMEC phase, although obvious quantitative

FIG. 5. The same as Fig. 4 for the FMEC phase of the SU(2)
symmetric model with s-wave cross hopping. The calculations were
performed for hx = −0.006, nh = 0.07, T = 0.007, V = 0.04. Note
that calculations are practically converged after ∼800 iterations. The
evolution of φ after this point represents mainly rotation around h,
i.e., a symmetry transformation of the practically converged solution.

FIG. 6. The same as Fig. 4 for the SDW′ phase of the SU(2)
symmetric model with s-wave cross hopping. The calculations were
performed for hx = −0.006, nh = 0.08, T = 0.0125, V = 0.04.
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FIG. 7. The same as Fig. 4 for the SDW phase of the SU(2)
symmetric model with p-wave cross hopping. The calculations were
performed for hx = −0.01, nh = 0.03, T = 0.033, V = 0.04.

differences remain for the case of moderate h discussed here.
We point out that there is still a symmetry difference between
the excitonic condensate and the normal state in the presence

FIG. 8. The same as Fig. 4 for the FMEC phase of the SU(2)
symmetric model with p-wave cross hopping. The calculations were
performed for hx = −0.01, nh = 0.6, T = 0.007, V = 0.04.

FIG. 9. The same as Fig. 4 for the SCDW′ phase of the SU(2)
symmetric model with p-wave cross hopping. The calculations were
performed for hx = −0.01, nh = 0.095, T = 0.007, V = 0.04.

of finite field, since the condensate does not have the uniaxial
symmetry of the normal state.

C. Phenomenological model

The above numerical results paint a rather complex picture.
In order to understand them we introduce a phenomenological
Ginzburg-Landau-type (GL) functional, which can be viewed
as an extension of the functional of Ref. [9]. We assume that
the magnitude of the order parameter ‖φ‖2 is fixed by the large
kinetic energy of excitons and show only the smaller terms that
select the direction of φ. We start by considering an undoped
system. The corresponding GL functional reads

E0 = ±α(R · R − I · I) + β(R × I) · (R × I) − h · (R × I),

(9)

with positive constants α and β. Here the first term describes
the effect of cross hopping on the phase of the order parameter.
The plus sign applies to s- and d-wave cross hopping, the
minus sign to p-wave cross hopping. R × I = − i

2φ∗ × φ

is proportional to the spin polarization of the condensate,
so that the second and third terms describe the interatomic
antiferromagnetic interaction and coupling to the external field,
respectively. For h = 0, β > 0 implies R = 0 for s, d-wave
cross-hopping patterns, and I = 0 for the p-wave pattern.

The application of a finite external field induces a nonzero
complementary component

R = − h × I
2[C ± α + βI · I]

, I = h × R
2[C ∓ α + βR · R]

,

where C is a Lagrange multiplier fixing ‖φ‖2. This explains
the numerical observation of mutual orthogonality of h, R,
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and I in the undoped phases. It also justifies the use of the
density-density approximation with the field applied along the
z axis, i.e., perpendicular to the condensate [32].

Doping introduces additional terms to the functional. To
proceed we start from the generalized double-exchange model
[15,47]. We introduce terms that describe the polarization of
the doped carriers and its coupling to the condensate

E = E0 + γ M̃ · (R × I) − h · M̃ + δM̃ · R + ωM̃ · M̃,

(10)

where M̃ stands for the spin polarization of the doped carriers.
The second term describes the standard double-exchange in-
teraction between the local moments of the condensate and the
itinerant carriers. The third and fifth terms (ω > 0) describe the
polarizability of the doped carriers. The fourth term describes
the coupling between the condensate and the doped carriers due
to the finite cross hopping. This term has a more complicated
k-dependent form [15], but to discuss the response to a uniform
field we keep only the part containing M̃. The key observation
is that δ �= 0 for s-wave cross hopping, while δ = 0 for p- and
d-wave cross hopping.

The stationary values of R, I, and M̃ satisfy

R = I × (h − γ M̃) − δM̃
2[C ± α + βI · I]

, I = R × (γ M̃ − h)

2[C ∓ α + βR · R]

M̃ = 1

2ω
(h − γ R × I − δR).

