
PHYSICAL REVIEW B 93, 144501 (2016)

Role of the upper branch of the hour-glass magnetic spectrum in the formation of the main kink
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We investigate the electronic dispersion of the high-Tc cuprate superconductors using the fully self-consistent
version of the phenomenological model, where charge planar quasiparticles are coupled to spin fluctuations.
The inputs we use, the underlying (bare) band structure and the spin susceptibility χ , are extracted from fits of
angle-resolved photoemission and inelastic neutron scattering data of underdoped YBa2Cu3O6.6 by T. Dahm and
coworkers [Nat. Phys. 5, 217 (2009)]. Our main results are as follows: (i) We have confirmed the finding by Dahm
and coworkers that the main nodal kink is, for the present values of the input parameters, determined by the upper
branch of the hourglass of χ . We demonstrate that the properties of the kink depend qualitatively on the strength of
the charge-spin coupling. (ii) The effect of the resonance mode of χ on the electronic dispersion strongly depends
on its kurtosis in the quasimomentum space. A low (high) kurtosis implies a negligible (considerable) effect of
the mode on the dispersion in the near-nodal region. (iii) The energy of the kink decreases as a function of the
angle θ between the Fermi surface cut and the nodal direction, in qualitative agreement with recent experimental
observations. We clarify the trend and make a specific prediction concerning the angular dependence of the kink
energy in underdoped YBa2Cu3O6.6.
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I. INTRODUCTION

The kink at 50–80 meV in the electronic dispersion along
the Brillouin zone diagonal [i.e., from (0,0) to (π,π )] of
high-Tc cuprate superconductors [1–8] has been the object
of intense scrutiny by the scientific community since it was
first reported. Understanding the kink may be important in the
context of the quest for the mechanism of high-temperature
superconductivity. Unfortunately, a satisfactory understanding
has not yet been achieved. While there is a broad (yet not
unanimous [9–13]) consensus that the kink is due to an
interaction with bosonic excitations, the nature of the latter
excitations remains controversial. It is debated whether they
are of lattice [4,14–21] (phonon), magnetic [3,22–36] (spin
fluctuation), or more complex [37–42] origin [43].

Regarding the magnetic scenario, it has been claimed for
some time that the kink reflects the coupling of the charged
quasiparticles to the resonance mode observed by neutron
scattering [44–47]. In a more recent study by Dahm and
coworkers [48], however, it was strongly suggested that in
underdoped YBa2Cu3O6.6 (YBCO), the kink is due to the
upper branch of the hourglass dispersion of spin fluctuations,
rather than to the resonance mode. This has opened the
questions of how the influence of the resonance mode and
that of the upper branch cooperate, under which conditions the
former is the dominant one, and under which the latter is.

A relevant piece of information was recently reported by
Plumb et al. [49]. These authors have shown that in nearly
optimally doped Bi2Sr2CaCu2O8+δ (Bi2212), the energy of
the kink decreases as a function of the angle between the
Fermi surface cut and the Brillouin zone diagonal, from about
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65 meV at the node (i.e., at the diagonal) to about 55 meV
roughly one-third of the way to the antinode. In addition, when
going from the node to the antinode, the kink and also the
underlying structures of the quasiparticle self-energy sharpen
dramatically. These trends of the kink energy and sharpness
have been compared with simple estimates for several phonon
modes and for the upper branch of the hourglass of spin
fluctuations, and the greatest similarity has been found for
the latter.

The aims of the present study are (a) to address the angular
dependence of the kink using the fully self-consistent version
of the Eliashberg equations employed in previous studies by
some of the authors [50,51] and the same inputs (band structure
and spin susceptibility) as in Ref. [48] and to find out whether
the model is capable of accounting for, in addition to the nodal
dispersion, the trends reported recently by Plumb et al. [49] and
(b) to clarify the interplay between the roles of the resonance
mode and of the upper branch of the hourglass in the formation
of the kink.

The rest of this paper is organized as follows. In Sec. II we
summarize the equations employed in the calculations, present
important computational details, and discuss our choice of the
values of the input parameters. Our results are presented in
Secs. III and IV. In Sec. III A, we address qualitative aspects
of the nodal kink, including, among others, the role played by
the kurtosis of the resonance mode of the spin susceptibility.
In Sec. III B, we provide a detailed account of the relation
between the energy and the shape of the nodal kink and
the structures of the quasiparticle self-energy. In particular,
we highlight the effect of the magnitude of the coupling
constant on the properties of the kink. In Sec. IV we address
the evolution of the kink when going from the node to the
antinode. First (in Sec. IV A), we use the effective self-energy
approach of Ref. [49] and then (in Sec. IV B) our own approach
based on an approximate relation between the properties of the
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kink and those of the quantity S(k,E) ≡ �0(k,E) + φ(k,E).
Here �0(k,E) and φ(k,E) are the τ0 component of the
self-energy and the anomalous self-energy, respectively. In
Sec. V we compare our results with the experimental data
of Refs. [48,49]. It is shown that a minor modification of
the input parameter values brings the renormalized (nodal)
Fermi velocity and the energy of the nodal kink close to the
experimental values for YBCO [48]. The calculated magnitude
of the slope of the angular dependence of the kink energy
is only slightly larger than that of Bi2212 [49]. We make
a prediction concerning the angular dependence of the kink
energy in underdoped YBCO and provide a possible qualitative
interpretation of the difference between the kink in underdoped
YBCO and that in Bi2212.

