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Spin textures in k-space arising from spin-orbit coupling in noncentrosymmetric crystals find numerous
applications in spintronics. We present a mechanism that leads to the appearance of k-space spin texture
due to spontaneous symmetry breaking driven by electronic correlations. Using dynamical mean-field
theory we show that doping a spin-triplet excitonic insulator provides a means of creating new
thermodynamic phases with unique properties. The numerical results are interpreted using analytic
calculations within a generalized double-exchange framework.
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Manipulation of spin polarization by controlling charge
currents and vice versa has attracted considerable attention
due to applications in spintronic devices. A major role is
played by spin-orbit (SO) coupling in noncentrosymmetric
systems. As originally realized by Dresselhaus [1] and
Rashba [2], SO coupling in a noncentrosymmetric crystal
lifts the degeneracy of the Bloch states at a given k-point
and locks their momenta and spin polarizations together
giving rise to a spin texture in reciprocal space. This leads
to a number of phenomena [3] such as spin torques in ferro-
[4,5] and antiferromagnets [6,7], topological states of
matter, or spin textures in the reciprocal space that are
the basis of the spin galvanic effect [8]. Electronic
correlations alone can provide coupling between spin
polarization and charge currents, e.g., via effective mag-
netic fields acting on electrons moving through a non-
coplanar spin background [9,10]. Wu and Zhang [11]
proposed that SO coupling can be generated dynamically
in analogy to the breaking of relative spin-orbit symmetry
in 3He [12]. Subsequently, an effective field theory of spin-
triplet Fermi surface instabilities with high orbital partial
wave was developed in Ref. [13].
Here, we present a spontaneous formation of a k-space

spin texture, similar to the effect of Rashba-Dresselhaus SO
coupling, in centrosymmetric bulk systems with no intrinsic
SO coupling. The spin texture is amanifestation of excitonic
magnetism that has been proposed to take place in some
strongly correlatedmaterials [14,15]. The basic ingredient is
a crystal built of atomswith quasidegenerate singlet or triplet
ground states. Under suitable conditions a spin-triplet
exciton condensate [16,17] is formed, which may adopt a
variety of thermodynamic phases with diverse properties
[18]. Several experimental realizations of excitonic magnet-
ism have already been discussed in the literature [19–23].
Model.— We use the dynamical mean-field theory

(DMFT) to study the minimal model of an excitonic
magnet—the two-orbital Hubbard Hamiltonian at half-
filling
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The local part of the Hamiltonian contains the crystal-field
splitting Δ between the orbitals labeled a and b and the
Coulomb interaction with ferromagnetic Hund’s exchange
J. The kinetic part Ht describes the nearest-neighbor
hopping on the square lattice between the same orbital
flavors ta, tb as well as cross-hopping between the different
orbital flavors V1, V2; see Fig. 1. The parameters Δ and J
are balanced such that the energy difference between the
atomic low-spin (LS) and high-spin (HS) states is smaller
or comparable to the kinetic energy gain due to the electron
delocalization. The numerical simulations using continu-
ous-time quantum Monte Carlo impurity solver [24,25]
were performed with the density-density approximation for
the interaction (γ ¼ 0), which effectively introduces a
magnetic easy axis in the present model. Analytic
mean-field calculations as well as preliminary DMFT

FIG. 1. The hopping processes with corresponding amplitudes
on the square lattice. The parameters used in the calculations:
ta ¼ 0.4118, tb ¼ −0.1882, V1 ¼ �V2 ¼ 0.05, Δ ¼ 3.4, U ¼ 4,
U0 ¼ 2, and J ¼ 1 in units of eV.
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computations performed with the SU(2) symmetric model
[18] show only quantitative differences (e.g., reduction of
the transition temperature). The spectral functions were
obtained using the maximum entropy method [26].
Technical details can be found in the Supplemental
Material [27].
Studies [15,19,28–31] performed without cross-hopping

