François Garillot

francois.garillot@inria.fr

11. By Equation eft relative.

INRIA-Microsoft Research Joint Lab, 91893 Orsay Cedex

xaK+61/cK+2L

Bu!

Feit-Thompson

one team, three locations

Poster n°2008-38

Mechanized foundations of finite group theory

The work of the Mathematical Components team at Microsoft Research and INRIA.

Motivation

Why formalize finite group theory?

Formalization generally provides with correction guarantees and a better understanding of the structure of a proof, but that is not our only aim

Formalizing Finite Group Theory

We are realizing a long-term formalization effort starting from elementary finite group theory, towards the Odd order theorem.

A library of components for formal mathematics

Pioneering work on algebra formalization

Distributed software engineering for mechanized proofs

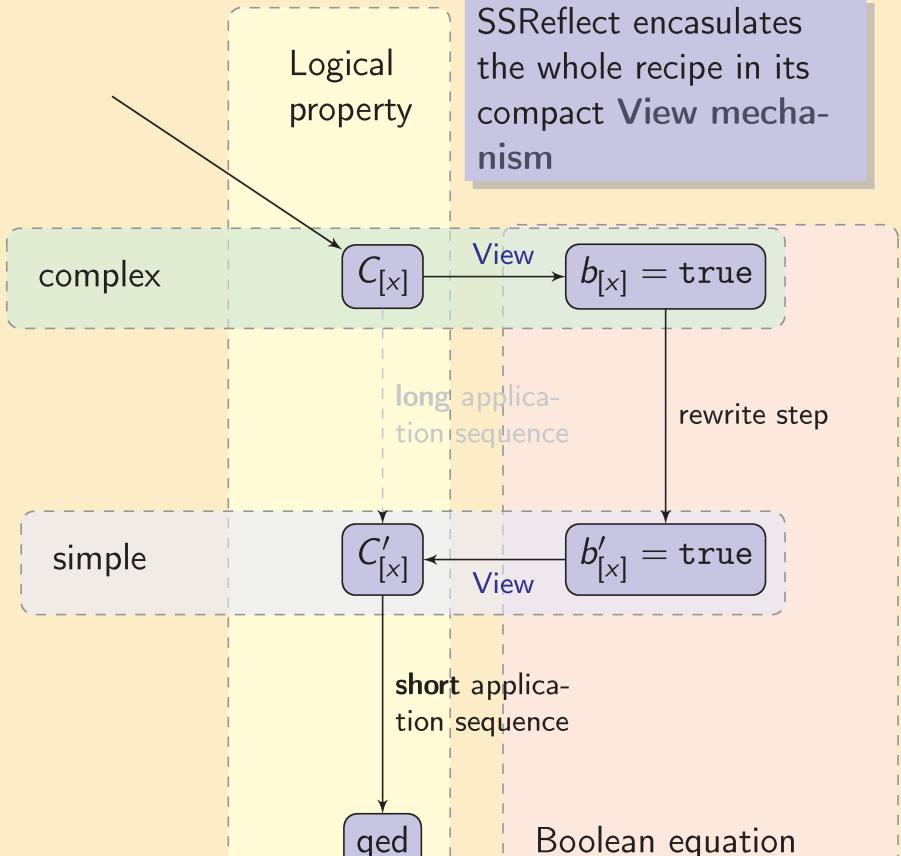
Compositionality in a rich, dependently-typed language

Small Scale Reflection

Recipe.

To prove a goal that uses a predicate P.

- Implement in Coq a partial decision procedure for P that **reflects** the truth of P with an algorithm returning booleans.
- Prove that P holds if and only if the procedure returns true.
- Prove individual instances by applying that soundness theorem with reflexivity proofs.



Canonical Structures

Type classes are, essentially, implicitly passed dictionaries.

In Coq, they correspond to Canonical Structures and become implicitly passed proofs, providing us with

> "the shorthand that makes mathematics usable" (Bourbaki)

Structure monoid: Type:= Monoid sort :> Type;

add : sort -> sort -> sort; unit: sort;

Variable (mT: monoid A).

