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We present a dynamical mean-field study of dynamical susceptibilities in the two-band Hubbard model.
Varying the model parameters we analyze the two-particle excitations in the normal as well as in the
ordered phase, an excitonic condensate. The two-particle dynamical mean-field theory spectra in the
ordered phase reveal the gapless Goldstone modes arising from spontaneous breaking of continuous
symmetries. We also observe the gapped Higgs mode, characterized by vanishing of the gap at the phase
boundary. Qualitative changes observed in the spin susceptibility can be used as an experimental probe to
identify the excitonic condensation.
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Long-rang order (LRO) and the concomitant spontaneous
symmetry breaking are a prominent demonstration of
collective behavior in solids. For common LROs, e.g.,
magnetic order, the order parameter can be observed directly
with present technology. However, some exotic LROs,
dubbed hidden orders, have been recognized through their
thermodynamic properties so far [1–3]. In this case, dynami-
cal response functions are invaluable for understanding the
nature of the LRO. The excitonic insulator [4,5] is an
example of LRO that after decades of defying detection
has been identified through its dynamical fingerprint [6].
Recently, realization of the excitonic magnet [7], an analog
of the excitonic insulator arising by condensation of spinful
excitons, was proposed in Pr0.5Ca0.5CoO3 [2,8,9] with
conclusive evidence still missing. The excitonic interpreta-
tion of magnetism of Ca2RuO4 is a subject of current debate
[10,11]. Excitonic condensation finds its formal analogy in
the LRO in Heisenberg-dimer systems, experimentally
studied in TlCuCl3 [12].
In this Letter we use dynamical mean-field theory

(DMFT) to study the dynamical response of an excitonic
magnet realized in the two-band Hubbard model. We show
that the symmetry lowering gives rise to a coupling
between the exciton condensate fluctuations and spin,
which leaves a unique signature in the dynamical spin
structure factor and thus can be observed by experiments
such as inelastic neutron or x-ray scattering.
Breaking of continuous symmetry in systems with short

range interactions results in the appearance of gapless
Goldstone modes (GMs) [13] as well as gapped Higgs
excitations [14], which have been the subject of recent
interest [10,12,14,15]. The description of interacting elec-
tron systems typically relies on perturbative approaches in
the weak-coupling limit [9,16] or low-energy effective

models in the strong-coupling limit [7,17]. The DMFT
[18,19] uses a different approximation assuming a
Luttinger-Ward functional with the local propagators only,
which makes DMFT tractable for realistic multiorbital
models [20,21]. DMFT has been widely used to study
one-particle (1P) dynamics, while two-particle (2P) sus-
ceptibilities are rarely studied for multiorbital models
[22–27] and their behavior in ordered phases is unexplored.
The Hamiltonian of studied model reads

H¼
X
ij;σ

ða†iσ b†iσ Þ
�
taa tab
tab tbb

��
ajσ
bjσ

�
þΔ

2

X
i;σ

ðnaiσ −nbiσÞ

þU
X
i;α

nαi↑n
α
i↓þ

X
i;σσ0

ðU0− Jδσσ0 Þnaiσnbiσ0 ; ð1Þ

where a†iσ and b†iσ are fermionic operators that create
electrons with the respective orbital flavors and spin σ at
site i of a square lattice. The first term describes the nearest
neighbor hopping. The rest, expressed in terms of local
densities nci;σ ≡ c†iσciσ , captures the crystal field Δ, the
Hubbard interaction U, and Hund’s exchange J in the Ising
approximation. Parameters U ¼ 4, J ¼ 1, U0 ¼ U − 2J,
[28] taa ¼ 0.4118, tbb ¼ −0.1882, tab ¼ 0, 0.02, 0.06 with
magnitudes (in eV) typical for 3d transition metal oxides
were used in previous studies [25,29,30].
We follow the standard DMFT procedure of self-

consistently mapping the lattice model onto an auxiliary
Anderson impurity model (AIM) [31,32], which is solved
with the ALPS implementation [33–35] [36] of the
matrix version of the strong-coupling continuous-time
quantum Monte Carlo algorithm [38]. The susceptibilities
[19,22,39,40] are obtained by solving the Bethe-Salpeter
equation in the particle-hole channel with the DMFT 1P
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propagators and 2P-irreducible vertices of AIM using the
orthogonal polynomial representation [41].
The susceptibilities χOO

ηη ðk;ωÞ are obtained by analytic
continuation [42,43] of their Matsubara representations,

χOO
ηη ðk;iνnÞ¼

X
R

Z
β

0

dτeiðνnτþk·RÞhOη
iþRðτÞOη

i ð0Þi−hOηi2;

with the observables O of interest being excitonic
fields Rη

i ðIηi Þ ¼
ffiffiffiffiffiffiffi�1

p P
αβσ

η
αβða†iαbiβ � b†iαaiβÞ, respec-

tively, with η ¼ x, y and the z component of spin moment
Szi ¼

P
αβσ

z
αβða†iαaiβ þ b†iαbiβÞ.