V1;2 ¼ 0 revealed formation of the exciton condensate
below a critical temperature, which decreases with doping
away from integer filling. In the strong-coupling limit the
ground state wave function of a uniform condensate can be
approximated by a product of local functions ΠijCii with
each jCi ¼ sb†↑b

†
↓ þ ξ1a

†
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↓jvi [32], describing a local hybrid between the

LS and HS states with amplitudes s, ξ1, ξ0, and ξ−1, which
provides a useful analytic reference for interpretation of the
numerical results. In the DMFT calculations we character-
ize the thermodynamic phases by the order parameter
ϕðiÞ ¼ P

αβσαβha†iαbiβi, with Pauli matrices σ. In addition,
we evaluate the spin moment per atomM as well as the spin
density in the direct space mðrÞ [33] and in the reciprocal
space mk ¼ P

αβσαβha†kαakβ þ b†kαbkβi.
In Fig. 2 we show the phase diagrams of Eq. (1) as

functions of temperature T and hole doping nh away from
n ¼ 2. We choose the hopping parameters so that tatb < 0
which leads to a uniform ϕ-order. Note that on a bipartite
lattice the tatb > 0 case with a staggered ϕ-order can be
mapped on the tatb < 0 by the gauge transformation

ai → ð−1Þiai [18]. We consider two cross-hopping patterns
at this point: V1 ¼ V2 (even) and V1 ¼ −V2 (odd). The two
corresponding phase diagrams share the general features
inherited from the “parent” system with no cross-hopping
studied in Ref. [28]. These include the polar state with no
ordered moments at low doping levels and a doping-
induced transition to a different excitonic phase. The
thermodynamic phase can be distinguished by several
criteria. The ferromagnetic condensate (FMEC) has the
oder parameter of the form ϕ ¼ xþ ix0 (with noncollinear
real vectors x and x0), which generates a finite uniform
polarizationM⊥ perpendicular to ϕ. The order parameter in
polar condensates can be written as ϕ ¼ eiφx (real vector x
times an arbitrary scalar phase φ). The polar condensates
can be further distinguished by their time-reversal (TR)
symmetry into the spin-density-wave (SDW; real ϕ; breaks
TR) and spin-current-density-wave (SCDW; imaginary ϕ;
preserves TR) types, introduced by Halperin and Rice [16].
The SDW order gives rise to a finite intra-atomic spin
polarization mðrÞ—higher magnetic multipole—while the
SCDW order gives rise to intra-atomic spin current with
mðrÞ ¼ 0 [34]. The preference of the undoped system for
SDW or SCDW ordering on a given bond is controlled by
the sign of tatbV1V2 and follows the rules given in
Ref. [15]. Finally, we distinguish the polar phases into
the primed and unprimed ones. The spin(current) polari-
zation in the unprimed phases is purely local, reflected by
mk ¼ 0. The primed phase are characterized by appearance
of k-space spin textures,mk ≠ 0, which in case of SCDW0
phase represents global spin currents. The characteristics
for the different phases are summarized in Table I.
Double-exchange mechanism.— Observation of the

spontaneous spin textures in the primed phases is our
central result. It can be understood by invoking the
generalized double-exchange mechanism, recently used
by Chaloupka and Khaliullin to study ruthenates [35].
Analogous to the well-known Zener double exchange [36]
in manganites, the exciton condensate acts as a filter for
propagation of doped carriers. The stable phase is deter-
mined by the competition between the kinetic energy of
doped carriers and the energy difference between possible
condensates. In the strong coupling limit, propagation

(a) (b)

(c) (d)

FIG. 2. (a) and (c) Phase diagrams in the doping-temperature
plane for even and odd cross hopping, respectively. Full lines
mark continuous transitions, dotted lines mark the boundaries of
phase coexistence regions. (b) and (d) The spin textures at the
indicated points of the phase diagrams in the units of μBða0=2πÞ2
obtained for nh ¼ 0.14 at T ¼ 193 K.

