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Abstract

We study the existence of solutions to general measure-minimization
problems over topological classes that are stable under localized Lip-
schitz homotopy, including the standard Plateau problem without the
need for restrictive assumptions such as orientability or even rectifiabil-
ity of surfaces. In case of problems over an open and bounded domain
we establish the existence of a “minimal candidate”, obtained as the limit
for the local Hausdorff convergence of a minimizing sequence for which
the measure is lower-semicontinuous. Although we do not give a way
to control the topological constraint when taking limit yet — except
for some examples of topological classes preserving local separation or
for periodical two-dimensional sets — we prove that this candidate is
an Almgren-minimal set. Thus, using regularity results such as Jean
Taylor’s theorem, this could be a way to find solutions to the above
minimization problems under a generic setup in arbitrary dimension
and codimension.
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Introduction
We consider a class F of relatively closed subsets of a given domain U in Rn

— that will be our competitors, and we also suppose that F is stable under
some class of admissible deformations (see definition 6).

We then consider the following problem: find E ∈ F such that

µ(E) = inf
F∈F

µ(F ), (1)

where µ stands for a given d-dimensional measure functional with 0 ≤ d < n
— for instance the d-dimensional Hausdorff measure Hd, but more general
cases are also possible. The Plateau problem can be rewritten in these terms,
by taking a class F stable under Lipschitz deformations that only move a
relatively compact subset of points of U . In that case, the boundary of U acts
as a topological constraint.

In case of a problem over an open bounded domain U of Rn and in arbitrary
dimension and codimension we prove the following theorem of existence of a
minimal candidate (see theorem 4 for a more precise statement):

There is a relatively closed subset E of U , Almgren almost-
minimal and with no greater measure than any element of F, that
is obtained as a local Hausdorff limit over all compact subsets of U
of a measure-minimizing sequence of elements of F.

Notice that we do not prove that E ∈ F — in fact it can be false, see
section 3.3 where we also give two examples of usage of this result. However,
we hope that in some cases at least for 2-dimensional sets, by using regularity-
related results about E such as Jean Taylor theorem (see [Tay76, Dav08]) we
may be able to build a Lipschitz retraction sending a neighborhood of E onto
E, which would be enough to control the topological constraint in F when
taking limit in our minimizing sequence.

One of the technical difficulties that arise in this approach is that the
Hausdorff measure is generally not lower semicontinuous — although the case
of one-dimensional sets can be handled using Gołąb’s theorem— which usually
prevents directly taking limit in arbitrary minimizing sequences to study the
existence of solutions to this kind of general, measure-related minimization
problems.

In fact, we give a way to convert any measure-minimizing sequence into
another minimizing sequence of “regularized” sets (i.e. quasiminimal with uni-
form constants) that verify an uniform concentration property initially intro-
duced by Dal Maso, Morel and Solemini in [DMMS92], and for which the
Hausdorff measure is lower semicontinuous (see theorem 2, which is borrowed
from [Dav03a]).

The first step of this process is to find a way to build generalized Eu-
clidean dyadic grids with several imposed orientation and uniform bounds on
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Figure 1: On the left, a competitor in F and an almost-covering by disjoint
balls centered on its rectifiable part. On the right, we project it onto some of
its tangent planes inside a cone and a ball, while keeping the measure of the
patches that connect the flat part to the remaining one arbitrary small.

the flatness of their polyhedrons. Their construction is explained in [Feu08]
(see theorem 1): provided that they are far enough from each others, it is
possible to glue several dyadic grids (with different orientations) together into
a larger grid of convex polyhedrons that “connect well” (see definition 4 for a
topological definition) and such that every polyhedron of the new grid (includ-
ing its faces in all lower dimensions) is not too flat. In fact, we give an implicit
uniform lower bound that depends only on dimension n on the minimal angle
of two faces of any dimension that meet at a given vertex (see our definition 3
of “rotondity”).

The second step is to carefully design polyhedric grids to approximate a
given compact d-dimensional set while keeping control on the measure increase
introduced by the approximation (see theorem 3). For this purpose, we use an
almost covering of the rectifiable part of the set by dyadic grids that roughly
follow the direction of its tangent planes and then use the above method to
merge these grids together (see figure 1). The uniform lower bound obtained
on the flatness of the polyhedrons is useful when approximating our set using
successive Lipschitz Federer-Fleming-like projections (see [FF60]) onto decreas-
ing dimensional polyhedrons of the grid till dimension d, to obtain additional
measure-related regularity constants (in fact, quasiminimality constants, as
introduced earlier by Almgren) that depend only on dimensions d and n (see
figure 2).

This polyhedral approximation theorem is the key result of this paper.
One can see it as a version for non-orientable surfaces of the classic polyhedral
approximation theorem for integral currents. It may also be used to generalize
to higher dimension and codimension a result of T. De Pauw in [DP07] for
two-dimensional surfaces in R3.
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Figure 2: On the left, we use Federer-Fleming radial projections inside a poly-
hedric grid designed to keep the measure increase as small as needed with
respect to the initial competitor on figure 1. Notice that the measure did not
increase in the cubes that are parallel to the tangent planes. On the right,
we do a finite measure-minimization amongst the polyhedric competitors in F.
The set we obtain is quasiminimal with constants depending on the flatness of
the polyhedrons of the grid, and is even better than the polyhedric competitor
on the left.

The plan of the paper is as follows.
Section 1 is devoted to summarize the basic definitions and notations we

will be using through the next sections. We start with Euclidean polyhedrons,
complexes and dyadic cubes. We also give an Almgren-like formalism (see
[Alm76, Dav03b]) for quasiminimal, almost-minimal and minimal sets.

In section 2 we give some technical lemmas that are to be used later in
the polyhedral approximation process. First we give some Lipschitz extension
lemmas before studying basic measure-related properties of orthogonal and
radial projection extensions.

In section 3 we give an optimization lemma which allows converting any
competitor into another one that is quasiminimal with constants depending
only on the dimension, without increasing its measure too much. Then, we
proceed in proving the main theorem, before giving some examples of setup
under which the topological constraint behaves well when taking limit.

The proposed research of solutions is actually quite close in spirit to that of
Reifenberg (see [Rei60]), although based on Almgren’s initial formalism. It is
not as “elementary” and flexible as any of the classic distributional approaches,
but fits problems that cannot be handled by currents and finite perimeter sets.
Compared to Reifenberg theory, it might end up to be simpler and more flexible
because it heavily relies on technical geometric tools which involve long proofs
and complicated constructions but hopefully will be turned into ready-to-use
results.
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1 Preliminaries
We begin with some notations and basic definitions.

1.1 Euclidean polyhedrons

We place ourself in Rn with its usual Euclidean structure. We say that a set A
is an affine half-space if one can find an affine hyperplane H and a non-parallel
vector u such that

A = {x+ ru : x ∈ H and r ≥ 0} . (2)

We will say that a non-empty intersection of affine half-spaces is a polyhedron
according to the following definition.

