Informatique tronc commun Algorithmique

Sujet

30 septembre 2006

1 Syntaxe d'un programme en Maple

```
déclaration d'une procédure p de variable x
p:= proc(x)
local a,b,c;
                                                         variables locales de la procédure
  <suite d'instructions>
                                                         programme de la procédure
                                                         le résultat envoyé = celui de la dernière instruction exécutée
a := <expression>
                                                         affectation de la variable locale a
if <condition>
                                                         instructions conditionnelles
  then <suite d'instructions 1>
  else <suite d'instructions 2>
for i from <debut> by <pas> to <fin> do
                                                         boucle for
  <suite d'instructions>
                                                         i commence à deb, finit à fin et augmente de pas à chaque
                                                         itération (pas= 1 par défaut)
while <condition> do
                                                         boucle while
  <suite d'instructions>
```

2 Boucles simples

Exercice 1 Écrire une fonction ordre (k,n) qui renvoie l'ordre d'un élément k dans le groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^*$. (On supposera que k est bien inversible modulo n.)

Exercice 2 On représente un polynôme $P \in \mathbb{Z}[X]$ de degré n par le tableau $a[i], i \in [|1,n|]$ de ses coefficients (a[i] contenant le coefficient de X^i). Écrire une fonction evalue(a,x), ou evalue(a,n,x), qui calcule la valeur de P en un point $x \in \mathbb{Z}$, en temps O(n).

3 Algèbre linéaire et suite de Fibonacci

On rappelle que la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ est définie par $F_0=F_1=1$ et $\forall n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$.

Exercice 3 Écrire une fonction Fa(n) qui calcule récursivement F_n à l'aide de la définition ci-dessus. Calculer F_{30} . Regarder la barre d'état de Maple. Évaluer (ou minorer) la complexité de votre fonction pour rendre compte de ce que vous observez.

Exercice 4 Écrire une fonction Fb(n) de complexité linéaire en n qui calcule itérativement F_n .