II. SPIN-FERMION-MODEL-BASED CALCULATIONS

Within the spin-fermion model [28,43,52–55], the self-
energies �̂A(k,iEn) and �̂B(k,iEn) of the antibonding and
bonding bands of a bilayer cuprate superconductor, such as
Bi2212 or YBCO, are given by [24]

�̂A/B = g2
[
χo

SF ∗ ĜB/A + χe
SF ∗ ĜA/B

]
. (1)

Here g is the coupling constant, whose dependence on k is
neglected, χo

SF(q,iωn) and χe
SF(q,iωn) are the odd and even

components of the spin susceptibility [47], respectively, and
the symbol χSF ∗ Ĝ stands for

1

βN

∑
k′,iE′

n

χSF(k − k′,iEn − iE′
n) × Ĝ(k′,iE′

n). (2)

Further, ĜA/B(k,iEn) are the Nambu propagators of the
renormalized electronic quasiparticles:

ĜA/B(k,iEn) = 1

iEnτ̂0 − (
ε

A/B

k − μ
)̂
τ3 − �̂A/B(k,iEn)

, (3)

where τ̂0 and τ̂3 are the Pauli matrices, εA
k and εB

k are the bare
dispersion relations of the two bands, and μ is the chemical
potential. We have considered only the odd channel [i.e.,
only the term with χo

SF in Eq. (1)]. This channel has been
demonstrated [24] to be the dominant one, in particular because
χe

SF does not exhibit a pronounced resonance mode [56]. A
broadening factor δ is used in the analytic continuation of the
propagators to the real axis (iEn → E + iδ), δ = 1 meV.

The input parameters of the model are the imaginary
component χ ′′ (the indices are omitted for simplicity) of the
spin susceptibility, the dispersion relations ε

A/B

k , the chemical
potential μ, and the coupling constant g. For all of them
except for g and unless otherwise stated, we have used the
parametrization published in Ref. [48], which is based on fits
of the neutron [57] and photoemission data of underdoped
YBa2Cu3O6.6. The spin susceptibility exhibits the hourglass
shape with the resonance mode at q = (π/a,π/a), illustrated
in Fig. 1 by a cut of the spectrum of χ ′′(q,ω) along the nodal
axis. Note that in our discussions, “resonance mode” stands for
the pronounced maximum of χo

SF centered at q = (π/a,π/a)
and ω = 38 meV rather than for its enhancement below Tc.
The Fermi surfaces corresponding to the dispersion relations
εA

k and εB
k are shown in Fig. 2. The distances from the

� point to the Fermi surfaces, along the Brillouin zone

FIG. 1. Cut of the spin excitation spectrum χ ′′(q,ω) along the
nodal axis, calculated using the set of parameter values S1. The solid
red line (dashed white line) corresponds to the position of the vector
Q0 ( Q1) shown in Fig. 2.

diagonal and expressed in units of π
a

√
2, are kA

F,N = 0.342
and kB

F,N = 0.393. The calculations are done for T = 20 K.
Finally, we address the coupling constant g. In Ref. [48],

the magnitude of the superconducting gap SC was fixed
(SC = 30 meV), so that the value of the coupling constant
g could be obtained by imposing that the value of the
calculated renormalized Fermi velocity be consistent with the
angle-resolved photoemission spectroscopy (ARPES) data.
This choice leads to a high value for the superconducting
transition temperature Tc of 174 K. In the present work, the
iterative solution of Eqs. (1) and (3) has been performed in a
fully self-consistent manner, along the lines of Refs. [50,51].
The renormalized dispersions are adjusted at each iteration,
following the approach developed in Refs. [48,58], in such a
way that the renormalized Fermi surfaces are fixed and match
the ARPES profiles used as inputs. Within this framework, SC

is not constrained, so that its dependence on g has allowed us
to fix the value of g by requiring that SC = 30 meV. The
resulting value of g of 1.0 eV is considerably smaller than that
in Ref. [48] (the coupling constant of the latter reference Ū

is connected to our g by Ū = g

√
2
3 , and the value of Ū used

therein corresponds to g = 1.95 eV). The renormalization of
the nodal Fermi velocity is weaker, and the value of Tc is lower
with this smaller value of g. The set of parameter values just
introduced is the main set used throughout the paper and is
referred to as set S1.

The calculations have been performed using the fast Fourier
transform algorithm, taking full advantage of the symmetries
of the system. We have used a grid of 256 × 256 points in
the Brillouin zone and a cutoff of 4 eV to limit the number
of Matsubara frequencies. We have checked, by varying the
density of the grid and the cutoff, that these values are
sufficient.
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FIG. 2. The Fermi surfaces for the antibonding (dashed line) and
bonding (solid line) bands, obtained using the set of parameter values
S1. The solid green and the solid blue arrows represent the interband
scattering vectors Q0 and Q1 discussed in the text. The red dash-
dotted line (nearby dashed line) indicates an example of the Fermi
surface cut used in Sec. IV A (Sec. IV B). Also shown are two (suitably
shifted) constant energy cuts of the spin susceptibility. The one shown
in the upper right quadrant corresponds to χ ′′(k − kA1 ,ω = 38 meV);
the one shown in the bottom right quadrant corresponds to χ ′′(k −
kA2 ,ω = 80 meV).

III. THE KINK IN THE DISPERSION RELATION
ALONG THE NODAL AXIS

A. Role of the upper branch of χ ′′

The solid blue line in Fig. 3 represents the electronic
dispersion along the nodal axis for the bonding band. For
a given energy, the associated value of k is obtained as
the root of the real part of the denominator of Eq. (3). It
coincides with the value of k corresponding to the maximum
of the spectral function for the given energy. The dashed line
connects the quasiparticle peak at kF and the maximum of
the spectral function corresponding to the high-energy cutoff
of 250 meV. The kink is smooth and broad, with a relatively
small amplitude. The discrepancy between this profile and the
result of Ref. [48] is mainly due to the lower value of g used
in the present study, as discussed in detail in Sec. III B.