Definition 1 (Polyhedrons). A polyhedron δ of dimension n is a compact with
non-empty interior intersection of finitely many affine half-spaces.

By keeping only affine half-spaces whose boundary intersects δ over a set
of n − 1 Hausdorff dimension it is easy to check that amongst all half-spaces
families that are suitable for this definition one can find one that is minimal
for inclusion. We will denote it by A(δ).

By allowing non-empty compact sets with empty interior we generalize this
definition to k-dimensional polyhedrons (with k ≤ n) by placing ourselves in
the smallest affine subspace Affine(δ) of dimension k that contains them. In
that case, the usual topological operators (closure, interior and boundary) will
be taken relatively to Affine(δ), as well as the affine half-subspaces in A(δ).
By convention we consider singletons as polyhedrons of zero dimension, equal
to their interior and with empty boundary.

Polyhedrons as we defined them are convex. With a simple convexity ar-
gument it is easy to check that the affine dimension of Affine(δ) is the same as
the Hausdorff dimension of δ. We will denote both by dim(δ).

In fact, it is possible to show (but we will not do it here) that our definition
is equivalent to the one of usual convex polytopes, as the convex hull of a finite
family of points — typically the “vertices”, that we will introduce shortly.
Indeed, the previous notations allow for an easy writing of the definition of
polyhedric faces. For convenience we will call them “subfaces” in the general
case and keep the word “face” to specifically designate a subface of dimension
one less than the relative polyhedron.

Definition 2 (Subfaces). Let δ be a n-dimensional polyhedron such that A(δ) =
{A1, . . . , Ap} and

{
A′1, . . . , A

′
p

}
a family of subsets of Rn such that A′i = Ai or

A′i = ∂Ai for 1 ≤ i ≤ p. By putting α =
⋂
iA
′
i, if α 6= ∅ we say that α is a

subface of δ and more precisely:
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• if dimα < dim δ then α is a strict subface;

• if dimα = dim δ − 1 then α is a face;

• if dimα = 0 (i.e. if α is a singleton) then α is a vertex and we will
mistake it for the point it contains for convenience.

We will denote by F(δ) the set of all subfaces of δ, and for 0 ≤ k ≤ dim δ:

Fk(δ) = {α ∈ F(δ) : dimα = k} . (3)

Again, we naturally generalize this definition to k-dimensional polyhedrons
with k ≤ n. It is not difficult to check that subfaces are also polyhedrons, that
the faces are of disjoint interior and that their union is the boundary of the
polyhedron. For any polyhedron δ we can even write that

δ =
⊔

α∈F(δ)

◦
α (4)

where t stands for a disjoint union and the interior ◦α of all subfaces is taken
relatively to the corresponding generated affine subspace Affine(α).

We now give ourselves some way to control the flatness of polyhedrons,
which will be used later to control the measure increase when approximating
rectifiable sets using radial projections onto them.

Definition 3 (Shape control). For any non-empty compact set A we define
the following quantities:

• the outer radius, by taking the infimum of radii of balls containing A
(with the convention inf ∅ = 0)

R(A) = inf {r > 0: ∃x ∈ Rn, A ⊂ B(x, r)} ; (5)

• the inner radius, by taking the supremum of radii of included balls (with
the convention sup ∅ = 0)

R(A) = sup {r > 0: ∃x ∈ Rn, B(x, r) ∩ Vect(A) ⊂ A} ; (6)

• the rotondity, by taking the ratio of the two (with the convention R(A) =
1 when R(A) = 0)

R(A) =
R(A)

R(A)
∈ [0, 1]. (7)

Of course, the more R(A) is close to 1, the more A look like a ball and the
less it is flat. By a compacity argument, it is easy to show that the supremum
in the calculus of R(A) is reached for some ball B such that B ∩ VectA ⊂ A.
We will call it an inscribed ball inside A.
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1.2 Polyhedric complexes and dyadic cubes

We now consider a finite set S of k-dimensional polyhedrons. We introduce
the following notations:

• the union of the polyhedrons

U(S) =
⋃
δ∈S

δ; (8)

• the set of the subfaces
F(S) =

⋃
δ∈S

F(δ). (9)

Additionally, when all the polyhedrons in S have the same dimension k we will
also use:

• the set of k′-dimensional subfaces (for 0 ≤ k′ ≤ k)

Fk′(S) =
⋃
δ∈S

Fk′(δ); (10)

• the set of boundary faces

F∂(S) =
{
α ∈ Fk−1(S) : ∀(β, γ) ∈ S2, α 6= β ∩ γ

}
. (11)

To formalize the idea of polyhedric meshes made of polyhedrons that con-
nect well we give the following definition.

Definition 4 (Complexes). We say that a set S of k-dimensional polyhedrons
is a k-dimensional complex if all its subfaces have disjoint interiors (again,
relative to the generated affine subspace):

∀(α, β) ∈ F(S)2 : α 6= β ⇒ ◦
α ∩

◦
β = ∅. (12)

For instance, it is easy to check that for any polyhedron δ and 0 ≤ k ≤
dim δ, the set Fk(δ) is a complex. So is Fk′(S) for 0 ≤ k′ ≤ k when S is a
k-dimensional complex. Furthermore, when k = n we also have ∂(U(S)) =
U(F∂(S)). When S is a complex, we call any subset of F(S) made of subfaces
of dimension at most k a “k-dimensional skeleton” of S.

To control the shape of all polyhedrons — including their subfaces — within
a complex we also generalize our notations for inner or outer radii and rotondity
to complexes as well:

R(S) = max
δ∈F(S)

R(δ) R(S) = min
δ∈F(S)

R(δ) R(S) = min
δ∈F(S)

R(δ). (13)

Generic and easy-to-use examples of complexes are those made of dyadic
cubes. For r > 0 a dyadic cube is a polyhedron that can be written as [0, r]n

in some orthonormal basis of Rn, and an unit dyadic cube when r = 1. Such
cubes can be naturally placed on a grid to form a complex.
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Figure 3: Merging of two dyadic complexes with different orientations, and the
associated shape constants.

Definition 5 (Dyadic complexes). We call dyadic complex of stride r any set
of dyadic cube that can be written as

S = {rz + [0, r]n : z ∈ Z} (14)

in an orthonormal basis, where Z is a finite subset of Zn.

Dyadic cubes are very convenient to locally approximate rectifiable sets of
arbitrary dimension using their subfaces, because we can always choose their
orientations to locally match those of the set’s tangent planes while taking
them as small as needed. To closely match an arbitrary set we would end
up with many disjoint dyadic complexes with different orientations. Then,
to complete the polyhedral approximation process these complexes should be
merged into a larger one that covers the entire set to approximate. However,
although anybody would believe that such polyhedrons can be built it is not
obvious that the non-dyadic polyhedrons needed to fill the gaps between all
the dyadic grids can always be designed so they are never too flat.