This implies the orthogonality of I to M̃, h, and R, as
observed in the numerical calculations. For p- and d-wave
cross hopping, δ = 0 so that R is orthogonal to h and M̃
(which are parallel in this case) as well. Finite δ in the s-wave
case leads to a general angle between the coplanar vectors
R, M̃, and h. This behavior of the s-wave model reproduces
the numerical results only approximately. While I · h = 0 is
fulfilled to our numerical accuracy, we find small, but non-
negligible, deviations from I · R = 0, which must be due to
effects beyond Eq. (10).

D. Spontaneous spin current

The spin texture with m−k = −mk in the SCDW′ and
FMEC phases for p-wave cross hopping, Figs. 8–9, may
suggest that electrons moving in opposite directions carry
opposite spin polarization. Things are not so simple, since
the current (8) depends on the group velocities, which have
opposite signs for a and b orbitals of the present model.

The calculated spin currents (8) in the phases with p-
wave spin texture, marked by points in Fig. 3, are shown in
Fig. 10. We find a finite net spin current polarized along, and
scaling with I [48]. This DMFT result violates the so-called
Bloch theorem [21,28], which forbids spontaneous currents of
charges that are locally conserved by the interaction part of the
Hamiltonian. In the Appendix B we sketch the proof for the
present model at T = 0. A general proof for finite temperatures
can be found in Ref. [28].

It is worth pointing out that the (dominant) orbital-diagonal
terms enter the spin current (8) and the spin texture mk
with opposite signs as difference and sum, respectively. It is
therefore plausible that the spin texture exists also in an exact

FIG. 10. Magnitude of the spin current versus amplitude of
the imaginary part of the order parameter, in two distinct phases
using the SU(2) symmetric interaction (green triangles and magenta
circles for FMEC and SCDW′, respectively), and the density-density
approximation (red square). The dashed line is a guide for the eye.

solution with vanishing spin current. If so, a finite spin current
may be obtained by breaking the balance between the orbital
contributions to (8) in a nonequilibrium state generated by an
optical excitation.

IV. CONCLUSIONS

We have studied the influence of an external magnetic field
on the excitonic condensate in the two-band Hubbard model. In
all studied phases the excitonic condensate breaks the uniaxial
symmetry imposed by the external field and the excitonic
condensation thus remains a thermodynamic phase transition
accompanied by the appearance of gapless Goldstone modes.

There is a ubiquitous h · (R × I) coupling between the
field and condensate, which generates perpendicular (to h)
components of the order parameter φ. As a result the staggered
spin density or spin current density polarization in the model
with p- and d-wave cross hopping lie perpendicular to the
external field, analogous to the behavior of an Heisenberg
antiferromagnet. For s-wave cross hopping, an additional
linear coupling h · R exists giving rise to a more complicated
behavior.

Finally, we have observed that a net spin current is sponta-
neously generated in some excitonic phases with p-wave cross
hopping. The DMFT solutions therefore violate Bloch’s no-go
theorem. We propose that a net nonequilibrium spin or charge
current may be generated by a uniform orbital or spin-orbital
selective excitation in the phase with the p-wave spin texture.
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APPENDIX A: EXPRESSION FOR THE SPIN CURRENT

We consider the model Hamiltonian (2). The local charge
and spin operators read

ni = s0
i =

∑
σ

(a†
iσ aiσ + b

†
iσ biσ )

s
γ

i =
∑
α,β

σ
γ

αβ(a†
iαaiβ + b

†
iαbiβ ), (A1)

where σγ (γ = 0,x,y,z) are the Pauli matrices. The density
operator commutes with the local part of the Hamiltonian

[ni,Hloc] = [
sz

i ,Hloc
] = 0. (A2)

For the SU(2) symmetric interaction, all the components of the
local spin operator commute with Hloc[

s
γ

i ,Hloc
] = 0 if λ = 1 (A3)

We can define the current using the continuity equation, which
takes the form of Kirchhoff’s first law

∂t s
γ

i =
∑

ν

(
j

γ

i−eνν
− j

γ

iν

)
, (A4)

where j
γ

iν is the current flowing on the bond i → i + eν . The
time derivative of the local density operator can be evaluated
using the equation of motion

∂t s
γ

i = i
[
H,s

γ

i

] = i
∑

ν

[
Tν + T †

ν ,s
γ

i

]
. (A5)