The position and the profile of the kink can be understood
in terms of a combination of the geometrical features of the
Fermi surfaces and those of the spin susceptibility spectrum.
Consider a scattering process whereby an electron from the
bonding band, of quasimomentum k and energy E, is scattered

FIG. 3. Dispersion relation along the Brillouin zone diagonal
for the bonding band. The solid line represents the renormalized
dispersion. The dashed line represents a linear approximation to the
bare dispersion. The dotted line is the derivative of the difference
disp between the renormalized dispersion and the bare dispersion.
The vertical dash-dotted line is a guide to the eye. The calculations
have been performed using the set of parameter values S1.

to the antibonding band, with quasimomentum k − q and
energy E − ω, while a spin excitation of quasimomentum
q and energy ω is emitted (an example with k = kB1 and
q = Q0 ≡ kB1 − kA1 is shown in Fig. 2). The process can
occur with a considerable probability only if the momentum q
is such that χ ′′(q,ω) is significant. Let us consider scattering
processes along the direction of the Brillouin zone diagonal
from the region around kB1 to the region around kA1 =
kB1 − Q0. Figure 2 shows that such processes have a negligible
probability for ω � 40 meV (see the constant-energy cut
shown in the upper right quadrant of Fig. 2). The contribution
of the resonance mode to the quasiparticle self-energy �̂B

|k=kB1

can thus be expected to be negligible, and the nodal dispersion
can be expected to be almost unaffected by the presence of the
resonance mode. For ω � 80 meV (the energy of the crossing
point of the red line and the upper branch of the hourglass
in Fig. 1), however, the probability is considerable (see the
constant-energy cut in the lower right quadrant of Fig. 2). The
nodal dispersion can thus be expected to be strongly influenced
by the coupling to spin excitations of the upper branch. Indeed,
the calculated spectrum of Im�̂B

|k=kB1
(shown in Fig. 5 below)

does not exhibit any significant feature around 40 meV due to
the resonance mode. Instead, it displays an onset at an energy
slightly higher than 80 meV due to the upper branch.

The kink itself (defined as the minimum of the second
derivative of the dispersion) is located at a higher energy of
about 130 meV. The difference is due to two facts. (a) The kink
energy corresponds to the energy of the maximum of the real
part of the self-energy (connected to its imaginary part through
the Kramers-Kronig relation). This maximum is located at an
energy higher than that of the onset of the imaginary part. This
issue is discussed in detail in Sec. III B. (b) The self-energy is k

dependent, and in the region of k space around the kink (where
|k| < kB

F,N ), its imaginary part sets on at a higher energy than
for k close to kB

F,N . This can be inferred from Fig. 1: the energy
of the crossing point of the upper branch of χ ′′ with a fixed q

horizontal line increases when the magnitude of q decreases.
The impact of the k dependence of the self-energy on the
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FIG. 4. The quantity χ ′′
int, defined in the text, as a function of qx

along the Brillouin zone diagonal. The three lines correspond to the
three profiles of χ ′′(q,ω) discussed in the text. The vertical red dashed
line indicates the position of the interband vector Q0.

energy of the kink is quantitatively assessed in Sec. III B. The
validity of the simple relation between the kink energy and
the boson energy has been examined, in a different context, by
Schachinger and Carbotte [59].

The above analysis confirms the conclusions of Ref. [48]
regarding the origin of the kink. However, it additionally
reveals that the presence of the upper branch per se is not
a sufficient condition for it to play the prominent role in the
formation of the nodal kink. Another necessary condition
is the simultaneous occurrence of a low kurtosis [60] of
χ ′′(q,ωres) (where ωres is the frequency of the resonance
mode) and of a relatively small value of | Q0|. Only under
these conditions is the contribution of the resonance mode
negligible. A higher kurtosis of χ ′′(q,ωres) or a larger value
of | Q0| would allow the contribution of the resonance to be
large enough and would dominate that of the high-energy
branch. This effect was confirmed by separate calculations
of the respective contributions of the resonance mode and of
the upper branch/continuum for various shapes of the spectrum
of χ ′′.

The low kurtosis exhibited by χ ′′(q,ωres) is illustrated
in Fig. 4, which displays χ ′′

int(q) = ∫ 40 meV
0 χ ′′(q,ω)dω as

a function of q for q along the Brillouin zone diagonal.
Figure 4 allows us to assess the q-space distribution of the
spectral weight of low-energy spin fluctuations including the
resonance mode. The solid green line, corresponding to the
spectrum of χ ′′ used in the present study, exhibits a broad
peak and thin tails, both characteristic of a distribution with
low kurtosis. The dashed blue line corresponds to the form of
the spin susceptibility used by two of the present authors in
previous studies [50,61,62] (the MBC form in the following).
It possesses a higher kurtosis, with both a narrower peak
and fatter tails. Finally, the black dash-dotted line represents
the susceptibility profile used by Eschring and Norman in
their thorough analysis of the dispersion anomalies within the
spin-fermion model [26] (see also Ref. [28]). It also displays a
relatively high kurtosis. The vertical red dashed line sits at the
position of the interband vector Q0. It can be seen that both for
the MBC profile and for the Eschrig-Norman one, χ ′′

int(| Q0|)
is significant, approximately an order of magnitude larger than
the corresponding value for the present spectrum of χ ′′. This

has a direct impact on the magnitude of the contribution of
the resonance mode to the quasiparticle self-energy. Note
that the spectrum of χ ′′ used here was obtained from a fit
to experimental inelastic neutron scattering data, while the
other two spectra (MBC and Eschrig-Norman) are based on
assumptions about the q dependence. The considerations here
are complementary to those of a previous work by Chubukov
and Norman [25], where the weakening of the effect of the
resonance on the near-nodal dispersion has been addressed
using an analytical approach.