Fixpoint sum (s: list (mT)) := match s with

 $h:: t \rightarrow add h (sum t)$ _ -> unit end;;

These structures allow-us to thin-slice group properties, offering many levels of abstraction for our properties.

They form narrowly-focused definitions, on which we can interface our developments.

The Feit-Thompson Theorem

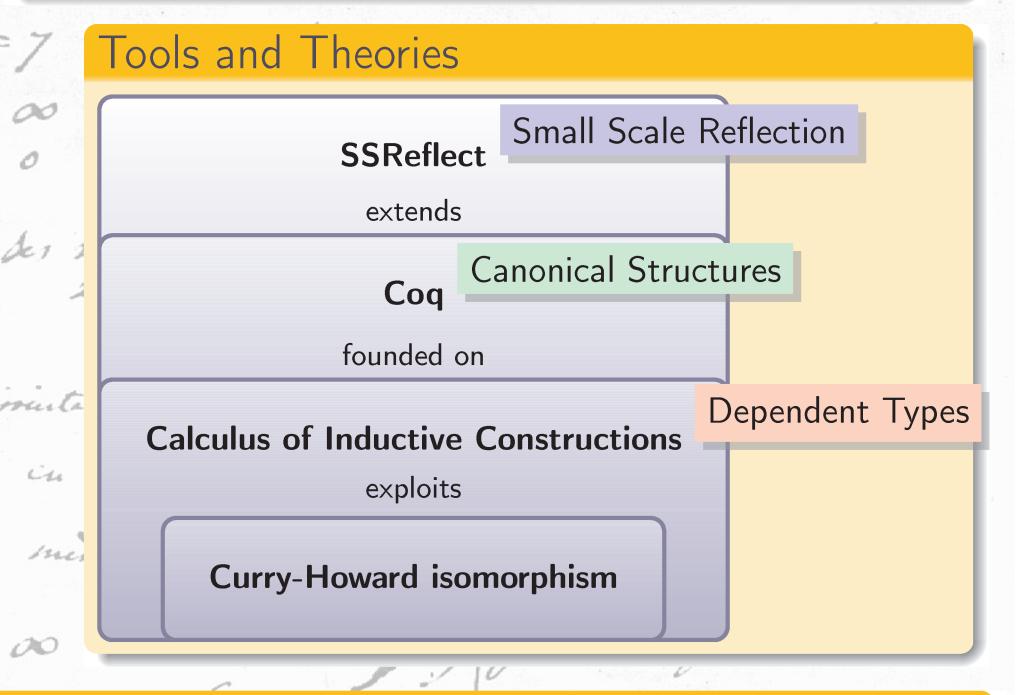
Group theory \equiv the study of reversible composition laws. A finite group can be decomposed in *simple groups*.

Those simple groups can all be exactly described in a classification, achived in 1983. It is widely recognized as one of the greatest achievements of twentieth century mathematics. The proof of this enormous theorem is disseminated in hundreds of journal articles.

The foundational breakthrough of this classification came in 1962, when Feit & Thompson showed that

Every finite group of odd order is solvable.

The proof is 255 pages long, and one of the reasons J.G. Thompson has been awarded the Abel prize in 2008.