In [Feu08] we proved the following result that can be used to merge two
dyadic complexes together while keeping uniform bounds on the rotondity of
all added polyhedrons and their subfaces (see figure 3).

Theorem 1 (Merging of dyadic complexes with uniform rotondity). One can
find three positive constants ρ, c1 and c2 depending only on n such that for all
compact set K, for all open set O ⊂ K and for all unit dyadic complexes S1

and S2 such that

U(S1) = K \O U(S2) ⊂ O min
(x,y)∈U(S1)×U(S2)

‖x− y‖ ≥ ρ (15)

then one can build S3 such that S ′ = S1 t S2 t S3 is a n-dimensional complex
verifying

U(S ′) = K R(S ′) ≤ c1R(S1 ∪ S2) R(S ′) ≥ c2R(S1 ∪ S2). (16)

Later, we will use this theorem to merge a large number of disjoint dyadic
grids of arbitrary orientations together — assuming their stride is small enough
to build it — by considering a global dyadic grid with “holes” separately en-
closing each one.

1.3 Quasiminimal and (almost-)minimal sets

Let U be a nonempty domain of Rn. For a map f : U → U we denote by ξf
the set of points that are actually moved by f :

ξf = {x ∈ U : x 6= f(x)} . (17)
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We also call support of f the set of these points and their images:

Supp f = ξf ∪ f(ξf ). (18)

Suppose that M ≥ 1. In what follows, we assume that we are given a
measurable function h over U , with values in [1,M ]. For 0 ≤ d < n we will
consider the following d-dimensional set functional, for any measurable set
E ⊂ U :

Jdh(E) =

∫
x∈E

h(x)dHd(x) (19)

where Hd stands for the d-dimensional Hausdorff measure (see for instance
Mattila’s book [Mat95]).

The following definition will be useful to describe our so-called “topological
classes stable under local Lipschitz homotopy”.

Definition 6 (Admissible deformations). For δ > 0 we say that a one-parameter
family (φt)t∈[0,1] of maps from U into itself is a δ-deformation over U if the
following requirements are met:

• φ0 = IdU and φ1 is Lipschitz;

• (t, x) 7→ φt(x) is continuous over [0, 1]× U ;

• by putting
Suppφ =

⋃
t∈[0,1]

Suppφt (20)

then Suppφ is compact relatively in U (i.e. Suppφ is compact and in-
cluded in U , which we will denote by Suppφ ⊂⊂ U) and Diam(Suppφ) ≤
δ.

When (φt) is a deformation over U and E ⊂ U we say that φ1(E) is an
Almgren competitor of E.

For X ⊂ Rn and ρ > 0 we denote by Xρ the ρ-neighborhood of X:

Xρ =
⋃
x∈X

B(x, ρ) = {x ∈ Rn : d(x,X) < ρ} . (21)

For convenience we give the following statement which will be used later to
easily build a deformation from a Lipschitz map whose support is small enough.

Proposal 1 (Automatic building of deformation). Suppose that V ⊂⊂ U ⊂
Rn, that f is a Lipschitz map over U and that (φt) is a Diam(U)-deformation
over U . If there is ρ > 0 such that

‖φ1 − f‖∞ < ρ and (ξφ1 ∪ ξf )ρ ⊂⊂ U (22)

then the one-parameter family (ψt) of maps on U defined for 0 ≤ t ≤ 1 by

ψt(x) =

{
φ2t(x) if t ≤ 1

2

(2− 2t)φ1(x) + (2t− 1)f(x) if t > 1
2

(23)

is also a Diam(U)-deformation over U such that ψ1 = f .
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The proof is really easy, and consists only in proving that Suppψ is compact
and included in U .

Proof. Suppose that x ∈ U and consider the three possible cases:

• if x /∈ ξφ1 ∪ ξf then

{ψt(x) : t ∈ [0, 1]} = {φt(x) : t ∈ [0, 1]} ; (24)

• if x ∈ ξφ1 then for all t ∈ [0, 1/2]:

ψt(x) = φ2t(x) ∈ Supp(φ). (25)

For t ≥ 1/2, ψt(x) is on the line segment [φ1(x), f(x)] which is included
in the closed ball B (φ1(x), ‖φ1(x)− f(x)‖). Since ‖φ1(x) − f(x)‖ < ρ
we get

ψt(x) ∈ B(φ1(x), ρ) ⊂ (ξφ1)ρ; (26)

• if x ∈ ξf \ ξφ1 then ψt(x) = x for t ≤ 1/2. Using the same argument as
above, for t ≥ 1/2 we have

ψt(x) ∈ B(f(x), ρ) ⊂ (ξf )ρ; (27)

Notice that ⋃
t∈[0,1]

{x : ψt(x) 6= x} ⊂ Supp(φ) ∪ ξf (28)

By (24), (25), (26) and (27) we also get⋃
t∈[0,1]

ψt (ξψt) ⊂ Supp(φ) ∪ (ξf ∪ ξφ1)ρ , (29)

which in turn gives

Supp(ψ) ⊂ Suppφ ∪ (ξf ∪ ξφ1)ρ ⊂ U. (30)

Let us now define quasiminimal sets, which were introduced by Almgren
in [Alm76]. These sets are such that their measure can decrease when de-
formed, but only in a controlled manner in regards of the size of the points
being affected.

Definition 7 (Quasiminimal sets). Let M ≥ 1 and δ > 0. We say that E is
a (M, δ)-quasiminimal set over U if E is a relatively closed subset of U with
locally finite measure (i.e. Hd(E ∩K) < ∞ for all compact set K) such that
for all δ′-deformation (φt) over U (with 0 < δ′ ≤ δ) we have

Hd(E ∩ ξφ1) ≤MHd(φ1(E ∩ ξφ1)). (31)
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In the special case when M = 1 and δ = DiamU we say that E is mini-
mal. Now suppose that we are given a function h : ]0, δ] → [0,+∞[ such that
limt→0 h(t) = 0 and for all δ′ ≤ δ, E is (1 + h(δ′), δ′)-quasiminimal. We will
call such sets — that look more and more like minimal sets when looked at
closely — almost-minimal sets with gauge function h.

To make future statements easier to write, we will also call “d-set” any
Hd-measurable set with locally finite measure, and “null d-set” any set with
null measure.

Since our proofs will involve delicate hair-cutting and measure control tools
in varying dimensions, we define the d-dimensional core of a set E (which is
usually denoted as E∗) as follows:

kerd(E) =
{
x ∈ E : ∀r > 0,Hd(E ∩B(x, r)) > 0

}
. (32)

We will also use the following notations, for 0 ≤ l ≤ d:
kerdd(E) = kerd(E)

kerld(E) = kerl

(
E \

⋃
d≥l′>l

kerl
′

d (E)

)
,

(33)

and it is easy to check that the kerld(E) (for 0 ≤ l ≤ d) are pairwise disjoint
and form a partition of E. Also, E \ kerd(E) is a null d-set and kerl(E) is a
relatively closed subset of E. Furthermore, if E is (M, δ)-quasiminimal, so is
kerd(E), and if E = kerd(E) we say that E is reduced.