B. Impact of the magnitude of the coupling constant

In this section, we examine the link between the kink in the
nodal dispersion and the features of the fermionic self-energy.
Using Eq. (3), we find that the renormalized velocity v for a
quasimomentum k along the nodal axis is given by

v(ε̄k) = v0(ε̄k) + ∂k�
′(k,ε̄k)

1 − ∂E�′(k,ε̄k)
, (4)

where v0 is the bare velocity and ε̄k is the renormalized
dispersion. The known form of the bare velocity allows one to
approximate v0(ε̄k) by its value at the Fermi surface, vF0 . More-
over, it is usually assumed that the momentum dependence of
the self-energy is weak [28], so that the term ∂k�

′(k,ε̄k) in
Eq. (4) can be neglected, and the term ∂E�′(k,ε̄k) can be
replaced with ∂E�′(k = kF ,ε̄k). With these approximations,
the energy dependence of v is determined by the renormaliza-
tion factor Z(ε̄k) = 1 − ∂E�′(k = kF ,ε̄k), and the energy of
the kink coincides with the energy of the extremum of �′(k =
kF ,ε̄k). In the following, we quantitatively assess the impact of
the momentum dependence of the self-energy on the kink en-
ergy and shape and identify two qualitatively distinct regimes.

Figure 5 illustrates the relationship between the energy of
the kink and the energies of the features of the self-energy

FIG. 5. Graphical solution of the equation for the quasiparticle
energy ε̄k for two different values of k along the nodal axis, k = kB

F, N

and kkink (i.e., the value of quasimomentum for which the nodal kink
occurs), and the corresponding spectra of the real and imaginary parts
of the self-energy and of the spectral function Ak(E). The calculations
have been performed using the set of parameter values S1. The solid
lines correspond to k = kB

F, N , and the dashed lines correspond to
k = kkink. The black lines represent the linear functions E − εk − μ;
the red lines show the imaginary parts of the self-energy, whose real
parts are shown in blue. The green line represents the spectral function
for kkink. The arrow indicates the onset feature discussed in the text.
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for the set of parameter values S1. It shows the graphical
solution of the equation for the quasiparticle energy ε̄k for
two values of k along the nodal axis: kB

F,N and kkink (the
value of quasimomentum at which the kink occurs). Also
shown are the corresponding spectra of the real and imaginary
components of the normal self-energy and for kkink, in addition,
the normal spectral function Ak(E). The spectral function for
kB
F,N possesses a sharp quasiparticle peak at E = 0. For each

of the two values of k, ε̄k is determined as the energy of the
crossing between the corresponding black line (representing
E − εk + μ) and the corresponding blue line [representing
Re�(k,E)]. The energies of the crossing points coincide with
those of the quasiparticle peaks of Ak(E), as expected. It can
be seen that �′′

k=kB
F,N

sets on at an energy slightly higher than

80 meV, as discussed in Sec. III A, and that the maximum
of its Kramers-Kronig transform �′

k=kB
F,N

occurs at a higher

energy (approximately 110 meV) due to the finite width of
the step in �′′

k=kB
F,N

. Finally, the validity of the aforementioned

assumption of weak momentum dependence of the self-energy
can be assessed: even though there is a significant difference
between �′

k=kB
F,N

and �′
k=kkink

(e.g., the energy of the maximum

of �′
k=kkink

is higher than that of the maximum of �′
k=kB

F,N

by

kink � 20 meV), the shapes of the profiles are similar. In
particular, a sharp maximum is present in both profiles. This
explains why the energy of the kink is only slightly (by kink)
higher than that of the maximum of �′

k=kB
F,N

and why the kink

is relatively sharp.
It is worth contrasting these findings with the results of

the fully self-consistent approach with a value of the coupling
constant g of 1.95 eV (as in Ref. [48]) in place of g = 1.0 eV.
Figure 6 illustrates the properties of the system in this case.
The large value of the coupling constant induces much larger
magnitudes of the real and imaginary parts of the self-energy
than in the former case. Thus, the maximum value of �′

k=kB
F,N

is much larger, and the distance between kB
F,N and kkink is

as well. Figure 6 shows that over such a broad k interval,
the flattening of �′ as k moves away from the Fermi surface
(expected irrespective of the chosen set of parameter values)

FIG. 6. The same quantities as in Fig. 5, calculated with the
same input parameter values, except for g = 1.95 eV, consistent with
Ref. [48]. Notice the change in the scale of the left axis compared
with Fig. 5.

is quite pronounced, and the profiles of �′
k=kB

F,N

and �′
k=kkink

differ qualitatively. In particular, the pronounced maximum of
�′ disappears before the E − εk + μ line reaches it. Therefore,
the position and the shape of this extremum at kB

F,N are not
the critical factors determining the energy and the shape of
the kink anymore. Instead, the dependence of the self-energy
on k has a substantial impact on the profile of the kink. In
terms related to Eq. (4), this means that the weak momentum
approximation breaks down.

The interpretation of the formation of the kink therefore
differs qualitatively between the former and the latter cases.
In the low-g regime, the energy of the kink is approximately
given by the energy of the maximum of �′(kB

F,N ,ε̄k), and the
kink is sharp. In the high-g regime, the kink is made smoother
by the influence of the momentum dependence of �′.

IV. THE KINK IN THE DISPERSION RELATION AWAY
FROM THE NODAL AXIS

Having analyzed the behavior of the kink in the dispersion
relation along the Brillouin zone diagonal, we now proceed to
examine how the situation evolves away from the nodal axis
as a function of the angle θ between the direction of the Fermi
surface cut and the diagonal (for a definition of θ , see Fig. 2).