Model (1) at half-filling has a rich phase diagram
exhibiting a metal-insulator transition [50] as well as
various types of LRO including antiferromagnetism,
spin-state order, or superconductivity [25,26,51,52]. For
the present parameters it undergoes a temperature- or
crystal-field-controlled transition to polar excitonic con-
densate (PEC) [53], as shown in Fig. 1(b). PEC is
characterized by a finite excitonic field. Throughout the
Letter we choose the orientation hIyi ¼ ϕ, while Ry, Ix, and
Rx remain fluctuating. This phase is an instance of the spin
nematic state, which breaks spin-rotation symmetry with-
out the appearance of spin polarization.
The behavior of the collective modes depends on the

continuous symmetry broken by the LRO [13]. Here, it is the
Uð1Þ spin (z-axis) rotation. If tab ¼ 0, an additional Uð1Þ
gauge symmetry due to conservation of

P
i;σðnai;σ − nbi;σÞ

makes the total broken symmetry Uð1Þ ×Uð1Þ. We refer to
the general tab ≠ 0 case as the Uð1Þ model and the tab ¼ 0

case as the U2ð1Þ model.
Δ-driven transition.—While the system exhibits a

sizable 1P gap throughout the studied Δ range, horizontal
line in Fig. 1(b), low-energy 2P excitations show up in the

excitonic susceptibilities, Fig. 2. In the normal phase
(Δ > Δc), these can be viewed as spinful Frenkel excitons.
The spin symmetry ensures the equivalence of x and y
directions, while the gauge symmetry leads to equivalence
of the excitonic fields R and I in the U2ð1Þ model.
Reducing Δ closes the excitation gap and the system

undergoes transition to the PEC phase. For the excitonic
field, which freezes in an arbitrary direction both in the xy
plane and the RI plane in the U2ð1Þ case, we choose the
orientation discussed above. Linear gapless GMs [43]
corresponding to the spin rotation and phase fluctuation
(RI rotation) are observed in χIIxx and χRRyy , respectively. The
intensities of both GMs diverge as 1=jkj [43]. The
corresponding sound velocities are shown in Fig. 3(a).
Finite cross-hopping tab leads to a generic Uð1Þ model.

The equivalence between the R and I fields is lost; see
Fig. 4. The excitonic field freezes in the I direction [53,54],
while the xy orientation remains arbitrary. For the small tab
studied here, the changes to the excitonic spectra [43] are
concentrated in the low-energy region shown in Fig. 4. The
spin-rotation GM, visible in χIIxx, remains gapless and linear.
The phase mode acquires a Higgs gap that vanishes at the
transition, Fig. 3(b), a behavior observed in bilayer
Heisenberg system TlCuCl3 [12].
Interestingly the character of this mode changes as we

proceed deeper into the ordered phase, Fig. 4. Close to the
phase boundary, its spectral weight is dominated by χIIyy,
i.e., amplitude fluctuation of the condensed Iy field. Deeper

T
exciton 
condensate

(a) (b)

(c) (d)

FIG. 1. The sketch of crystal field vs temperature (Δ − T) phase
diagram (b) with marked cuts, along which the susceptibilities are
calculated. The 1P spectral function at selected ðΔ; TÞ points
marked with stars: violet (3.55, 1=11), green (3.55, 1=40), and
blue (3.8, 1=40).

FIG. 2. Evolution of the excitonic modes of dynamical sus-
ceptibility in the U2ð1Þ model (tab ¼ 0) across Δ-driven tran-
sition (T ¼ 1=40). The columns correspond to −ImχOO

γγ ðk;ωÞ
with Oγ ¼ Ix, Iy, Rx, Ry (left to right) along the high-symmetry
lines in the two-dimensional Brillouin zone. The rows from top to
bottom correspond to Δ ¼ 3.9, 3.8, 3.65, 3.55, 3.45 with
Δc ≈ 3.75. [The red line separates the normal state from the
PEC phase.]
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in the ordered phase the spectral weight is mostly in χRRyy ,
corresponding to phase fluctuation (RI rotation) as in the
U2ð1Þ model. We offer an interpretation in terms of the
relative strength of the symmetry breaking term (tab) in
the Hamiltonian and the spontaneously generated Weiss
field. The Weiss field, the off-diagonal F↑↓