We denote by dH the Hausdorff distance, which is defined as follows for
two non-empty subsets A and B of Rn:

dH(A,B) = max

(
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

)
, (34)

and by convention dH(∅, B) = dH(A, ∅) = ∞ and dH(∅, ∅) = 0. For any
compact set K ⊂ Rn we define the local Hausdorff distance dK over K by:

dK(A,B) = dH(K ∩ A,K ∩B). (35)

For U ⊂ Rn we say that a sequence (Ek)k∈N of subsets of Rn converges
towards E on U locally on every compact if E is a relatively closed subset of
U and for all compact subset K ⊂ U :

lim
k→∞

dK(Ek, E) = 0. (36)

We will denote it by Ek
U−⇁ E. One can check that this defines an unique

limit, and that every subset U ⊂ Rn is compact for this convergence in the
sense that every sequence has a convergent subsequence.

Finally, in order to prove our main result we need the following theorem,
which can be found in [Dav03a].
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Theorem 2. Suppose that U ⊂ Rn, 0 ≤ d < n, δ > 0, M ≥ 1 and (Ek)k≥0

is a sequence of (M, δ)-quasiminimal sets over U such that kerd(Ek)
U−⇁ E.

Then the following holds:

• E is reduced and (M, δ)-quasiminimal over U ;

• for all open subset W ⊂ U ,

Hd(E ∩W ) ≤ lim inf
k→∞

Hd(Ek ∩W ); (37)

• there is C > 0 such that for all open subset W ⊂⊂ U ,

Hd(E ∩W ) ≥ C−1 lim sup
k→∞

Hd(Ek ∩W ); (38)

• for all δ-deformation (ft)0≤t≤1 over U and ε > 0, one can build a Lips-
chitz map g over U such that

‖f1 − g‖∞ < ε and ξg ⊂⊂ ξf1 , (39)

and for k large enough:

Hd(g(Ek ∩ ξg)) ≤ Hd(f1(Ek ∩ ξf1)) + ε

Hd(E ∩ ξf1) ≤ Hd(Ek ∩ ξg) + ε.
(40)

In fact, although the first three points gathered in theorem 2 are given as
independent statements in [Dav03a], the last point is adapted from the proof
of the second one (which is called “Theorem 4.1” in [Dav03a]). More precisely,
we borrowed equations [4.93], [4.108] and [4.109] from [Dav03a]. Starting with
f1, a new map g is built such that ξg ⊂ ξf1 and to which we apply the measure
inequalities for E ′k. As emphasized by the author, the reason for this process is
that we cannot actually use the argument with f1, since it could be injective on
Ek and at the same time glue large pieces of E together onto the same image.
For this reason we use a small variation of f1 that mimics it and send distinct
pieces of E ′k onto the same image when f1 do the same with E. Combined
with proposal 1, g can also be turned into a δ-deformation over U in order to
stay in our topological class F, and will be used in the proof of theorem 4.

2 Orthogonal and radial projections onto poly-
hedrons

Our first step is to establish some properties of deformations that will be used
later to approximate any given set with polyhedrons. Basically, we will use
two kind of deformations: “magnetic projections” (see proposal 2) that are
used to locally flatten a given rectifiable set onto a tangent plane, and radial
projections (see definition 8) that send the inside of a polyhedron onto its faces.
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2.1 Fine-tuned Lipschitz extensions

Before we start building our projections onto polyhedrons, we give some Lips-
chitz extension lemmas. Although Kirszbraun’s theorem (originally in [Kir34])
would be sufficient to get the expected Lipschitz constants, in some cases we
also need additional control on the size of the support of the extensions. For
this reason we prefer building them explicitly “by hand”.

Lemma 1 (Ring-like Lipschitz extensions around a compact). Let K be a
nonempty compact set of Rn and f a k-Lipschitz map over K with k ≥ 1.
Suppose that there exists a map Π: Rn → K such that f ◦Π is also k-Lipschitz
and Π|K = IdK and put

Kρ = {x ∈ Rn : d(x,K) ≤ ρ}. (41)

Then, for all ρ > 0 one can find a Lipschitz map g : Kρ → Kρ with constant
at most k + 1 + d(f(K),K)

ρ
such that g|K = f , g|∂(Kρ) = Id∂(Kρ).

For instance, if K is convex one can take the convex projector onto K as
Π. Later, we will use this lemma in proposal 2 when K is the intersection of
a cone with a ball to build “magnetic projections” that coincide with an affine
projector inside K and the identity map outside Kρ.

Proof. Take ρ > 0 and suppose that f and Π are as above. We define the
following map g on Kρ:

g(x) =

(
1− d(x,K)

ρ

)
f ◦ Π(x) +

d(x,K)

ρ
x. (42)

It is easy to check that g is continuous, that g|K = f and g|∂(Kρ) = Id∂(Kρ).
Now all we have to do is to get the required Lipschitz constants for g. For that
purpose, take (x, y) ∈ Kρ and consider the three possible cases:

• when (x, y) ∈ K2, since f is k-Lipschitz we easily get

‖g(x)− g(y)‖ = ‖f(x)− f(y)‖ ≤ k‖x− y‖; (43)

• when (x, y) ∈ (Kρ \K)2, put x′ = Π(x) and y′ = Π(y). We now get:

‖g(x)− g(y)‖ =
‖ρf(x′)− ρf(y′) + d(x,K)(x− f(x′))− d(y,K)(y − f(y′))‖

ρ

≤ ‖ρf(x′)− ρf(y′) + d(x,K)((x− f(x′))− (y − f(y′)))‖
ρ

+
‖(d(x,K)− d(y,K))(y − f(y′))‖

ρ

≤ ρ− d(x,K)

ρ
‖f(x′)− f(y′)‖+

d(x,K)

ρ
‖x− y‖

+

∣∣∣∣d(x,K)− d(y,K)

ρ

∣∣∣∣ ‖y − f(y′)‖.

(44)
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Since we also know that k ≥ 1, d(x,K) ≤ ρ, ‖f(x′)− f(y′)‖ ≤ k‖x− y‖
and ‖y − f(y′)‖ ≤ ρ+ dH(f(K), K) we finally get:

‖g(x)− g(y)‖ ≤
(
kρ− (k − 1)d(x,K)

ρ
+
ρ+ dH(f(K), K)

ρ

)
‖x− y‖

≤
(
k + 1 +

dH(f(K), K)

ρ

)
‖x− y‖;

(45)

• when x ∈ K and y ∈ Kρ \K, we put as above y′ = Π(y) and get:

‖g(x)− g(y)‖ =
‖ρf(x)− d(y,K)y − (ρ− d(y,K))f(y′)‖

ρ

=
‖d(y,K)(f(x)− y)− (ρ− d(y,K))(f(x)− f(y′))‖

ρ

≤ d(y,K)

ρ
‖f(x)− y‖+

ρ− d(y,K)

ρ
‖f ◦ Π(x)− f ◦ Π(y)‖

≤ ‖x− y‖
ρ

(ρ+ dH(f(K), K)) + k‖x− y‖

≤
(
k + 1 +

dH(f(K), K)

ρ

)
‖x− y‖.

