Feuille n^o 3 Théorie des ensembles et applications

Ensembles

Exercice 1

On considère les ensembles $E = \{0, 2, 3, 4, 5\}, F = \{1, 2, 4, 5, 7\}$ et $G = \{1, 3, 5, 9, 11\}$.

- **1.** Expliciter les ensembles $E \cap F$, $E \cap G$, $F \cap G$ et $E \cap F \cap G$.
- **2.** Expliciter $E \cup F \cup G$.
- **3.** A-t-on $E \cap G \subset F$?

Exercice 2

On considère les ensembles $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

- 1. Quelles sont les différentes inclusions entre les ensembles ci-dessus?
- 2. Les inclusions sont-elles strictes? Justifier.

Exercice 3

1. Déterminer les ensembles qui correspondent aux régions grisées.

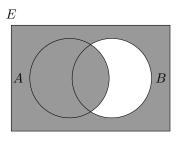


Figure 1

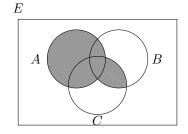


Figure 2

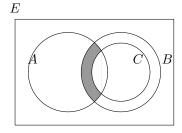
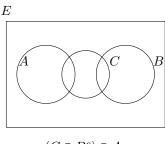
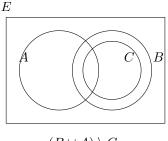


Figure 3

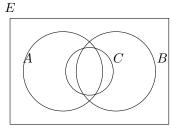
2. Hachurer les régions qui correspondent aux expressions données.



 $(C \cap B^c) \cap A$



 $(B \cup A) \setminus C$



 $(A \setminus B) \cap C$

Exercice 4

- 1. Soient A et B deux sous-ensembles d'un ensemble E. Montrer que $A \cap C_E(B) \neq \emptyset \iff A \not\subset B$.
- **2.** Soient P et Q deux assertions. Montrer que (P et non $(Q)) \Longleftrightarrow \text{non}(P \Longrightarrow Q)$.

Exercice 5

Soit E un ensemble et A, B, C trois parties de E. Montrer les formules suivantes :

- **1.** $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- **2.** $C_E(C_EA) = A$
- 3. $C_E(A \cap B) = (C_E A) \cup (C_E B)$
- **4.** $C_E(A \cup B) = (C_E A) \cap (C_E B)$ Illustrer les résultats avec des « patates » et des couleurs.

Exercice 6

Soient E un ensemble et A, B deux parties de E. Démontrer les propositions suivantes :

- **1.** $\forall A, B \in \mathcal{P}(E)$, $(A \cup B \subset A \cap B) \Rightarrow A = B$,
- **2.** $\forall A, B, C \in \mathcal{P}(E)$, $(A \cap B \subset A \cap C \text{ et } A \cup B \subset A \cup C) \Rightarrow B \subset C$.
- **3.** $\forall A, B, C \in \mathcal{P}(E)$, $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C$.
- **4.** $\forall A, B \in \mathcal{P}(E), \quad A \backslash B = A \Leftrightarrow B \backslash A = B.$
- **5.** $\forall A, B, C \in \mathcal{P}(E), \quad A \cap B = A \cap C \Leftrightarrow A \cap \mathcal{C}_E B = A \cap \mathcal{C}_E C.$

Exercice 7

Soient A, B, C trois parties d'un ensemble E.

Si $C \subset A \cup B$, a-t-on forcément $C \subset A$ ou $C \subset B$?

Exercice 8

Déterminer toutes les parties de $E = \{0, 1, 2, 3\}$.

Exercice 9

- **1.** Soit $E = \{0, 1\}$. Déterminer $\mathcal{P}(E)$, $E \times E$ et $\mathcal{P}(E \times E)$.
- **2.** Déterminer $F = \mathcal{P}(\emptyset)$ et $\mathcal{P}(F)$.

Exercice 10

Montrer que l'ensemble $C = \{(x,y) \in \mathbb{R} \times \mathbb{R} \; ; \; x^2 + y^2 \leq 1 \}$ ne peut s'écrire comme produit cartésien de deux sous-ensembles de \mathbb{R} .

Exercice 11

Soient E et F deux ensembles.