TABLE I. The characteristics of different condensate phases:
M⊥ and M∥ is magnetic moment per atom perpendicular and
parallel to the order parameter ϕ, respectively; mðrÞ and mk are
the spin densities in direct and reciprocal space, respectively. By
✓/0 we indicate that both cases may be realized (see the text).

Condensate state M⊥ M∥ mðrÞ mk Reϕ Imϕ

FMEC ✓ ✓/0 ✓ ✓ ✓ ✓

SDW 0 0 ✓ 0 ✓ 0
SCDW 0 0 0 0 0 ✓

SDW’ 0 ✓/0 ✓ ✓ ✓ 0
SCDW’ 0 0 0 ✓ 0 ✓
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of a single electron through the condensate with order
parameter ϕðiÞ is described by an effective Hamiltonian
(see the Supplemental Material [27] for the derivation)

Heff ¼
X
hiji

�
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1

2
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and ts ¼ −tbs2 − tað1 − s2Þ. Here, σ are the Pauli matrices
and s2 is the LS fraction in the condensate. In general,
the B fields depend on the site indices as indicated in the
brackets—in the studied “odd” and “even” models the site
indices are obsolete.
The ϕ-quadratic term in Eq. (2) describes the standard

double-exchange interaction of the doped particle with
the uniform background with spin polarization M⊥ ¼
−iðϕ�∧ϕÞ=s2 [37]. At low doping the antiferromagnetic
interactions between the HS states dominate, rendering the
system a polar condensate with spin-independent hopping
in Eq. (2). For some critical doping, however, the gain in
the kinetic energy of doped carriers in FMEC outweighs the
cost in the HS-HS exchange energy and the system adopts
the FMEC state.
The ϕ-linear term in Eq. (2), which dominates at least

close to the normal-phase boundary, appears only with
finite cross-hopping in the condensate phase. The strong
coupling calculations [15] (see the Supplemental Material
[27]) show that the V1 and V2 contributions in Eq. (2)
cancel out, V1ϕþ V2ϕ� ¼ 0, for ϕ that minimizes the
bond energy. On a bipartite lattice, where all bonds can be
satisfied simultaneously, the ϕ-linear term vanishes glob-
ally, allowing the SDWand SCDW phases at finite doping.
When kinetic energy gain of the doped particles over-

comes the interactions selecting the condensate type in the
undoped system, the ϕ-linear term in Eq. (2) becomes
finite. It has a form of an exchange field acting on bonds or
equivalently acting locally in the reciprocal space, which
for the two hopping patterns considered so far reads

Bk ¼ 4V1ϕ

�
cos kx þ cos ky SDW0

iðsin kx þ sin kyÞ SCDW0 ð3Þ

More generally, the Bk reflects the symmetry of the cross-
hopping pattern. The s-wave symmetry of our even cross
hopping therefore leads to an s-wave texture, Fig. 2, with a
finite M∥. Apart from strong radial localization, the mk is
not qualitatively different from an approximately constant
mk of normal local moment ferromagnet. However, a
d-wave cross hopping, with V’s along the x and y directions
having opposite signs, produces a d-wave texture, shown in
Fig. 3, and M∥ ¼ 0. We point out that without doping the

s- and d-wave systems are identical, in the strong-coupling
limit, since the cross-hopping enters as a product V1V2 on
each bond [15].
The SCDW0 phase is characterized by purely imaginary

ϕ, which gives rise to the k-odd exchange field in Eq. (3).
The odd cross-hopping pattern can be thought of as having
px þ py symmetry, which is imprinted in the spin texture,
shown in Fig. 2(b). There is not only no net polarization
M ¼ 0, but the polarization is zero in every pointmðrÞ ¼ 0
[27] reflecting the TR invariance of the SCDW0 state. In
Fig. 4 we analyze spin texture in the SCDW0 state in detail.
The frequency-resolved contributions to mk in Figs. 4(c)
and 4(d) reveal that the spin polarization comes from a
narrow energy range around the Fermi level. Spectral
functions exhibit rather sharp quasiparticle bands around
the Fermi level resembling a band structure of noninteract-
ing system. The spin density, on the other hand, is quite
different from that of a noninteracting system. It cannot be
associated with particular quasiparticle bands but rather
lives on their tails in sharply defined regions of the
Brillouin zone.
The shape of the spin texture in the SCDW0 state is