(46)

In all cases, we have shown that g is k′-Lipschitz with k′ = 1+k+dH(f(K),K)
ρ

.

Conversely, the following lemma is used to build a Lipschitz extension inside
a ball that have been subtracted from a compact.

Lemma 2 (Lipschitz extension inside a ball). Suppose that K is a star compact
with respect to x that contains an open ball B centered at x with radius r and
put K ′ = K \B. For ρ > 0 we denite by ρB the ball centered at x with radius
ρr.

For all k-Lipschitz map f : K ′ → K ′ and ρ ∈]0, 1[ one can build a k′-
Lipschitz map g : K → K such that g|K′ = f |K′, g|ρB = IdρB and k′ depends
only on ρ, Diam(K) and r.

Proof. For all y ∈ B \ ρB there is only one point in [x, y) ∩ ∂B which we call
Π(y). We can notice already that Π is 1

ρ
-Lipschitz. When y ∈ B \ ρB we put

u(y) =
‖Π(y)− y‖
r(1− ρ)

∈ [0, 1[ (47)

and we define h : K \ ρB → K \ ρB as

g(y) =

{
f(y) if x ∈ K \B
u(y)y + (1− u(y))f ◦ Π(y) if y ∈ B \ ρB.

(48)
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It is easy to check that h is continuous, and that h|∂ρB = Id∂ρB. Now suppose
that (y, z) ∈ (K \ ρB)2 and consider the three following cases:

• if (y, z) ∈ (K \B)2 then

‖h(y)− h(z)‖ = ‖f(y)− f(z)‖ ≤ k‖y − z‖; (49)

• if (y, z) ∈ B2 we get

‖h(y)− h(z)‖ = ‖f ◦ Π(y)− f(z) + u(y)(y − f ◦ Π(y))− u(z)(z − f ◦ Π(z))‖
≤ ‖f ◦ Π(y)− f ◦ Π(z)‖+ ‖u(y)(y − f ◦ Π(y)− z + f ◦ Π(z))‖

+ ‖(u(y)− u(z))(z − f ◦ Π(z))‖

≤ 2k

ρ
‖y − z‖+ ‖y − z‖+

k

ρ
‖y − z‖+ Diam(K)|u(y)− u(z)|

=

(
2
k

ρ
+ 1

)
‖y − z‖+ Diam(K)

∣∣∣∣‖y − Π(y)‖ − ‖z − Π(z)‖
r(1− ρ)

∣∣∣∣
≤
(

2k

ρ
+ 1

)
‖y − z‖+ Diam(K)

‖y − z − Π(y) + Π(z)‖
r(1− ρ)

≤
(

2k

ρ
+ 1

)
‖y − z‖+ Diam(K)

‖y − z‖+ ‖Π(y)− Π(z)‖
r(1− ρ)

≤
(

2k

ρ
+ 1

)
‖y − z‖+ Diam(K)

‖y − z‖+ ρ−1‖y − z‖
r(1− ρ)

=

(
1 +

2k

ρ
+

2 Diam(K)

ρ(1− ρ)r

)
‖y − z‖;

(50)

• finally, if y ∈ K \B and z ∈ B we have

‖h(y)− h(z)‖ = ‖f(y)− u(z)z − (1− u(z))f ◦ Π(z)‖
≤ u(z)‖y − zΠ(z)‖+ (1− u(z))‖f(y)− f ◦ Π(z)‖
≤ ‖y − z‖+ k‖y − Π(z)‖

≤
(

1 +
k

ρ

)
‖y − z‖.

(51)

We have just shown that h is Lipschitz. Now all we have to do is to apply
lemma 1 to extend h inside ρB and lemma 2 will be proven.

The last extension theorem we provide is used to extend a Lipschitz map
defined on the subfaces of a complex to the whole Euclidean space, while
keeping its support as small as prescribed.

Lemma 3 (Lipschitz extension around a complex). Let k ∈ {0, . . . , n}, S a k-
dimensional complex and U an open bounded set such that U(S) ⊂ U . Suppose
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that for each δ ∈ S we are being given a Lipschitz map φδ : δ → δ such that
φ|∂δ = Id∂δ.

Then we can find a Lipschitz map φ : Rn → Rn such that:

∀δ ∈ S : φ|δ = φδ and φ|Rn\U = IdRn\U . (52)

Notice that we do not really care about the Lipschitz constant of the final
map, although we could give an estimate based upon the largest one of those
of the φδ and the rotondity of S.

Proof. All we really have to do is to prove that the map ψS defined on the
closed set F = U(S) ∪ (Rn \ U) as

ψS(x) =

{
x if x /∈ U
φδ(x) if x ∈ δ ∈ S

(53)

is Lipschitz and to apply Kirszbraun theorem to it.
To begin with, one can check that the definition of ψS is consistent. Firstly,

notice that any polyhedron inside S is disjoint of Rn \ U . Additionally, if one
can find x ∈ δ1 ∩ δ2 such that (δ1, δ2) ∈ S2 and δ1 6= δ2 then — by definition 4
of a complex — δ1 ∩ δ2 ⊂ ∂δ1 ∪ ∂δ2 and we have φδ1(x) = φδ2(x) = x.

We will now prove that ψS is Lipschitz by induction over the number of
polyhedrons in S. In what follows, for each δ ∈ S we suppose that φδ is
kδ-Lipschitz.

If S is made of only one polyhedron δ, put

a = min
x∈δ

(d(x,Rn \ U)) > 0 and b = max
x∈δ

(d(x,Rn \ U)) <∞. (54)

We already know that ψS is 1-Lipschitz over Rn\U and kδ over δ. If x ∈ Rn\U
and y ∈ δ we have ψS(y) = φδ(y) ∈ δ and we get

‖ψS(x)− ψS(y)‖ = ‖x− ψS(y)‖ ≤ b ≤ b

a
‖x− y‖. (55)

Now suppose that S = S ′ t {δ} (with S 6= ∅) and that ψS′ is k-lipschitz.
Let x ∈ U(S ′) and y ∈ δ and consider the line segment [ψS′(x), φδ(y)]; since
φδ(y) ∈ δ and ψS′(x) /∈ ∂δ we know that this line segment meets ∂δ at at least
one point y′.

Let us verify that one can always find a subface F ∈ F(δ) such that y′ ∈ F .
First, since U(Fk−1(δ)) = ∂δ then one can find a face F1 such that y′ ∈ F1.