A. Effective self-energy approach

First, we follow the approach introduced by Plumb et al.
[49]. Figure 7 shows a heat map of Re�eff(θ,E), the real part
of the effective self-energy defined by Eq. (1) of Ref. [49] and
used in order to track the angular dependence of the kink [49].
For the convenience of the reader, the definition of �eff(θ,E)
will be restated here. Denote the inverse of the renormalized
dispersion relation for a given value of θ by k̄(θ,E). Then
we define Re�eff(θ,E) ≡ ε̄k=k̄(θ,E) − εk=k̄(θ,E). In the present

FIG. 7. Heat map of the real part of the effective self-energy
�eff(θ,E) defined in the text, calculated using the set of parameter
values S1. For each of the selected values of θ , the red circle represents
the energy of the maximum of Re�eff(θ,E), which coincides with the
energy of the kink.
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work, we have followed the approach of Ref. [49] and
approximated the bare dispersion by a straight line connecting
the quasiparticle peak at kF and the maximum of the spectral
function corresponding to the high-energy cutoff of 200 meV.
The heat map has been obtained by an interpolation of the
results for a discrete set of θ values. For each of these values,
the red circle indicates the energy of the maximum of Re�eff,
coinciding with the energy �kink(θ ) of the kink in the fermionic
dispersion.

The most striking aspect of the result is the strong angular
dependence of �kink. With increasing θ , �kink decreases,
and the intensity and the sharpness of the kink increase.
Both observations are in qualitative agreement with the
experimental findings of Ref. [49]. These trends can be
understood in terms of the interplay between the fermionic
dispersion and the bosonic spectrum, discussed for the case
of θ = 0◦ in Sec. III A. As the Fermi surface cut moves away
from the nodal axis (e.g., from the nodal cut connected with
the vector Q0 to the cut connected with the vector Q1, shown
in Fig. 2), the modulus of the interband scattering vector along
the (π/a,π/a) direction increases (e.g., | Q1| > | Q0|). As a
consequence, the section of χ ′′ which contributes most to the
scattering changes. As Fig. 1 shows, the spectral weight of the
constant-q cut of the upper branch of χ ′′ increases, and the
energy of the maximum decreases as q increases towards 0.5
from below. The profile of the self-energy can be expected to
follow the same trend, which indeed occurs in Fig. 7.

Following this analysis, we are in a position to conjecture
that for large values of θ , the contribution of the resonance
mode to the scattering becomes large and eventually dominates
the profile. This should be accompanied by a change of the
sign of the slope of �kink(θ ) at a critical angle θc. Simple
geometrical considerations based on Fig. 2 provide θc � 28◦.
The coupling to the resonance mode has been put forward as
the source of the dispersion anomalies in earlier spin-fermion-
model-based studies [26,28]. Within the framework of these
studies, however, the scattering mechanism does not exhibit
a very strong angular dependence, given the high kurtosis of
the resonance mode. A more precise analysis of the situation,
presented in Sec. IV B, shows that θc is larger than 20◦ and
that, for θ > θc, the effective self-energy approach introduced
above does not provide reliable estimates of the kink energy.

Note finally that the scenario outlined above is, from the
qualitative point of view, analogous to the one proposed
by Hong and Choi [39]. These authors have also argued
that the observed complex structure of the quasiparticle
self-energy and its evolution when going from the nodal cut
to the antinodal one is determined by the presence of two
independent contributions: that of a resonance mode and that
of a separate branch of bosonic excitations.

B. Relation between the kink and the features
of the quasiparticle self-energy

Here we present a different approach to determine the
angular dependence of the kink energy based on a numerical
procedure for estimating the roots of the real part of the
denominator of the Green’s function (3). This method is
particularly well suited to the study of the kink for larger values
of θ . For numerical reasons we use here slightly different Fermi

surface cuts than in Sec. IV A. The present ones are parallel to
the Brillouin zone diagonals. For an example of the two types
of cuts, see Fig. 2.

The 2 × 2 self-energy matrix can be expressed in terms of
the Pauli matrices:

�̂(k,E) ≡ �0(k,E)τ̂0 + ξ (k,E)τ̂3 + φ(k,E)τ̂1,

and the Nambu propagator can be expressed as

Ĝ(k,E) = [
Ĝ−1

0 (k,E) − �̂(k,E)
]−1

= [E − �0(k,E)]τ̂0 + ε̃(k,E)τ̂3 + φ(k,E)τ̂1

[E − �0(k,E)]2 − ε̃(k,E)2 − φ(k,E)2
.

We have dropped the band index for simplicity, and ε̃(k,E)
stands for ε(k,E) − μ + ξ (k,E). The normal component of
the propagator is given by

G(k,E) = E − �0(k,E) + ε̃(k,E)

[E − �0(k,E)]2 − ε̃(k,E)2 − φ(k,E)2
. (5)

The approach we introduce here is most easily pictured as
an extension of Sec. III B and Fig. 5 to the case where φ(k,E)
is finite. Provided the quasiparticle is well defined, its energy
E is equal to the root of the real part of the denominator, i.e.,
to the solution of the following equation in E, parametrized
by k:

Re{[E − S(k,E)][E − D(k,E)] − ε̃(k,E)2} = 0, (6)

where S(k,E) ≡ �0(k,E) ± φ(k,E) and D(k,E) ≡
�0(k,E) ∓ φ(k,E). The upper (lower) sign is used if
Re�0(k,E) and Reφ(k,E) have the same (opposite) signs
[recall that Reφ(k,E) possesses d-wave symmetry, while
Re�0(k,E) is positive in the momentum-energy section
we are considering]. Assuming that the imaginary parts of
E − S(k,E) and E − D(k,E) are small compared to their
real parts, we may approximate Eq. (6) by

Re{[E − S(k,E)]} � Re[̃ε(k,E)2]

Re{[E − D(k,E)]} . (7)

The validity of this assumption is related to that of the
quasiparticle picture; for an illustration, see Fig. 8.