determined by the model parameters. Its collinear polari-
zation, similar to equal combination of Rashba and
Dresselhaus SO coupling [3], is picked randomly at the
transition. The Weiss field in the SCDW and SCDW0
phases, which generates local intra-atomic spin currents,
can be viewed as spontaneously generated SO coupling.
The corresponding “SO” splitting is approximately
ðU − 2JÞjϕj, thus can be as large as lower units of eV.
Only in the SCDW0 phase the spontaneous SO coupling is
taken to the inter-atomic scale. The equivalent of Rashba-
Dresselhaus SO coupling is found in Eq. (3) with the largest
amplitude, in the (1,1) direction, of 4V1jϕja0. With jϕj ∼
0.2 − 0.4 (maximum theoretical value is 1=

ffiffiffi
2

p
), the present

cross hopping of 50 meV, and the lattice constant a0 of a
few Å the effective Rashba-Dresselhaus SO constant is of
the order 1 × 10−11 eVm.
Realization.— To support the SDW0 or SCDW0 states a

material (i) must exhibit spin-triplet polar exciton

FIG. 3. The d-wave spin texture in the SDW0 phase of a
model with even cross hopping of opposite signs along
the x and y axes. The results shown here were obtained for
nh ¼ 0.16 at T ¼ 193 K.
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condensation, (ii) the local SDW or SCDW must give rise
to spin-dependent hopping in Eq. (3), and (iii) the spin-
dependent hopping must generate a global pattern spin
polarization or spin currents.
Transition metal perovskites are the most discussed

candidates for excitonic magnetism [14,19,21]. The sin-
glet-triplet quasidegeneracy favorable for (i) is typically
realized in d6 configuration in octahedral geometry (Fe2þ,
Co3þ, Ni4þ), d8 configuration in square planar geometry
(Ni2þ), or d4 configuration in octahedral geometry with
strong spin-orbit coupling (Ru4þ, Os4þ, Rh5þ, Ir5þ).
Therefore, we focus on models built of d orbitals.
It is quite straightforward to construct the even (or

d-wave) model and thus the SDW0 state from orbitals of
the same parity. We focus on the more difficult odd model
and the SCDW0 state. Here we propose two options. First,
we use the fact that only the in-plane parity is relevant. We
can start with lattice of 3z2 − r2 (or x2 − y2) and zðxþ yÞ
orbitals. Breaking of the z↔ − z symmetry, e.g., by a
substrate leads to the desired odd cross-hopping pattern.
The second option is a model built of x2 − y2 and xy

orbitals with more than one atom in the unit cell. In this
case, the conditions (ii) and (iii) become distinct. For
example, one can obtain V1V2 < 0 on each bond by tilting
the orbitals (oxygen octahedral in real perovskite).
However, the corresponding pattern of BðijÞ has alternating
signs and does not give rise to a finitemk. In order to create
the desired cross-hopping pattern the inversion centered at
the atomic site has to be removed. In Fig. 5 we show an
example of such hopping pattern in an Emery-like model.

The diagonal hopping amplitudes ta and tb are both
negative. The cross hopping ðV1; V2Þ, via tilted oxygen
orbitals (induced for example by a substrate with appro-
priate texture), follows the ðþþÞ; ð−−Þ; ðþþÞ;… pattern
along both the x and y directions. These suggestions are
obviously not the only ways to realize hopping patterns
favoring the SCDW0 phase.
The currently most advanced experimental realization of

the triplet-excitonic condensation is perhaps the Ca2RuO4

[21] described by the model of Khaliullin [14], which is
equivalent to the strong coupling limit of the present model
for a special choice of parameters. While the double-
exchange mechanism is active also in ruthenates [35],
static spin textures were not reported. Since the equivalents
of cross- and diagonal hopping in ruthenates originate from
the same t2g → t2g process, their ratio is fixed and close to
1. This is quite different from the present parameters with
small cross hopping.
Finally, we point out that k-space spin textures are