If y′ ∈
◦
F1 we have finished. Otherwise y′ ∈ ∂F1 and again, one can find

F2 ∈ Fk−2(F1) such that y′ ∈ F2. By iterating this argument while y′ /∈
◦

Fi−1

one can find a subface Fi ∈ Fk−i(δ) such that y′ ∈
◦
Fi or y′ ∈ ∂Fi. Since

subfaces of dimension zero are singletons — equal to their interior, following
our conventions — this building process will stop eventually with at most i = k
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(in such case y′ is a vertex of δ) and in all cases we can find F ∈ F(δ) such

that y′ ∈
◦
F .

Denote by S ′′ the subset of S of the polyhedrons that do not intersect F
and by δ′ a polyhedron in S ′ such that ψS′(x) ∈ δ′. There are three possible
cases:

• if F is a common subface of both δ and at least one polyhedron of S ′ we
have ψS(y′) = ψS′(y

′) = φδ(y
′) = y′ and we get

‖ψS(x)− ψS(y)‖ = ‖ψS′(x)− φδ(y)‖
= ‖ψS′(x)− ψS′(y′)‖+ ‖φδ(y′)− φδ(y)‖
≤ (k + kδ)(‖x− y′‖+ ‖y′ − y‖)
= (k + kδ)‖x− y‖;

(56)

• if δ′ ∈ S ′′ we put

a(F ) = min
x∈U(S′′)

d(x, F ) > 0 and b(F ) = max
x∈U(S′′)

d(x, F ) ∈]0, 1]

(57)
and we get

‖ψS(x)− ψS(y)‖ = ‖ψS′(x)− φδ(y)‖
= ‖ψS′(x)− y′‖+ ‖φδ(y′)− φδ(y)‖
≤ b(F ) + kδ‖y′ − y‖

≤
(
b(F )

a(F )
+ kδ

)
‖x− y‖;

(58)

• lastly, if δ′ /∈ S ′′ we put H = Affine(F ) and G = F0(F )∩F0(δ
′) (i.e. G is

the set of vertices common to both F and δ′). We consider the minimal
ratio of the distance to H by the distance to G of vertices of δ′ that are
not in G:

a(F ) = min

{
d(c,H)

d(c,G)
: c ∈ F0(δ

′) et c /∈ G
}
> 0. (59)

By a convexity argument it is easy to check that for all t ∈ δ′ — and in
particular for t = ψS′(x) — we have

d(t,H) ≥ a(F )d(t, G). (60)

By denoting by c a vertex common to both F and δ′ whose distance to
ψS′(x) is minimal we also get:

‖ψS(x)− ψS(y)‖ = ‖ψS′(x)− φδ(y)‖
= ‖ψS′(x)− ψS′(c)‖+ ‖φδ(c)− φδ(y)‖
≤ (k + kδ) (‖x− c‖+ ‖c− y‖) .

(61)
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Consider triangle xcy and denote by x̂, ĉ and ŷ the non-oriented angles
respectively at vertices x, c and y. A simple planar geometry identity
gives us that

‖x− y‖
sin ĉ

=
‖x− c‖

sin ŷ
=
‖c− y‖

sin x̂
. (62)

To conclude, notice that the sinus of the non-oriented angle between lines
(x, c) and (y, c) is between a(F ) and 1. It follows that

‖x− c‖+ ‖c− y‖ =
sin ŷ

sin ĉ
‖x− y‖+

sin x̂

sin ĉ
‖x− y‖

≤ 2

a(F )
‖x− y‖

(63)

and by inequality (61) we finally get

‖ψS(x)− ψS(y)‖ ≤ 2(k + kδ)

a(F )
‖x− y‖. (64)

In all three cases we could give a constant c(F, δ′) such that ‖ψS(x)−ψS(y)‖ ≤
c(F, δ′)‖x− y‖. By taking the maximum of c(F, δ′) for all possible subfaces F
of δ and polyhedrons δ′ ∈ S ′ — which are in finite number — we get a global
constant c.

This achieve proving that ψS|U(S) is c-Lipschitz. To prove that it is also
Lipschitz over U(S) ∪ (Rn \ U) one can easily adapt the argument at the
beginning of the proof by induction when S contains only one polyhedron.

By induction over the number of polyhedrons in S, this achieves proving
that ψS is Lipschitz over U(S) ∪ (Rn \ U). By using Kirszbraun’s theorem it
is also possible to build a Lipschitz extension of ψS over the whole space Rn

that meets the announced requirements.

2.2 Measure-optimal projections

We now introduce the two basic tools that will allow us later to build a defor-
mation of a given rectifiable set onto a polyhedric mesh without increasing its
measure too much. We begin with Lipschitz maps with compact support used
to locally “flatten” the set onto its approximate tangent planes.

Proposal 2 (Magnetic projection). Let K be a nonempty compact set of Rn

and H an affine subspace. Let p be the orthogonal projector on H, ~H the linear
subspace H − p(0) and suppose that p(K) ⊂ K, H ∩K is convex and for all
x ∈ H ∩K, the compact set K(x) = K ∩ (x+ ~H⊥) is convex.

Then for all ρ > 0, one can find a so-called “ρ-magnetic projection onto H
inside K” map ΠH,ρ,K : Rn → H verifying the following properties:

• ΠH,ρ,K(Kρ) ⊂ Kρ, where Kρ = {x ∈ Rn : d(x,K) ≤ ρ};
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• ΠH,ρ,K |K = p|K and ΠH,ρ,K |Rn\Kρ = IdRn\Kρ;

• ΠH,ρ,K is Lipschitz with constant at most 2 + dH(H∩K,K)
ρ

.

Proof. Suppose that A is a nonempty convex compact set of Rn. By compacity,
for all x ∈ Rn one can find y ∈ A such that ‖x − y‖ = d(x,A) and by
convexity, y is unique; we call it the projection of x onto the convex set A
and denote it by πA(x). Let us rapidly verify that πA is 1-Lipschitz. When A
is a singleton or a line segment it is very easy to check. In the general case,
take (x, y) ∈ Rn and put u = πA(x) and v = πA(y). Since [u, v] ⊂ A we
get ‖πA(x)− πA(y)‖ ≤ ‖π[u,v](x)− π[u,v](y)‖ and the Lipschitz constant of πA
follows immediately from the one of π[u,v].

Now, fix ρ > 0 and for x ∈ Rn consider its projection πH∩K(x) onto the
nonempty convex set H ∩K. Since πH∩K(x) ∈ H ∩K then the compact set
K(πH∩K(x)) = K ∩ (πH∩K(x) + ~H⊥) is nonempty and by hypothesis, convex.
We will denote by Π(x) the projection of x onto this new convex:

∀x ∈ Rn : Π(x) = πK(πH∩K(x))(x). (65)

By construction x ∈ K(πH∩K(x))(x), therefore

p ◦ Π(x) ∈ p(K(πH∩K(x))) ⊂ H ∩ (πH∩K(x) + ~H⊥) = {πH∩K(x)}. (66)

It follows that p ◦ Π = πH∩K is 1-Lipschitz, and it is easy to check that
Π|K = IdK .