- **1.** Un sous-ensemble X de $E \cup F$ est-il toujours de la forme $A \cup B$ où A appartient à $\mathcal{P}(E)$ et B appartient à $\mathcal{P}(F)$?
- **2.** Un sous-ensemble X de $E \times F$ est-il toujours de la forme $A \times B$ où A appartient à $\mathcal{P}(E)$ et B appartient à $\mathcal{P}(F)$?

Exercice 12

Soit E un ensemble et A et B des parties de E.

- 1. Déterminer toutes les parties X de E vérifiant $A \cup X = B$ (on pourra commencer par remarquer que si A n'est pas inclus dans B, de telles parties n'existent pas ; il reste à examiner le cas où A est inclus dans B ; on pourra s'aider de patates).
- **2.** Déterminer toutes les parties X de E vérifiant $A \cap X = B$.

Applications

Exercice 13

- 1. Soit $f: \mathbf{R} \to \mathbf{R}$, $x \to x^2$, et soit A = [-1, 4]. Déterminer l'image directe f(A) de A par f, puis l'image réciproque $f^{-1}(A)$ de A par f.
- **2.** On considère la fonction sinus $sin : \mathbf{R} \to \mathbf{R}$. Quelle est l'image directe, par sin, de \mathbf{R} ? de $[0, 2\pi]$? de $[0, \pi/2]$?
- **3.** Quelle est l'image réciproque, par sin, de [0,1]? de [3,4]? de [1,2]?

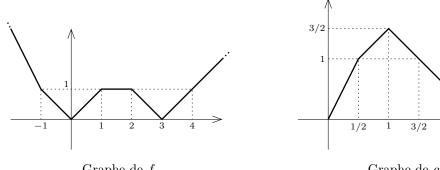
Exercice 14

Les fonctions suivantes sont-elles injectives? surjectives? bijectives?

- **1.** $f_0: {\bf Z} \to {\bf Z}, n \to 2n.$
- **2.** $f_1: \mathbf{N} \to \mathbf{N}^*, n \to n+1.$
- **3.** $f_2: \mathbf{Z} \to \mathbf{Z}, n \to -n$.
- **4.** $f_3: \mathbf{R} \to \mathbf{R}, x \to x^2$.
- **5.** $f_4: \mathbf{R} \to \mathbf{R}^+, x \to x^2$
- **6.** $f_5: \mathbf{C} \to \mathbf{C}, z \to z^2$.

Exercice 15

On considère les deux fonctions $f: \mathbf{R} \longrightarrow \mathbf{R}^+$ et $g: \mathbf{R}^+ \longrightarrow \mathbf{R}$ dont les graphes sont représentés ci-dessous :



Graphe de f

Graphe de g

- 1. L'application f est-elle injective? Est-elle surjective? Est-elle bijective?
- **2.** Par lecture du graphe, déterminer $f^{-1}(\{1\})$ et f([2,4]).
- **3.** L'application q est-elle injective? Est-elle surjective? Est-elle bijective?
- **4.** Par lecture du graphe, déterminer g([1/2, 3/2]) et $g^{-1}([0, 1])$.

Exercice 16

- 1. Dessiner un graphe qui ne représente pas une application.
- 2. Dessiner, si possible, le graphe d'une application surjective f et d'une application g dont la composée $f \circ g$ ne soit pas surjective.
- 3. Dessiner, si possible, le graphe d'une application surjective f et d'une application g dont la composée $g \circ f$ ne soit pas surjective.
- 4. Dessiner, si possible, le graphe d'une application surjective f et d'une application g surjective dont la composée $q \circ f$ ne soit pas surjective.
- 5. Reprendre les questions précédentes avec « injective » au lieu de « surjective ».
- 6. Reprendre l'ensemble des questions précédentes et illustrer les propriétés demandées à l'aide de « patates » et de « flèches ».

Exercice 17

Soient E, F, G, H quatre ensembles. f une application de E dans F et g une application de G dans H. On considère

$$\Phi : E \times G \longrightarrow F \times H$$
$$(x,y) \longmapsto (f(x),g(y))$$

- 1. Prouvez que Φ est injective ssi f et q sont injectives.
- 2. Prouvez que Φ est surjective ssi f et g sont surjectives
- 3. Prouvez que Φ est bijective ssi f et g sont bijectives.