We distinguish between the right- and the left-hopping parts
(T and T †, respectively) of the kinetic energy for future
convenience. For the right-hopping part, we find

i
[
Tν,s

γ

i

] = ita
∑
α,β

σ
γ

αβ(a†
i+eνα

aiβ − a
†
iαai−eνβ

)

+ itb
∑
α,β

σ
γ

αβ(b†i+eνα
biβ − b

†
iαbi−eνβ

)

+ iV+ν

∑
α,β

σ
γ

αβ(a†
i+eνα

biβ − a
†
iαbi−eνβ

)

+ iV−ν

∑
α,β

σ
γ

αβ(b†i+eνα
aiβ − b

†
iαai−eνβ

). (A6)

The operator s
γ

i is Hermitian, therefore
[
T †

ν ,s
γ

i

] = −[
Tν,s

γ

i

]†
. (A7)

Combining Eqs. (A4), (A6), and (A7), we get

j
γ

iν = −
∑
α,β

(
itaσ

γ

αβa
†
i+eνα

aiβ + H.c.
)

−
∑
α,β

(
itbσ

γ

αβb
†
i+eνα

biβ + H.c.
)

−
∑
α,β

(
iV+νσ

γ

αβa
†
i+eνα

biβ + H.c.
)

−
∑
α,β

(
iV−νσ

γ

αβb
†
i+eνα

aiβ + H.c.
)
. (A8)

The global current is defined as the sum over all bonds/sites

J γ
ν ≡

∑
i

j
γ

iν . (A9)

APPENDIX B: EXTENSION OF A RESULT BY BRILLOUIN

In this section, we show that a state that carries a finite
current of locally conserved density cannot be a ground state.
We follow the proof in Ref. [28]. Let us assume that |�〉 is
a ground state, which has a finite expectation value of global
current 〈�|J γ

x |�〉 = J �= 0, and construct a state

|�〉 ≡ exp(−iδXγ )|�〉, (B1)

where

Xγ ≡
∑
k,l

ks
γ

(k,l). (B2)

Since Xγ commutes with Hloc we get

〈�|H |�〉 = 〈�|Hloc|�〉 +
∑

ν

〈�| exp(iδXγ )(Tν

+ T †
ν ) exp(−iδXγ )|�〉. (B3)

The operators Xγ and Tν + T †
ν are Hermitian, we can thus

expand (B3) using the Baker-Hausdorff lemma

exp(iδB)A exp(−iδB)

= A + iδ[B,A] + (iδ)2

2!
[B,[B,A]]

+ . . .
(iδ)n

n!
[B,[B, . . . ,[B,A] . . .]] . . . . (B4)

To compute [Xγ ,Tν] we use Eq. (A6) and obtain

[Xγ ,Ty] = 0,

[Xγ ,Tx] = −
∑
k,l

k
[
Tx,s

γ

(k,l)

]

= −
∑
αβ

σ
γ

αβ

∑
k,l

(k − (k + 1))

×[taa
†
(k+1,l)αa(k,l)β + tbb

†
(k+1,l)αb(k,l)β

+Vxa
†
(k+1,l)αb(k,l)β + V−xb

†
(k+1,l)αa(k,l)β]

=
∑

i

∑
αβ

σ
γ

αβ[taa
†
i+exα

aiβ + tbb
†
i+exα

biβ

+Vxa
†
i+exα

biβ + V−xb
†
i+exα

aiβ ]. (B5)

Using the identity [Xγ ,T †] = −[Xγ ,T ]† we arrive at

[Xγ ,Tx + T †
x ] = iJ γ

x . (B6)
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We can also evaluate the next commutator

[Xγ ,[Xγ ,Tx + T †
x ]] = [

Xγ ,iJ γ
x

]

=
∑
k,l

(k + 1 − k)
∑

α

[
taa

†
(k+1,l)αa(k,l)α

+ tbb
†
(k+1,l)αb(k,l)α + Vxa

†
(k+1,l)αb(k,l)α

+V−xb
†
(k+1,l)αa(k,l)α

] + H.c.

= Tx + T †
x . (B7)

We finally obtain

〈�|H |�〉 = 〈�|H |�〉 − sin δ〈�|J γ
x |�〉

+ (cos δ − 1)〈�|Tx + T †
x |�〉

= 〈�|H |�〉 − δJ + O(δ2). (B8)

Therefore |�〉 cannot be a ground state if J is finite.
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