In what follows we suppose that 0 ≤ d < n and consider a d-set E. For
x ∈ Rn, we define the lower and upper radial d-dimensional densities of E at
x respectively by putting

νdE(x) = lim inf
r→0

Hd(E ∩B(x, r))

cdrd
νdE(x) = lim sup

r→0

Hd(E ∩B(x, r))

cdrd
(67)

where cd stands for the measure of the d-dimensional unit ball.
Also, we say that H is an approximate tangent plane for E at x if H is a

d-plane containing x, νdE(x) > 0 and

∀u > 0: lim sup
r→0

Hd(E \ C(x, r, u))

rd
= 0 (68)

where C(x, r, u) stands for the following intersection between a cone that “fol-
lows” H and a closed ball centered at x:

C(x, r, u) =
{
y ∈ B(x, r) : d(y,H) ≤ u‖x− y‖

}
. (69)

If E has such an approximate tangent plane at Hd almost every point we
say that E is d-rectifiable. Conversely, if E has no approximate tangent plane
at almost every point we say that it is d-irregular, which is the same as saying
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that any rectifiable set intersects E only on a null set. It is well-known (again,
see for instance Mattila’s book [Mat95]) that E is rectifiable if and only if νdE
and νdE are equal to the characteristic set function of E, Hd almost everywhere.
Conversely, E is irregular if and only if νdE is smaller than 1 almost everywhere.
As a consequence, any d-set E can be written as

E = ER t EI (70)

with ER rectifiable and EI irregular. We will refer to ER and EI respectively
as the rectifiable and irregular parts of E — which are defined up to a null set.

The next lemma makes use of the previous proposal introducing magnetic
projections in the following context. At almost every point of E where there
is an approximate tangent plane, one can find a ball such that the magnetic
projection onto the tangent plane inside a small neighborhood of the ball does
not increase the measure of the set too much.

Lemma 4 (Magnetic projection inside a high density cone). Let E be a d-set.
For all ε > 0 and at Hd almost every point x of the rectifiable part of E one
can find rmax > 0, ρ ∈]0, 1[, u > 0 and an approximate tangent plane H at x
such that for all r ∈]0, rmax[:

Hd(ΠH,ρr,C(x,r,u)(E ∩B(x, r + rρ) \ C(x, r, u))) ≤ εHd(E ∩B(x, r + rρ)). (71)

Proof. First, notice that the above C(x, r, u) is suitable to be used as “K” in
proposal 2. Fix ε′ > 0, u > 0 and ρ ∈]0, 1[.

Suppose that the lower and upper radial densities of E at x are equal to 1.
We can find r1 > 0 such that for all t ≤ r1:

cd(2t)
d(1 + ε′)−1 ≤ Hd(E ∩B(x, t)) ≤ cd(2t)

d(1 + ε′). (72)

By taking t = r and t = r + rρ in (72) it follows that for all r < r1
2
:

Hd(E ∩B(x, r + rρ) \B(x, r))

≤ 2dcd(1 + ε′)(r + rρ)d − 2dcd(1 + ε′)−1rd

≤ 2dcd(r + rρ)d(1 + ε′)−1
(

(1 + ε′)2 − rd

(r + rρ)d

)
≤
(

(1 + ε′)2 − 1

(1 + ρ)d

)
Hd(E ∩B(x, r + rρ))

(73)

Suppose that ρ is small enough so (1 + ρ)d < 1
(1−ε′)2 . By replacing in (73) we

obtain

Hd(E ∩B(x, r + rρ) \B(x, r))

≤ ((1 + ε′)2 − (1− ε′)2)Hd(E ∩B(x, r + rρ))

= 2ε′Hd(E ∩B(x, r + rρ)).
(74)
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Also, suppose that H is an approximate tangent plane at x. By (68) we
can find r2 > 0 such that for all r < r2:

Hd(E ∩B(x, r) \ C(x, r, u)) ≤ ε′rdcd

≤ ε′(1 + ε′)Hd(E ∩B(x, r))

≤ ε′(1 + ε′)Hd(E ∩B(x, r + rρ)).

(75)

On the other hand, we can write that

E ∩B(x, r + rρ) \ C(x, r, u)

= (E ∩B(x, r + rρ) \B(x, r)) t (E ∩B(x, r) \ C(x, r, u)) (76)

and since ΠH,ρr,C(x,r,u) is 2 + u
ρ
-Lipschitz by proposal 2 we get

Hd(ΠH,ρr,C(x,r,u)(E ∩B(x, r + rρ) \ C(x, r, u)))

≤
(

2 +
u

ρ

)d
(2ε′ + ε′(1 + ε′))Hd(E ∩B(x, r + rρ)). (77)

To conclude, all we have to do is taking u > 0 small enough such that(
2 + u

ρ

)d
< 2d + ε′ and we get

Hd(ΠH,ρr,C(x,r,u)(E ∩B(x, r + rρ) \ C(x, r, u))) ≤
ε′(2d + ε′)(3 + ε′)Hd(E ∩B(x, r + rρ)). (78)

Put rmax = min
(
r1
2
, r2
)
and recall that at Hd almost every point of the rec-

tifiable part of E, the radial densities are equal to 1 and E has an approx-
imate tangent plane. Being given ε > 0, by taking ε′ small enough to get
ε′(2d + ε′)(3 + ε′) < ε this achieves proving the lemma.

Following definition 1, our polyhedrons are nonempty, convex and compact.
Inside the generated affine subspace, any half-line starting in the interior of a
polyhedron will intersect its boundary at one unique point, which legitimates
the following definition.

Definition 8 (Radial projection). Suppose that δ is a k-dimensional polyhe-

dron (with 1 ≤ k ≤ n) and that x ∈
◦
δ. We define the radial projection Πδ,x

onto the faces of δ by

Πδ,x :

{
δ \ {x} → ∂δ

y 7→ z ∈ [x, y) ∩ ∂δ.
(79)

It is easy to check that Πδ,x|∂δ = Id∂δ and that Πδ,x|δ\U is Lipschitz for
all open set U containing x. The following lemma will allow us to control
the measure increase of the radial projection of a given d-set with constants
depending on the polyhedron’s rotondity.
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Lemma 5 (Optimal radial projection). Suppose that 0 ≤ d < k ≤ n. There
exists a constant K > 0 depending only on d, k and n such that for all k-

dimensional polyhedron δ and closed d-set E contained in δ, one can find X ⊂
◦
δ

with positive Hk-measure such that:

∀x ∈ X : Hd(Πδ,x(E)) ≤ KR(δ)−2dHd(E). (80)

The proof will use a mean value argument and Fubini’s theorem. Although
it would have been more convenient to use the Jacobian determinant of φδ,x
and a change of variables when computing the mean value of Hd(Πδ,x(E)),
this approach would have required additional assumptions on the regularity
of E. For this reason we will slice δ in thin pieces parallel to its faces and
approximate the integral by summing the measure in each piece.

