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Mechanized foundations of finite group theory

The work of the Mathematical Components team at Microsoft Research and INRIA.
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Why formalize finite group theory ? I . Group theory = the study of reversible composition laws.
A finite group can be decomposed in simple groups.

Formalization generally pro-
vides with correction guar-
antees and a better under-

Those simple groups can all be exactly described in a
.. classification, achived in 1983. It is widely recognized as
~, one of the greatest achievements of twentieth century
. mathematics. The proof of this enormous theorem is
disseminated in hundreds of journal articles.

" The foundational breakthrough of this classification came in
.. 1962, when Feit & Thompson showed that

'

standing of the structure of
a proof, but that is not our
only aim

Every finite group of odd order is solvable.

The proof is 255 pages long, and one of the reasons J.G.
Thompson has been awarded the Abel prize in 2008.
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[Formalizing Finite Group Theory)

[Distributed software engineering for mechanized proofs]
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Small Scale Reflection
O SSReflect
We are realizing a long-term formalization — — .
A5 5 N [Comp05|t|ona||ty in a rich, dependently-typed Ianguage} | DI
effort starting from elementary finite group Her i Canonical Structures
e theory, towards the Odd order theorem. ¢ = Coq
g - 2 - : s s ) founded on
- - . F =
r~ (o Lt u;,;f"‘“ﬁ ol e _ Dependent Types
Recipe. - Type classes are, essentially, implicitly passed | .~ , .. ) alctius ot in uclt“_'e onstructions
~ To prove a goal that uses a predicate P. dictionaries. i exploits
. . - . i I e e :l.-_f_‘f ;’n...-:q
@ Implement in Coq a partial decision procedure for P In Coq, they correspond to Canonical / ' ‘

Curry-Howard isomorphism

Structures and become implicitly passed
" proofs, providing us with

“the shorthand that makes
mathematics usable” (Bourbaki)

that reflects the truth of P with an algorithm returning
booleans.

@ Prove that P holds if and only if the procedure returns

true.
@ Prove individual instances by applying that soundness . . -
. .. Y aPPYINS Structure monoid : Type := Monoid - New release 1.1 |
theorem with reflexivity proofs. :
~ sort :> Type;
c ' SSReflect encasulates ~ add : sort —> sort —> sort;
i Logical ' the whole recipe in its .~ unit: sort: L. @ A renewed tactic shell for Coq that accelerates proof development using
' property | compact View mecha- } noitosltsfl sleae lleme [Small Scale Reflection
: . R | | " @ Property bookkeeping is eliminated or shortened:
| | - Variable (mT: monoid A). . _
prorrrrrre SN Vo f B " " \. “. @ A set of reusable components that structures proofs on finite domains;
| I : IIéW N, p— I I .
| complex | [ Clx } T '(b[X] true] | | Fixpoint sum (s:list (mT)) := v e @ try it
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| | X View U : - | properties, offering many levels of abstraction p ¥
""""" :""""'":"J:""""""" " | for our properties.
| short applica- . | They form narrowly-focused definitions, on
: tion 'sequence - | which we can interface our developments. -
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o I 7 : I I Ll e 4 & s
s | : | . | A_.: | ;.f'
| | | ‘I"—-r._-x.-- A |
.\ ged - Boolean equation | ;f:h f.’...-;, e
7 ~ Ly f,u-.!:" A ﬁ i
f-:—.uﬂ-f . .-;d Tecorsas— fa?’fé-u_ e :-f-{f‘;f‘F ﬂfﬂm{ /‘ﬂ"?’ﬁ'- o - | ok M; e /
}f;‘ G, +2/5

Most group formalizations stop at the Lagrange We now expect:
theorem. We have formalised: . . . A
@ to continue using programming language
@ the Sylow theorems ) constructs to express theory (notations, 5 N\ ~L\// The symmetries of the
@ the Cayley-Hamilton thec V|\1/e alreadydhave Odn? of phantom types, etc ...) i & T~ X 15-sided polygon can
the most advanced ftor- : : : Tyl —P be built out of those of
e T - @ to find a way to quickly relate properties on
@ the Frobenius-Cauchy len 1 - vions of finite al- - L - two smaller subgroups
. an object to those of one of its isomorphic ‘ s e the |
@ the simplicity of the alter gebra | | _ sitting iside the large
] ) i images, doing property transfer on a ¢ shapre, namely a pen-
@ the Schur-Zassenhaus theorem well-behaved mapping tagon and a triangle.
@ the Jordan-Holder theorem 4
_ and pursue our development of group theory!
@ ... and counting -
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