ab ðωÞ part of the
hybridization function in the present method, is in general a
fluctuating (frequency dependent) object, which prohibits a
direct comparison to tab. Nevertheless, we can compare
their dynamical effects. AWeiss field dominating over the
Hamiltonian term (tab) results in a gapped GM found deep
in the ordered phase. A common example of such a
situation is a gap in spin-wave spectra of magnets due
to magnetocrystalline anisotropy. Dominance of the
Hamiltonian term (tab) close to the phase boundary, where
the Weiss field is small, results in amplitude fluctuations.
This is a generic situation in cases without an approximate
symmetry. This interpretation is supported by the obser-
vation that the extent of the amplitude-fluctuation regime

shrinks when tab is reduced [43]. Moreover, the strong-
coupling calculations [see Supplemental Material (SM)
[43]], which make an explicit comparison possible, lead to
the same conclusions.
Next, we discuss the impact of exciton condensation on

the spin susceptibility χSSzz , shown in Fig. 5. In the normal
phase, χSSzz ðk;ωÞ exhibits no distinct dispersion and essen-
tially vanishes throughout the Brillouin zone, Fig. 5(b), as
expected in a band insulator. In the PEC phase, it develops a
sharp spin-wavelike dispersion although there are no
ordered moments present. We point out a similarity of
χSSzz ðk;ωÞ to χRRxx ðk;ωÞ that we discuss later. A distinct
feature of χSSzz ðk;ωÞ is the suppression of the spectral
weight close to the Γ point. This suppression can be
overcome by doping, which results in the appearance of
ferromagnetic exciton condensate [29].
Strong-coupling limit.—To understand the numerical

results, it is instructive to analyze the strong-coupling limit
of (1), which can be expressed in terms of two-flavor hard-
core bosons [53,55,56],

H ¼ μ
X
i

ni −
X
ij;ν

�
T d†iνdjν −

W
2
ðd†iνd†jν þ diνdjνÞ

�

þ V
2

X
ij

ninj þ
J
2

X
ij

Szi S
z
j: ð2Þ

Bosonic operators d†iν (ν ¼ x, y), which create high-spin
(HS) states out of the low-spin (LS) state, are related to the
excitonic fields by Rν

i ðIνi Þ →
ffiffiffiffiffiffiffi�1

p ðd†iν � diνÞ. The number
operators ni ¼

P
νd

†
iνdiν measure the HS concentration and

Szi ¼ −iðd†ixdiy − d†iydixÞ is the z component of the spin
operator. The relations of the coupling constants μ, T , W,
V, and J to the parameters of (1) can be found in SM [43]
and Ref. [25]. Since W ∼ t2ab, the gauge symmetry of the
U2ð1Þ model reflects conservation of d charge for W ¼ 0.
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FIG. 3. (a) The sound velocity vs of the GMs, the phase mode
(χRRyy , blue symbols), and the spin rotation mode (χIIxx, black
symbols) in the U2ð1Þ model as a function of the crystal field Δ.
The dotted lines show the corresponding strong-coupling results.
(b) The Higgs gap in the Uð1Þ model with tab ¼ 0.02 and 0.06 as
a function of Δ. The line is a guide for eyes.

FIG. 4. The same susceptibilities as in Fig. 2 (T ¼ 1=40) in the
vicinity of the Γ point for the Uð1Þ model with cross-hopping
tab ¼ 0.06. The rows from top to bottom correspond to
Δ ¼ 3.675, 3.60, 3.5, with Δc ≈ 3.65 [the red line separates
the normal state from the PEC phase].

FIG. 5. (a) Evolution of dynamical spin susceptibility
−ImχSSzz ðk;ωÞ across the Δ-driven transition in the U2ð1Þ model
of Fig. 2 (the asterisk marks the normal phase). (b) The
corresponding static susceptibilities ReχSSzz ðk; 0Þ throughout the
Brillouin zone.
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Generalized spin-wave treatment [56,57] of the
excitations over the variational ground state
jGi ¼ Q

iðαþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
d†iyÞj0i, see SM [43] for details,

leads to a free boson model

H̃ν ¼ μν
X
i

ñiν −
X
ij

�
T νd̃

†
iνd̃jν −

Wν

2
ðd̃†iνd̃†jν þ H:c:Þ

�
:

ð3Þ

Note that the parameters of this effective model in the
ordered phase, given in Table I, depend on the flavor
ν ¼ x, y. The elementary excitations of (3) have the
dispersion ϵνðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½μν − 2T νδðkÞ�2 − ½2WνδðkÞ�2

p
with

δðkÞ ¼ cos kx þ cos ky. In theU2ð1Þ case withW ¼ 0 both

x and y modes are gapless with sound velocities vν ≡
∇kϵνðk ¼ 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8jWνjðT ν þ jWνjÞ
p

vanishing at the
transition. Finite W in the Uð1Þ case leads to the opening
of a gap for y excitations. The ratio of the spectral weights
of I− and R− propagators corresponding to χIIyy and χRRyy at
Γ point is given by [43]