accessible in cold atoms experiments, where the two-orbital
model may be sufficiently simple to realize.
In conclusion, we have presented the doping of exciton

condensates in systems of strongly correlated electrons as a
way to generate unique states of matter. The generalized
double-exchange mechanism in these systems can give rise
to exchange fields that act on the itinerant electrons in the
reciprocal space. The actual existence of such fields
depends on the particular thermodynamic phase and crystal
symmetry. In the studied model we found a broken-
symmetry state with a k-space spin texture with a sym-
metry of an equal combination of Rashba and Dresselhaus
SO couplings.
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FIG. 4. One-particle spectral density in the SCDW0 phase for
the same parameters as Fig. 2(d): (a) Total spectral density
Aðk;ωÞ along high-symmetry lines in the Brillouin zone, (b) the
Fermi surface Aðk;ω ¼ 0Þ, (c) in-plane magnetization spectral
densitym∥ðk;ωÞ along the same lines as in panel (a), (d) in-plane
magnetization density at the Fermi level m∥ðk;ω ¼ 0Þ in the
units of μBeV−1ða0=2πÞ2.

FIG. 5. A cartoon view of the orbital pattern (left) that gives rise
to ta; tb > 0 and V1 ¼ V2 on each bond with alternating signs
between bonds (only half of the orbitals are shown for the sake of
clarity). Zoomed out view of the texture on the ligand sublattice
(right). The red square marks the crystallographic unit cell. The
model can be transformed to the odd cross-hopping case with a
single-atom unit cell by sublattice transformation ai → ð−1Þiai.

PRL 116, 256403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

256403-4



programme (Grant Agreement No. 646807) and Deutsche
Forschungsgemeinschaft under Forschergruppe FOR1346.
D. G. was supported by projects MUNI/A/1496/2014 and
MUNI/A/1388/2015 of the Masaryk University.

*kunes@fzu.cz
[1] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[2] E. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[3] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A.

Duine, Nat. Mater. 14, 871 (2015).
[4] A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008).
[5] H. Li, H. Gao, L. P. Zârbo, K. Výborný, X. Wang, I. Garate,

F. Doğan, A. Čejchan, J. Sinova, T. Jungwirth et al., Phys.
Rev. B 91, 134402 (2015).

[6] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A.
Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 113, 157201 (2014).

[7] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills,
R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S.
Dhesi et al., Science 351, 587 (2016).

[8] J. Wunderlich, A. C. Irvine, J. Sinova, B. G. Park, L. P.
Zârbo, X. L. Xu, B. Kaestner, V. Novák, and T. Jungwirth,
Nat. Phys. 5, 675 (2009).

[9] N. Nagaosa, X. Z. Yu, and Y. Tokura, Phil. Trans. R. Soc. A
370, 5806 (2012).

[10] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.
Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A.
Duine et al., Science 330, 1648 (2010).

[11] C. Wu and S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).
[12] D. Vollhardt and P.Wölfle, The Superfluid Phases of Helium

3 (Dover, New York, 2013), reprint ed.
[13] C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B

75, 115103 (2007).
[14] G. Khaliullin, Phys. Rev. Lett. 111, 197201 (2013).
[15] J. Kuneš and P. Augustinský, Phys. Rev. B 89, 115134

(2014).
[16] B. I. Halperin and T. M. Rice, Solid State Physics

(Academic, New York, 1968), Vol. 21, p. 115.

[17] L. Balents, Phys. Rev. B 62, 2346 (2000).
[18] J. Kuneš, J. Phys. Condens. Matter 27, 333201 (2015).
[19] J. Kuneš and P. Augustinský, Phys. Rev. B 90, 235112

(2014).
[20] G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong,

G. Murthy, and R. K. Kaul, Phys. Rev. Lett. 112, 056402
(2014).

[21] A. Jain, M. Krautloher, J. Porras, G. H. Ryu, D. P. Chen,
D. L. Abernathy, J. T. Park, A. Ivanov, J. Chaloupka, G.
Khaliullin et al., arXiv:1510.07011.