For θ = 0◦,S(k,E) = D(k,E) = �0(k,E), and Eq. (7)
reduces to the simple equation determining the quasiparticle
energy employed in Sec. III, Re[E − �0(k,E) − ε̃(k,E)] = 0.

For large values of θ , where the gap is fully developed,
�0(k,E) and φ(k,E) have comparable magnitudes. As a
consequence, Re[E − S(k,E)] and Re[E − D(k,E)] exhibit
very different profiles, while both remain weakly k dependent
along a fixed cut. This is illustrated by Fig. 9, which shows
the approximately linear profile of Re[E − D(k,E)]|θ=26.9◦ ,
contrasting with the peaked shape of Re[E − S(k,E)]|θ=26.9◦ .
The former profile, close to linear, emerges as the difference
between two similarly peaked functions �0(k,E) and φ(k,E)
(plus the linear function E). The similarity is due to the fact
that both functions result from the convolution in Eq. (2). The
latter profile represents the sum of the two functions (plus
the linear function E) and therefore exhibits a peaked shape
reminiscent of the similar shape of both functions.

The expressions entering Eq. (7) can be interpreted in
simple terms. The one on the left-hand side displays a peak
whose magnitude increases with increasing θ as a consequence
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FIG. 8. Comparison of the expression from Eq. (6), Te ≡
(Re{[E − S(k,E)][E − D(k,E)]})1/2 (black solid line) with its
approximation Ta ≡ {Re[E − S(k,E)]Re[E − D(k,E)]}1/2 used in
Eq. (7) (dashed blue line) for k = kkink corresponding to the cut
defined by θ = 26.9◦. The dash-dotted line represents the spectral
function Ak(E). The calculations have been performed using the set
of parameter values S1.

of the lengthening of the interband scattering vector and
of the corresponding increase of the spectral weight of the
section of χ ′′ which contributes to the scattering processes.
The term on the right-hand side of Eq. (7) involves the inverse
of an approximately linear expression. For fixed values of
θ and k, the value of this expression at the origin equals
|Reφ(k,E = 0)|. These observations allow us to interpret
the profile on the right-hand side of Eq. (7) as that of a
hyperbolalike function, with the origin of the E axis dis-
placed by −|Reφ(k,E = 0)| � −|Reφ(k = kF (θ ),E = 0)| =
SC(θ ), as illustrated in Fig. 10. As k moves away from the
Fermi surface, a family of hyperbolalike functions (“hyperbo-
las” in the following) is generated, with a multiplicative factor
Re[̃ε(k,E)2] applied to the y axis. The right-hand side of Eq.
(7) thus evolves from a very sharp hyperbola for k → kF (θ )
to a smooth hyperbola for large values of |k − kF (θ )|.

FIG. 9. Profiles of the terms Re[E − D(k,E)] and
Re[E − S(k,E)] entering Eq. (7) for θ = 26.9◦ and for a set
of values of the quasimomentum k, calculated using the set of
parameter values S1. The lowest curves correspond to the Fermi
surface. The quasimomentum k differs by k = π/128 from one
curve to the next. For readability, each curve is shifted by 20 meV
with respect to the previous one as k moves away from the Fermi
surface.

FIG. 10. Profiles of both sides of Eq. (7) and of the quasiparticle
spectral function Ak(E) for θ = 26.9◦ and for a set of values of the
quasimomentum k, calculated using the set of parameter values S1.
As in Fig. 9, the quasimomentum k differs by k = π/128 from
one curve to the next. The set of dashed blue (solid black) lines
represents the term Tr (k,E) ≡ Re[̃ε(k,E)2]/Re{[E − D(k,E)]} (the
term Tl(k,E) ≡ Re{[(E − S(k,E)]}). Note that the energies of the
peaks of the spectral function (dotted red line) coincide with those of
the crossing points of the corresponding blue and black lines.

This analysis shows that the left-hand (right-hand) side term
of Eq. (7), indexed by (k,θ ), is strongly (weakly) dependent on
θ but weakly (strongly) dependent on k. In other words, Eq. (7)
allows us to disentangle the sensitivities of the quantities of
interest with respect to k and θ . At this point, noticing that
neither Rẽε(k,E) nor D(k,E) exhibits a pronounced kink, we
are in a position to conclude that the origin of the kink in the
fermionic dispersion lies in the kink exhibited by the left-hand
side of Eq. (7), Re{[E − S(k,E)]}. The position of the kink
can now be reliably evaluated by exploring the smooth quantity
Re{[E − S(k,E)]} defined on the fine-energy mesh.

The approach detailed below has been used to obtain the
profile of �kink(θ ) displayed in Fig. 11. For each selected
value of θ , the momentum dependence of the self-energy
is examined. We then define k0(θ ) as the value of k on the
computational k mesh, along the considered θ cut (recall that
the k-space cuts we use in this section have the advantage
of matching the geometry of the computational k mesh),
which is closest to kkink(θ ). This process is illustrated in Fig.
10. Given a value of θ , k0(θ ) is the value of k, such that
the dashed line representing Re[̃ε(k,E)2]/Re{[E − D(k,E)]}
crosses the solid line representing Re{[E − S(k,E)]} close to
its extremum. Once k0 is fixed, we obtain the energy of the kink
as that of the extremum of ReS(k0,E) (we have checked that
in the present context the two energies coincide). As discussed
above, in the θ → 0 limit, this method for estimating the
energy of the kink is equivalent to the one used in Sec. III B,
but there is one caveat: for small values of θ , the gap is
small, so that the kink in E − S(k,E) is weak and may not
always dominate the very weak kink in E − D(k,E). As a
consequence, for small values of θ , the former method may be
more accurate in estimating the energy of the kink.