Exercice 18

Soient les applications

Étudier l'injectivité, la surjectivité et la bijectivité de f, g, $f \circ g$ et $g \circ f$.

Exercice 19

Soient E, F et G trois ensembles, $h : E \to F, f : F \to G$ et $g : F \to G$ trois applications. $g \circ h = f \circ h$ implique-t-il que g = f? Et si h est injective? surjective?

Exercice 20

Soient E et F deux ensembles et $f: E \to F$ une application. Montrer que :

- 1. $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A)).$
- **2.** $\forall B \in \mathcal{P}(F), f(f^{-1}(B)) \subset B.$

3. A-t-on égalité en général?

Exercice 21

Soient E et F deux ensembles et f une application $E \to F$.

- 1. Démontrer les formules suivantes :
 - (a) $\forall A, B \in \mathcal{P}(E)$ $A \subset B \Rightarrow f(A) \subset f(B)$,
 - (b) $\forall A, B \in \mathcal{P}(F)$ $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$,
 - (c) $\forall A, B \in \mathcal{P}(E)$ $f(A \cap B) \subset f(A) \cap f(B)$,
 - (d) $\forall A, B \in \mathcal{P}(E)$ $f(A \cup B) = f(A) \cup f(B)$,
 - (e) $\forall A, B \in \mathcal{P}(F)$ $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,
 - (f) $\forall A, B \in \mathcal{P}(F)$ $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$,
 - (g) $\forall A \in \mathcal{P}(F)$ $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$.
- **2.** La proposition $\forall A, B \in \mathcal{P}(E)$ $A \subset B \Leftrightarrow f(A) \subset f(B)$ est-elle toujours vraie?
- **3.** La proposition $\forall A, B \in \mathcal{P}(E)$ $f(A \cap B) = f(A) \cap f(B)$ est-elle toujours vraie?

Exercice 22

Soit $f: X \to Y$ une application. Montrer que les deux conditions suivantes sont équivalentes :

- 1. f est injective.
- **2.** Pour toutes les parties A et B de X, $f(A \cap B) = f(A) \cap f(B)$.

Exercice 23

Soient E un ensemble et $f: \mathcal{P}(E) \to \mathbb{R}$ une application, telle que, pour toutes les parties disjointes A et B de E, on ait $f(A \cup B) = f(A) + f(B)$.

- **1.** Montrer que $f(\emptyset) = 0$.
- **2.** Montrer que, pour toutes les parties A et B de E, on a $f(A \cup B) = f(A) + f(B) f(A \cap B)$.

Exercice 24

Soient E un ensemble, A et B deux parties de E. Soit l'application :

$$\begin{array}{ccc} f: & \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ & X & \mapsto & (X \cap A, X \cap B) \end{array}$$

- **1.** Démontrer que : f injective $\iff A \cup B = E$.
- **2.** Démontrer que : f surjective $\iff A \cap B = \emptyset$.
- **3.** À quelle condition f est-elle bijective? Expliciter alors f^{-1} .

Exercice 25

Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f = f$.

Montrer que les assertions suivantes sont équivalentes.

- (a) f est injective,
- (b) f est surjective,
- (c) f est bijective.

On montrera que (a) implique (b), puis que (b) implique (c) et enfin que (c) implique (a).

Exercice 26

Soit X un ensemble. Si $A \subset X$, on note χ_A la fonction caractéristique associée : $\chi_A : X \to \{0,1\}$ définie par $\chi_A(x) = 1$ si $x \in A$ et $\chi_A(x) = 0$ si $x \notin A$. Montrer que l'application Φ , définie ci-dessous, est bijective :

$$\begin{array}{cccc} \Phi & : & \mathcal{P}(X) & \to & \mathcal{F}(X, \{0, 1\}) \\ & A & \mapsto & \chi_{\scriptscriptstyle A} \end{array}$$

Exercice 27

Les trois premières questions sont indépendantes de la dernière :

- 1. Déterminer une bijection entre N et N^* .
- **2.** En déduire une bijection entre $\{1/n, n \ge 1\}$ et $\{1/n, n \ge 2\}$.
- **3.** En déduire une bijection entre [0,1] et [0,1].
- 4. Trouver une bijection entre N et Z.