[22] T. Dey, A. Maljuk, D. V. Efremov, O. Kataeva, S. Gass,
C. G. F. Blum, F. Steckel, D. Gruner, T. Ritschel, A. U. B.
Wolter et al., Phys. Rev. B 93, 014434 (2016).

[23] K. Pajskr, P. Novák, V. Pokorný, J. Kolorenč, R. Arita, and
J. Kuneš, Phys. Rev. B 93, 035129 (2016).

[24] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[25] A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S.
Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker et al.,
J. Magn. Magn. Mater. 310, 1187 (2007).

[26] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia,
Phys. Rev. B 44, 6011 (1991).

[27] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.256403 for explicit
calculations.

[28] J. Kuneš, Phys. Rev. B 90, 235140 (2014).
[29] T. Kaneko and Y. Ohta, Phys. Rev. B 90, 245144 (2014).
[30] T. Kaneko, B. Zenker, H. Fehske, and Y. Ohta, Phys. Rev. B

92, 115106 (2015).
[31] S. Hoshino and P. Werner, Phys. Rev. B 93, 155161 (2016).
[32] The site index was dropped for the sake of simplicity.
[33] Without specifying the orbital shapes we only distinguish

the cases with mðrÞ ¼ 0 and mðrÞ ≠ 0.
[34] Assuming the underlying orbitals are real functions.
[35] J. Chaloupka and G. Khaliullin, Phys. Rev. Lett. 116,

017203 (2016).
[36] C. Zener, Phys. Rev. 82, 403 (1951).
[37] jϕj=s → 1 when going from FMEC phase to a ferromagnet

formed from purely HS states.

PRL 116, 256403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

256403-5

http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1038/nmat4360
http://dx.doi.org/10.1103/PhysRevB.78.212405
http://dx.doi.org/10.1103/PhysRevB.91.134402
http://dx.doi.org/10.1103/PhysRevB.91.134402
http://dx.doi.org/10.1103/PhysRevLett.113.157201
http://dx.doi.org/10.1103/PhysRevLett.113.157201
http://dx.doi.org/10.1126/science.aab1031
http://dx.doi.org/10.1038/nphys1359
http://dx.doi.org/10.1098/rsta.2011.0405
http://dx.doi.org/10.1098/rsta.2011.0405
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1103/PhysRevLett.93.036403
http://dx.doi.org/10.1103/PhysRevB.75.115103
http://dx.doi.org/10.1103/PhysRevB.75.115103
http://dx.doi.org/10.1103/PhysRevLett.111.197201
http://dx.doi.org/10.1103/PhysRevB.89.115134
http://dx.doi.org/10.1103/PhysRevB.89.115134
http://dx.doi.org/10.1103/PhysRevB.62.2346
http://dx.doi.org/10.1088/0953-8984/27/33/333201
http://dx.doi.org/10.1103/PhysRevB.90.235112
http://dx.doi.org/10.1103/PhysRevB.90.235112
http://dx.doi.org/10.1103/PhysRevLett.112.056402
http://dx.doi.org/10.1103/PhysRevLett.112.056402
http://arXiv.org/abs/1510.07011
http://dx.doi.org/10.1103/PhysRevB.93.014434
http://dx.doi.org/10.1103/PhysRevB.93.035129
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.256403
http://dx.doi.org/10.1103/PhysRevB.90.235140
http://dx.doi.org/10.1103/PhysRevB.90.245144
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1103/PhysRevB.93.155161
http://dx.doi.org/10.1103/PhysRevLett.116.017203
http://dx.doi.org/10.1103/PhysRevLett.116.017203
http://dx.doi.org/10.1103/PhysRev.82.403