It can be seen in Fig. 11 that the present �kink(θ ) is close to
the result shown in Sec. IV A. The main discrepancies appear
in the θ → 0 region (discussed above) and for large values of
θ . The latter arise because the kink becomes so intense and
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FIG. 11. Heat map of the real part of the quantity S(k,E) defined
in the text, calculated using the set of parameter values S1. For each of
the selected values of θ , the pink triangle represents the energy of the
extremum of ReS(k,E), which coincides with �kink, as discussed in
the text. The solid white line represents the expression ωres + SC(θ ).
The solid red circles, displayed for comparison, are taken from
Fig. 7.

sharp in momentum space that the former method, based on
interpolations of the renormalized dispersion in k space, does
not provide a precise estimate of the kink energy.

The increased extent of the accessible θ domain allows for
a confirmation of the conjecture exposed in Sec. IV A, related
to the role of the resonance mode. Figure 11 clearly shows that
the slope of �kink(θ ) changes sign at θc � 23◦. We argued in
Sec. IV A that if the kink is due to the upper branch of χ ′′,
then the slope of �kink(θ ) must be negative. This is the trend
observed for θ < θc. Conversely, if the resonance mode is the
dominant source of scattering, the θ dependence of �kink(θ )
is determined mainly by that of SC(θ ), and �kink(θ ) must
therefore display a positive slope close to that of SC(θ ). This
is what we observe in the θ > θc region of Fig. 11, where the
profile of �kink(θ ) follows that of ωres + SC(θ ), represented
by the solid white line. The fact that the �kink(θ ) line is located
somewhat above the ωres + SC(θ ) line is likely due to the
influence of the lower branch of χ ′′. The discontinuity of
�kink(θ ) at θ = θc is an artifact related to the method for the
numerical determination of �kink(θ ).

Finally, we note the remarkable similarity between the
background of the heat map shown in Fig. 11 and the profile
of the upper branch of χ ′′ displayed in Fig. 1, arising from the
self-energy-χ ′′ relation (1). It illustrates the major role played
by the upper branch of χ ′′ in the formation of the angular
dependence of �kink(θ ) in the near nodal region.

V. COMPARISON WITH EXPERIMENTAL DATA

The main trend of Sec. IV A, i.e., the decrease of |�kink|
when going from the nodal cut to the antinodal one, is
consistent with the experimental findings of Ref. [49]. Our
results provide support for the conjecture that the decrease

is associated with the dispersion of the upper branch of the
hourglass. The calculated value of the energy of the nodal
kink (�130 meV), however, is much higher than that of
underdoped YBCO reported in Ref. [48] (80 meV). In addition,
the calculated magnitude of the slope of �kink(θ ) (3.5 meV
per arc degree) is much higher than the experimental value of
Bi2212 reported in Ref. [49] (0.8 meV per arc degree). Finally,
the renormalized Fermi velocity of 2.8 eV Å on the nodal axis
(see Fig. 3) is much larger than the experimental value of
underdoped YBCO of 1.8 eV Å. This discrepancy is related to
the fact that the value of g used in the set S1 is much smaller
than that of Ref. [48].

Based on our interpretation of the origin of the kink, it is
possible to understand the influence of the model parameters
on the profile of �kink(θ ). We are also well equipped to find
out which adjustments are necessary in order to reconcile the
results of the calculations with the experimental data. It can be
expected that �kink(θ = 0) decreases with increasing interband
distance | Q0| (see Fig. 2 for a definition) but that it is not
very sensitive to the doping level or the bonding-antibonding
splitting (provided that | Q0| and the Fermi velocity are kept
fixed). Our analysis also indicates that a widening of the upper
branch of the hourglass should lead to a shift of �kink(θ = 0)
towards lower energies and to a reduction of the slope of
�kink(θ ). Finally, reducing the bandwidth of the bare dispersion
should induce a lowering of the renormalized Fermi velocity.
We have checked these trends by performing calculations
of the same type as described in Secs. III and IV for many
different sets of values of the input parameters.

As an example and as an illustration of the sensitivity of
the results of the calculations to the input parameter values,
we present below results of our calculations obtained using a
set of parameter values (S2 in the following) in which some of
the values have been modified along the lines of the previous
paragraph. The values of kA

F,N and kB
F,N are increased to 36.0%

and 40.7% of π
√

2/a, respectively [63]. This shift applied to
the band structure leaves the system well within the limits
given by published experimental values: the values of kA

F,N

and kB
F,N remain smaller than 41%, the common value of

the two parameters reported in Ref. [64]. Furthermore, the
corresponding increase in the magnitude of | Q0| is small, so
that the resonance mode does not participate in the scattering
along the nodal cut, and the qualitative features of Fig. 2 are
conserved. The bandwidth of the bare dispersion is reduced by
40%, so that the value of the renormalized Fermi velocity is
close to the experimental one, and we set g = 0.8 eV, so that
the maximum value of the gap remains unchanged at 30 meV.
Finally, the upper branch of χ ′′ is made wider so as to further
reduce the value of �kink(θ = 0) and the slope of the profile
of �kink [65].

