
Soit deux arbres minimaux F et F ′ différant au moins sur l’arête α ∈ F\F ′. Alors, d’après la question 11, il existe une arête
β de F ′ qui relie les deux composantes connexes que reliait α dans F . Supposons sans perte de généralité v(α) < v(β). Alors
F ′\{β} ∪ {alpha} est couvrant de poids strictement inférieur à F ′, contradiction.

Question 15 Soit H = (F, W ) un arbre recouvrant minimal de G = (E, V ). Montrer qu’il existe a ∈ W et b ∈ E\W telles que
(F, V ∪ {b}\{a}) soit un arbre recouvrant de G de poids minimal parmi les arbres recouvrants qui ne sont pas de poids minimal. On
supposera dans la fin de cette section que les arêtes sont de poids deux à deux distincts.

Il suffit de considérer pour b l’arête de poids minimal parmi celles qui relient les mêmes composantes connexes que a. La question
11 permet de conclure.

Question 16 Déduire de ce qui précède un algorithme construisant un arbre G de poids minimal parmi les non minimaux. Complexité
de cet algorithme ?

On remarque qu’il s’agit simplement d’appliquer l’algorithme construisant l’arbre minimal dans le graphe ne comportant pas
l’arête considérée.

let non_minimal g a = (spanningtree_Kruskal Sommets = g.Sommets ;

Aretes = subtract g.Aretes a) ; ;

Question 17 A-t-on unicité de l’arbre de poids minimal parmi les non-minimaux ?

Oui, puisque les poids des arêtes sont deux à deux distincts, et d’après la quesiton 14.

5 Algorithme de Prim

Question 18 Exécuter (à la main) l’algorithme de Prim sur le graphe de la fig. 1.

Voir la fig. 3.

Question 19 Démontrer que l’algorithme de Prim renvoie bien un arbre couvrant minimal.

Il est clair que l’algorithme de Prim termine et fournit un sous-arbre couvrant. Prouvons qu’il est minimal.

Proof: Soit U une solution minimale telle que le nombre d’étapes de l’algorithme pendant lesquelles l’arbre en cours de construction
est un sous-arbre de U soit maximale. Considérons précisement cette étape où l’algorithme rajoute à F ⊂ U une arête α = x, y qui
n’est pas dans U , x est dans le graphe défini par F et non y. Il existe un chemin reliant x à y dans U . Soit β la première arête
traversée par ce chemin, qui sort de F . On a v(α) ≤ v(β) par définition de α dans l’algorithme. Remplaçons β par α dans U pour
obtenir U ′. U ′ est encore un arbre-couvrant minimal (supprimer β sépare U en deux composantes connexes que α réunit). Cela
contredit la définition de U . �
Question 20 Implémenter l’algorithme de Prim. On écrira tout d’abord une fonction poids qui renvoie le poids d’un graphe passé
en paramètre, puis une fonction cherche_areteP qui prend en arguments une liste de sommets et une liste d’arêtes, et qui renvoie
la première arête de la liste qui ne relie pas deux sommets cette première liste.

let poids g =

let rec aux = function

| [] → 0

|(Edge(_,_,p)) : :q → p + aux q

in aux (g.Aretes)

; ;

let rec cherche_areteP sommets = function

| [] → failwith "Graphe non connexe"

| (Edge(x,y,_) as a) : :q →
let tmpx = mem x sommets and tmpy = mem y sommets in

if ((tmpx && (not tmpy)) || ((not tmpx) && tmpy))

then a

else cherche_areteP sommets q

; ;

let spanningtree_Prim g =

let rec aux sommets aretes spantree = function

| [] → Sommets = sommets ; Aretes = spantree

| reste →
let (Edge(x,y,_) as a) = cherche_areteP sommets aretes

in aux (union sommets [x ;y]) aretes (a : :spantree) (subtract reste [x ;y])

in let deb = g.Sommets.(0)

in aux [deb] (tri_aretes g.Aretes) [] (subtract (g.Sommets) [deb])

; ;



Fig. 3 – Algorithme de Prim