ImχIIyyð0; νgapÞ
ImχRRyy ð0; νgapÞ

≈
4W

ð2T þ VÞϕ2
;

which supports the interpretation that a dominant
Hamiltonian term (W) favors the amplitude fluctuations,
while a dominant Weiss field (∼T ϕ) favors the gapped
Goldstone fluctuations.
Finally, we address the behavior of the spin susceptibility

χSSzz in Fig. 5 We observe that replacing the operator diy in
the strong-coupling expression for Szi by its finite PEC
value yields Szi ∼ ðd†ix þ dixÞϕ=2. In the ordered phase, the
spin susceptibility χSSzz therefore follows χRRxx , while they are
decoupled in the normal phase.
Thermally driven transition.—Since the transition

observed in Pr0.5Ca0.5CoO3 [2] is driven by temperature
we investigate the behavior of the U2ð1Þ model along the
vertical trajectory in Fig. 1(b). We observe that the 1P gap
in the normal state is closed, Fig. 1(d). The excitonic

susceptibilities possess a peak at finite frequency, whose
tail extends to zero frequency, Fig. 6. Cooling is accom-
panied by a downward shift of the damped dispersive
features; i.e., the phase transition can be viewed as a mode
softening, an observation also made experimentally on
TlCuCl3 [12].
The normal state spin susceptibility χSSzz in Fig. 7 does

not vanish as in Fig. 5. The presence of thermally excited
HS states gives rise to k-featureless susceptibility with
spectral weight concentrated at low energies. Nevertheless,
χSSzz ðk;ωÞ changes qualitatively at the transition in this case
as well. The dispersion becomes sharper and its bandwidth
increases significantly. As a result, upon cooling below Tc,
the low-energy region is depleted of spectral weight
throughout the Brillouin zone, except in the vicinity of
the Γ point. Recently, this behavior was reported in inelastic
neutron scattering in the putative excitonic material
ðPr1−yYyÞ1−xCaxCoO3 [58].

TABLE I. The parameters of Eq. (3). The variational parameter
0 ≤ α2 ≤ 1, corresponding to the LS density, assumes 1 in the
normal phase and ½μþ zðT þWÞ þ zV�=½2zðT þWÞ þ zV� in
the condensate.

μx α2μþ zα2ð1 − α2Þð2T þ 2W þ VÞ
T x α2T − ð1 − α2ÞJ
Wx α2W þ ð1 − α2ÞJ
μy zðT þWÞ; μ if α2 ¼ 1

T y T − α2ð1 − α2Þð2T þ 2W þ VÞ
Wy W − α2ð1 − α2Þð2T − 2W þ VÞ

FIG. 6. The same susceptibilities of U2ð1Þ model as in Fig. 2
calculated across the thermally driven transition for Δ ¼ 3.55.
The rows from top to bottom correspond to temperatures
T ¼ 1=11, 1=16, 1=30, 1=40 with Tc ≈ 1=13.

FIG. 7. (a) Evolution of dynamical spin susceptibility
−ImχSSzz ðk;ωÞ across the thermally driven phase transition as
in Fig. 6 for temperatures T ¼ 1=11, 1=20, 1=30 (the asterisk
marks the normal phase). (b) The corresponding static suscep-
tibilities ReχSSzz ðk; 0Þ throughout the Brillouin zone.
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In conclusion, we used DMFT to study the 2P response
across exciton condensation transition in the two-orbital
Hubbard model. We observed the formation of GMs as
predicted by symmetry considerations [13]. Explicit break-
ing of continuous symmetry led to the appearance of a
gapped mode [14], characterized by vanishing of the gap at
the phase transitions similar to observations in TlCuCl3
[12]. We have observed that the character of this mode
changes from Higgs-like amplitude fluctuations close to the
phase boundary, to Goldstone-like phase fluctuations deep
in the ordered phase. We suggest that this behavior is
common to systems with weakly broken symmetry and we
provide its interpretation in terms of the relative strengths of
the spontaneously generated Weiss field and the explicit
symmetry-breaking term in the Hamiltonian.
Experimental observation of excitonic modes is in

principle possible [59,60] using resonant inelastic x-ray
scattering; however, practical limitations in energy reso-
lution and k-space accessibility [59] exist at the moment.
We have shown that the measurement of dynamical spin
susceptibility provides an alternative that can be used to
identify spinful excitonic condensates with current exper-
imental technology.
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