Figure 12 displays the renormalized dispersion calculated
using the set of parameter values S2. It can be seen that the
kink is much more pronounced. As expected, the energy of
the kink (∼90 meV) and the renormalized Fermi velocity
(∼1.5 eVÅ) are considerably lower than in Fig. 3 and close
to the experimental values of Ref. [48].

The corresponding angular dependence of �kink is shown in
Fig. 13. It can be seen that the magnitude of the slope of �kink

is reduced to only 1.1 meV per arc degree, reasonably close
to the experimental value for Bi2212 [49]. The value of θc of
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FIG. 12. The same quantities as in Fig. 3. The calculations have
been performed using the set of parameter values S2.

Fig. 13 (∼26◦) is higher than that of Fig. 11. The difference
is mainly due to the difference between the bare dispersion
relations of S1 and those of S2. The interpretation exposed
at the end of Sec. IV still applies. Based on this interpretation
and the above discussion, we can make a prediction concerning
the angular dependence of �kink in underdoped YBCO. We
predict that there exists a critical value θc such that, for θ < θc

(θ > θc), �kink(θ ) is a decreasing (weakly increasing) function.
The minimum �kink(θc) of �kink is determined by SC(θc) and
by the lower branch of χ ′′. A value in the range from 40 to
60 meV can be expected. This prediction could be tested in
ARPES experiments.

Finally, we address, in light of our findings, the �kink(θ )
line for nearly optimally doped Bi2212 reported in Ref. [49],
which was one of our starting points. The energy of the nodal
kink in Bi2212 of ∼65 meV is roughly 15 meV lower than
that of underdoped YBCO and 25 meV lower than our result
shown in Fig. 13. The magnitude of the slope of �kink in

FIG. 13. The same quantities as in Fig. 11, calculated using the set
of input parameter values S2. The apparent steps in the pink triangle
profile are due to the reduced energy range of the E axis and the
discretization of the energy mesh.

Bi2212 is only slightly smaller than that of our calculations.
The difference may be caused by a difference in the Fermi
surfaces and/or by a difference in χ ′′. Since the magnitude
of the internodal distance | Q0| of optimally doped Bi2212 is
almost the same as that of underdoped YBCO, it appears that
some difference in χ ′′ plays the crucial role. Note that the
neutron scattering data of optimally doped Bi2212 [66] reveal
a fairly high kurtosis of χ ′′(q,E)|E=42 meV [see Fig. 2(c) of
Ref. [66]] and that the higher-energy cuts of χ ′′(q,E) shown
in Figs. 2(a) and 2(b) of Ref. [66] are considerably wider than
those of underdoped YBCO. In particular, the values of χ ′′
for q = 0.19 reciprocal lattice units (corresponding to | Q0| of
Fig. 1) and ω = 42 , 54, and 66 meV in Figs. 2(c), 2(b), and 2(a)
of Ref. [66] are all significant and of a comparable magnitude.
Motivated by this observation and by the large width of
the nodal kink in Bi2212 [see Fig. 1(d) of Ref. [49]], we
propose the following qualitative interpretation of the angular
dependence of �kink in Bi2212: we suggest that the nodal kink
is not determined by a single narrow cut through the upper
branch of the hourglass, as in the case of underdoped YBCO
(see Fig. 1), but rather by a broad band of χ ′′ ranging from ∼40
to ∼100 meV. Even the 42 meV cut contributes because of the
high kurtosis. With increasing θ , lower-energy segments of χ ′′
become more influential for the same reasons as discussed in
Sec. IV A, and as a consequence, the energy of the kink slightly
decreases.

VI. SUMMARY AND CONCLUSIONS

We have investigated the effect of the upper branch of the
hourglass magnetic spectrum on the electronic dispersion of
high-Tc cuprate superconductors using the fully self-consistent
version of the phenomenological model, where charged planar
quasiparticles are coupled to spin fluctuations. The same input
band structure and the same input spin susceptibility as in the
previous study by Dahm and coworkers [48] have been used.

First, we have confirmed the finding by Dahm et al. that
the nodal kink is determined, for the present values of the
input parameters, by the upper branch of χ ′′. We have further
demonstrated that the position and the shape of the kink depend
strongly on the strength of the charge-spin coupling. For low
(but still realistic) values of the coupling constant, the position
of the kink can be estimated using the common approximation,
where the quasimomentum dependence of the self-energy
along the Fermi surface cut is neglected. The kink is weak but
sharp. For high values of the coupling constant, however, the
dependence of the self-energy on the quasimomentum plays
an important role. The kink is less sharp but has a larger
amplitude.

Second, we have shown that the kurtosis of the resonance
mode of the spin susceptibility in the quasimomentum space
has a major influence on the mechanism of the fermionic
scattering. If the kurtosis is low (high), as in the present study
(as in several previous studies [26,50,61,62]), the effect of
the resonance mode in the near-nodal region of the Brillouin
zone is weak (large), and the upper branch of the hourglass
(the resonance mode) plays the major role in the formation of
the nodal kink.

Third, the calculated energy of the kink decreases as a
function of the angle θ between the Fermi surface cut and
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the nodal direction. This result is in qualitative agreement
with recent experimental results [41,49]. Based on our inter-
pretation of the formation of the kink, we have been able to
modify the values of the input parameters in such a way that
both the renormalized (nodal) Fermi velocity and the energy
of the nodal kink are close to the experimental values for
underdoped YBCO reported by Dahm and coworkers. The
calculated magnitude of the slope of the angular dependence
of the kink energy is close to that of Bi2212 reported by Plumb
and coworkers [49]. We predict that there exists a critical value
θc such that the energy of the kink is a decreasing (weakly
increasing) function of θ for θ < θc (θ > θc) and provide a
possible qualitative interpretation of the difference between

the kink in underdoped YBCO and that in optimally doped
Bi2212.
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