Soit deux arbres minimaux F' et F’ différant au moins sur laréte o € F\F’. Alors, d’apres la question 11, il existe une aréte
B de F' qui relie les deux composantes connexes que reliait @ dans F. Supposons sans perte de généralité v(a) < v(f3). Alors
F\{B} U {alpha} est couvrant de poids strictement inférieur & F’, contradiction.

Question 15 Soit H = (F,W) un arbre recouvrant minimal de G = (E,V). Montrer qu’il existe a € W et b € E\W telles que
(F,V U{b}\{a}) soit un arbre recouvrant de G de poids minimal parmi les arbres recouvrants qui ne sont pas de poids minimal. On
supposera dans la fin de cette section que les arétes sont de poids deux & deux distincts.

11 suffit de considérer pour b I’aréte de poids minimal parmi celles qui relient les mémes composantes connexes que a. La question
11 permet de conclure.

Question 16 Déduire de ce qui précéde un algorithme construisant un arbre G de poids minimal parmi les non minimauz. Complezité
de cet algorithme ?

On remarque qu’il s’agit simplement d’appliquer ’algorithme construisant I’arbre minimal dans le graphe ne comportant pas
I’aréte considérée.
let non_minimal g a = (spanningtree_Kruskal Sommets = g.Sommets ;
Aretes = subtract g.Aretes a) ; ;

Question 17 A-t-on unicité de larbre de poids minimal parmi les non-minimaux ?

Oui, puisque les poids des arétes sont deux a deux distincts, et d’apres la quesiton 14.

5 Algorithme de Prim

Question 18 FExécuter (d la main) lalgorithme de Prim sur le graphe de la FIG. 1.
Voir la F1G. 3.
Question 19 Démontrer que lalgorithme de Prim renvoie bien un arbre couvrant minimal.
Il est clair que ’algorithme de Prim termine et fournit un sous-arbre couvrant. Prouvons qu’il est minimal.

Proof: Soit U une solution minimale telle que le nombre d’étapes de I'algorithme pendant lesquelles I’arbre en cours de construction
est un sous-arbre de U soit maximale. Considérons précisement cette étape ou l'algorithme rajoute a F' C U une aréte a = x,y qui
n’est pas dans U, x est dans le graphe défini par F' et non y. Il existe un chemin reliant z a y dans U. Soit 8 la premiere aréte
traversée par ce chemin, qui sort de F'. On a v(«a) < v(8) par définition de o dans l'algorithme. Remplagons 8 par o dans U pour
obtenir U’. U’ est encore un arbre-couvrant minimal (supprimer § sépare U en deux composantes connexes que « réunit). Cela
contredit la définition de U. O

Question 20 Implémenter l'algorithme de Prim. On écrira tout d’abord une fonction poids qui renvoie le poids d’un graphe passé
en parametre, puis une fonction cherche_areteP qui prend en arquments une liste de sommets et une liste d’arétes, et qui renvoie
la premiere aréte de la liste qui ne relie pas deur sommets cette premiére liste.
let poids g =
let rec aux = function
| 0 —o0
| (Edge(_,_,p)) : :q — p + aux q
in aux (g.Aretes)

let rec cherche_areteP sommets = function
| [— failwith "Graphe non connexe"
| (Edge(x,y,_) as a) : :q —
let tmpx = mem x sommets and tmpy = mem y sommets in
if ((tmpx && (not tmpy)) || ((not tmpx) && tmpy))
then a
else cherche_areteP sommets g

E]

let spanningtree_Prim g =
let rec aux sommets aretes spantree = function

| [— Sommets = sommets; Aretes = spantree

| reste —
let (Edge(x,y,_) as a) = cherche_areteP sommets aretes
in aux (union sommets [x;y]) aretes (a : :spantree) (subtract reste [x;yl)
in let deb = g.Sommets. (0)
in aux [deb] (tri_aretes g.Aretes) [] (subtract (g.Sommets) [deb])

(a) (b)

(c) (d)

(e) (H)

Fia. 3 — Algorithme de Prim

