M1 2012–2013

Théorie des nombres

Feuille n°3: Réseaux

Sur les réseaux Exercice 1

- 1. Rappeler la définition d'un réseau.
- 2. Rappeler la caractérisation des réseaux en termes de sous-groupes de \mathbb{R}^n .
- 3. Rappeler la définition d'un domaine fondamental pour un réseau.
- 4. Montrer que deux domaines fondamentaux d'un réseau ont même volume.
- 5. Représenter quelques points du réseau \mathcal{R} de base (1, 2), (2, 2).
- 6. Donner deux domaines fondamentaux de \mathcal{R} .
- 7. Donner un vecteur non nul de plus petite norme dans \mathcal{R} .

Exercice 2

- 1. Énoncer le théorème de la base adaptée pour les modules sur des anneaux principaux.
- 2. Donner l'exemple d'un sous-module d'un \mathbb{Z} -module qui n'a pas de supplémentaire.
- 3. Soit \mathcal{R} un sous-réseau de \mathbb{Z}^2 dans \mathbb{R}^2 . Montrer que son volume est égal au nombre de points de \mathbb{Z}^2 dans un domaine fondamental.

Théorème de Minkowski

Exercice 3

On cherche les nombres p premiers s'écrivant sous la forme $p = x^2 + y^2$.

- 1. Montrer que si $p=3 \mod 4$, alors p n'est pas somme de deux carrés. On supposera dans la suite que $p=1 \mod 4$. (Le cas p=2 est simple)
- 2. Montrer qu'il existe $u_0 \in \mathbb{Z}$ tel que $u_0^2 = -1 \mod p$. Montrer que pour tout $x \in \mathbb{Z}$, $x^2 + (u_0 x)^2 = 0 \mod p$.
- 3. On considère l'ensemble

$$E=\{u_0x-y\mid 0\leq x<\sqrt{p}, 0\leq y<\sqrt{p}\}.$$

Montrer qu'il existe z_1 et z_2 dans E tels que $z_1 = z_2 \mod p$.

4. En déduire qu'il existe x et y dans \mathbb{N} tels que $x^2 + y^2 = p$.

Exercice 4

Théorème de Minkowski:

Soit C un convexe de \mathbb{R}^n symétrique par rapport à 0, de volume strictement supérieur à 2^n . Alors il existe $u_0 \neq 0$ tel que $u_0 \in C \cap \mathbb{Z}^n$.

- 1. Notons $D = [0,1]^n$. Vérifier que $\mathbb{R}^n = \bigcup_{u \in \mathbb{Z}^n} (D+u)$.
- 2. Soit $A \subset \mathbb{R}^n$ un ensemble de volume strictement supérieur à 1. Pour $u \in \mathbb{Z}^n$, on note $A_u = (A \cap (D + u)) u$. Montrer que pour tout u on a $A_u \subset D$, et que $\operatorname{Vol}(A) = \sum_{u \in \mathbb{Z}^n} \operatorname{Vol}(A_u)$.
- 3. En déduire qu'il existe $u, v \in \mathbb{Z}^n$, $u \neq v$ tels que $A_u \cap A_v \neq \emptyset$.
- 4. Posons $C' = \frac{1}{2}C$. Montrer qu'il existe $x_0, y_0 \in C'$ tels que $x_0 y_0 \in \mathbb{Z}^n \setminus \{0\}$.
- 5. Montrer que $C = \{x y \mid x, y \in C'\}$. En déduire que $u_0 = x_0 y_0 \in C \cap \mathbb{Z}^n \setminus \{0\}$.

Exercice 5

Soit Λ un réseau de \mathbb{R}^n , de volume V_{Λ} . Soit C un convexe symétrique compact de \mathbb{R}^n , de volume V_C . On suppose que $V_C \geqslant 2^n V_{\Lambda}$. Montrer que $C \cap \Lambda$ n'est pas réduit à 0.

Applications du théorème de Minkowski

Exercice 6

- 1. Soit p = 13. On remarque que pour a = 5, on a $a^2 + 1 = 0 \mod p$. Montrer que tous les éléments du réseau \mathcal{R} de \mathbb{Z}^2 engendré par (1,a) et (0,p) ont une norme multiple de p. Trouver deux entiers x et y tels que $p = x^2 + y^2$.
- 2. Même question pour p = 61 et a = 11.

Exercice 7

- 1. Écrire $2425 = 5^2 \cdot 97$ et $754 = 2 \cdot 13 \cdot 29$ comme sommes de deux carrés.
- 2. Tous les entiers naturels sont-ils sommes de trois carrés?
- 3. Écrire l'identité qui exprime le fait que la norme du produit de deux quaternions est égale au produit de leurs normes.
- 4. Écrire $323 = 17 \cdot 19$ et $1265 = 5 \cdot 11 \cdot 23$ comme sommes de quatre carrés.

Exercice 8

On cherche les nombres premiers p s'écrivant sous la forme $p = x^2 + 2y^2$.

- 1. Montrer que pour un tel p, -2 est un carré dans \mathbb{F}_p .
- 2. Supposons que -2 est un carré dans \mathbb{F}_p . Il existe donc un entier a tel que $a^2 = -2$ mod p. En considérant le réseau \mathcal{R} de \mathbb{Z}^2 engendré par (a,1) et (p,0) et l'ellipse définie pour un certain p par p qu'il existe deux entiers p tels que p tels que p qu'il existe deux entiers p tels que p tels que p qu'il existe deux entiers p tels que p tels que p qu'il existe deux entiers p tels que p tels que p qu'il existe deux entiers p tels que p tels que p qu'il existe deux entiers p qu'il exi
- 3. Écrire 323 sous la forme $n = x^2 + 2y^2$.

Exercice 9

Soit *p* un nombre premier.

- 1. Montrer que s'il existe (x, y) ∈ \mathbb{Z}^2 tels que $p \mid (x^2 + 5y^2)$, alors p divise x ou -5 est un carré dans \mathbb{F}_p .
- 2. Montrer que si $p \neq 5$ et si -5 est un carré modulo p, alors il existe un couple d'entiers $(x,y) \in \mathbb{Z}^2$ tel que $x^2 + 5y^2 \in \{p,2p\}$.
- 3. Trouver un nombre premier p qui s'écrive sous la forme $p = x^2 + 5y^2$, avec x et y entiers, et tel que 2p ne peut pas s'écrire sous cette forme.
- 4. Trouver un nombre premier p tel qu'il existe des entiers x et y vérifiant $2p = x^2 + 5y^2$, et tel que p ne s'écrive pas sous cette forme.
- 5. Montrer qu'il existe un couple $(x, y) \in \mathbb{Z}^2$ tel que $x^2 + 5y^2 \in \{p, 2p\}$ si et seulement si p = 5 ou $p \equiv 1, 3, 7$ ou 9 (mod 20).

Exercice 10

On rappelle que tout nombre premier congru à 1 modulo 4 est somme de deux carrés. On considère l'équation $x^2 + y^2 = pz^2$ où p est un nombre premier impair.

- 1. Vérifier qu'elle possède une solution dans \mathbb{Q}^3 si et seulement si elle en possède une dans \mathbb{Z}^3 .
- 2. Montrer que si elle admet une solution dans $\mathbb{Z}^3 \setminus \{(0,0,0)\}$, -1 est un carré dans \mathbb{F}_p et donc p est congru à 1 modulo 4.
- 3. La réciproque est-elle vraie?
- 4. Lorsqu'elle en possède, décrire toutes les solutions dans \mathbb{Q}^3 de l'équation.