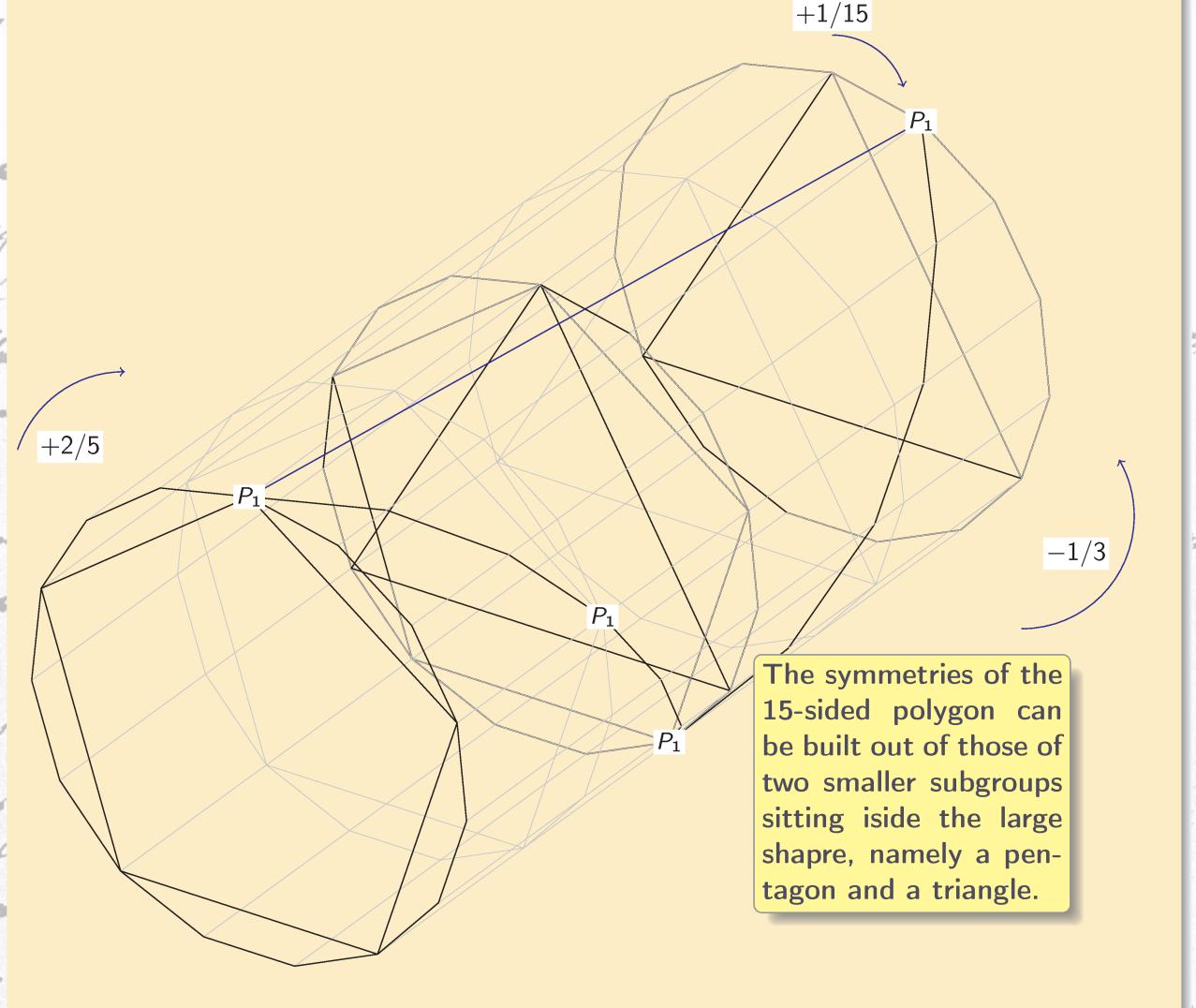
SSReflect

New release 1.1

- A renewed tactic shell for Coq that accelerates proof development using noitoelle Seale Reflection
- Property bookkeeping is eliminated or shortened;
- A set of reusable components that structures proofs on finite domains;
- try it: http://www.msr-inria.inria.fr/ lester and a comparer que by integrals on be privile, somet.

celler pour les quelles le trient dins with Boolean equation qed Les fructions de second- espire sont celles les partie complements untilés on

Decomposition example: the pentadecagon



Results obtained, future steps

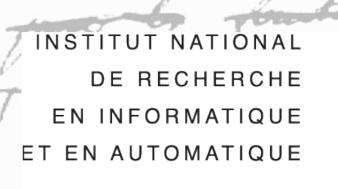
Most group formalizations stop at the Lagrange theorem. We have formalised:

- the Sylow theorems
- the Cayley-Hamilton theo We already have one of the most advanced for-• the Frobenius-Cauchy len malizations of finite al-
- the simplicity of the alter gebra!
- the Schur-Zassenhaus theorem
- the Jordan-Hölder theorem
- ... and counting

We now expect:

- to continue using programming language constructs to express theory (notations, phantom types, etc ...)
- to find a way to quickly relate properties on an object to those of one of its isomorphic images, doing property transfer on a well-behaved mapping

and pursue our development of group theory!



Mau 1 Cong