Proof. Suppose that B is an inscribed ball inside δ, put B′ = 1
2
B and H =

Affine(δ). For z ∈ ∂δ we denote by n(z) an unit vector parallel to H which is
Hk−1 almost everywhere normal to ∂δ at z, and by ∂∗δ the subset of ∂δ where
n(z) is affectively normal to ∂δ. We also define

τx(z) =
‖z − x‖

| 〈n(z), z − x〉 |
and A = sup

x∈B′,z∈∂∗δ
τx(z), (81)

where 〈·, ·〉 stands for the usual Euclidean dot product in Rn.
For all z ∈ ∂∗δ one can find a face F ∈ Fk−1(δ) containing z. Put H ′ =

Affine(F ): by construction, n(z) is normal to H ′ and

τx(z) =
‖z − x‖
d(x,H ′)

. (82)

Since we supposed that x ∈ B′ and since δ is contained in a ball with the same
center as B′ with radius 2R(δ) we also get:

d(x,H) ≥ R(δ)

2
and d(x, z) ≤ 2R(δ). (83)

Using (82) and (83) we deduce that

A ≤ 4
R(δ)

R(δ)
=

4

R(δ)
. (84)

Fix an integer p > 0 and a point x ∈ B′. Consider the set {F1, . . . , Fm} =
Fk−1(δ) of faces of δ and put Hi = Affine(Fi) for 1 ≤ i ≤ m (each Hi is
an affine hyperplane of H of dimension k − 1). For r > 0, denote by hr the
homothecy centered at x with dilatation factor r and consider the following
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sets:

Cil (x) =
⋃

l
p
<r≤ l+1

p

hr(Fi), (85)

Ci(x) =
⋃

0≤r≤1

hr(Fi) =
⋃

0≤l<p

Cil (x), (86)

δl =
⋃

l
p
<r≤ l+1

p

hr(δ) =
⋃

1≤i≤m

Cil (x). (87)

Since x ∈ B′ ⊂
◦
δ and by convexity we have the following identities:

δ \ {x} =
⋃
i,l

Cil (x) =
⋃
i

Ci(x) =
⋃
l

δl(x). (88)

Furthermore, the sets δl(x) are disjoint for 0 ≤ l < p.
Suppose that l > 0 and notice that the restriction of Πδ,x to Ci(x) is the

radial projection centered at x on Hi. Then it is Lipschitz with constant at
most

p

l
sup

z∈Fi∩∂∗δ
τx(z) ≤ pA

l
. (89)

Following (88), the measure of the radial projection of E can be rewritten
as

Hd(Πδ,x(E)) =
∑
0≤l<p

Hd(Πδ,x(E ∩ δl))

= Hd(Πδ,x(E ∩ δ0)) +
∑
1<l<p

Hd(Πδ,x(E ∩ δl)).
(90)

Since x ∈ B′ \E and we supposed that E is closed then for p large enough we
have E ∩ δ0 = ∅ and using (89) we get:

Hd(Πδ,x(E)) =
∑
1<l<p

Hd(Πδ,x(E ∩ δl)) ≤ Ad
∑
1<l<p

(p
l

)d
Hd(E ∩ δl). (91)

When y ∈ δl we have ‖y − x‖ < l+1
p
R(δ) < 2l

p
R(δ). It follows that

Hd(E ∩ δl) =

∫
y∈E∩δl

dHd(y) ≤
(

2l

p
R(δ)

)d ∫
y∈E∩δl

dHd(y)

‖y − x‖d
(92)

and by replacing in (91):

Hd(Πδ,x(E)) ≤ (2AR(δ))d
∑
1<l<p

∫
y∈E∩δl

dHd(y)

‖y − x‖d

= (2AR(δ))d
∫
y∈E

dHd(y)

‖y − x‖d
. (93)
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Let us now compute the mean value of Hd(Πδ,x(E)) when x ∈ B′ \ E.
Using (93) we already have∫

x∈B′\E
Hd(Πδ,x(E))dHk(x) ≤ (2AR(δ))d

∫
x∈B′\E

∫
y∈E

dHd(y)dHk(x)

‖y − x‖d
(94)

and since B′ is a k-dimensional ball with radius R(δ)
2

and 1 ≤ d ≤ k we also
get: ∫

x∈B′\E

dHk(x)

‖y − x‖d
=

∫
x∈B′

dHk(x)

‖y − x‖d
= CR(δ)k−d <∞, (95)

where C is a positive constant depending only on d and k. Also, we supposed
that E is a d-set included in δ and since δ is compact we can write that∫

y∈E
CR(δ)k−ddHd(y) = CR(δ)k−dHd(E) <∞ (96)

which allows using Fubini’s theorem in (94):∫
x∈B′\E

Hd(Πδ,x(E))dHk(x) ≤ (2A)dCR(δ)k−dR(δ)dHd(E). (97)

On the other hand, one can find D > 0 depending only on k such that

Hk(B′ \ E) = Hk(B′) = DR(δ)k. (98)

Along with (97) this proves that it is possible to find a subset X ⊂ B′ \ E of
positive measure such that, for instance:

∀x ∈ X : Hd(Πδ,x(E)) ≤ 2

∫
x∈B′
Hd(Πδ,x(E))dHk(x)

Hk(B′)

≤ 2(2A)dCR(δ)k−dR(δ)d

DR(δ)k
Hd(E)

≤ 8d+1C

DR(δ)2d
Hd(E).

(99)

Since C and D depend only on d and k, this achieves proving lemma 5.

In the special case when E is irregular we also provide the following state-
ment. It will be useful later to make the irregular part’s measure vanish when
approximating a given d-set with polyhedrons — and thus allow us to give the
main statement without restricting ourself to rectifiable sets only.

Lemma 6 (Radial projection and irregular sets). Suppose that 0 ≤ d < k ≤ n,
that δ is a k-dimensional polyhedron and that E is a closed irregular d-set

contained in δ. Then, for Hk almost all x ∈
◦
δ, Πδ,x(E) is also irregular.
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Recall that an irregular set intersects a regular one only on a null set and
that Πδ,x(E) is contained in ∂δ — which is k−1-rectifiable. As a consequence,
Hd(Πδ,x(E)) = 0 for Hk almost every x as soon as d = k − 1.

Proof. The first step of the proof is to show that for Hn almost any center,
the radial projection of a given d-irregular set onto a given affine hyperplane is
also d-irregular. Although this may not be the most natural way to prove it,
we will rely on the well-known result about orthogonal projections of irregular
sets onto linear subspaces — again, see for instance Mattila’s book [Mat95]:
for almost every linear d-plane H, the orthogonal projection of E onto H is a
null d-set — and conversely, any set verifying this property is d-irregular

To define what we mean by “almost every linear d-plane” we will denote
by G(n, d) the Grassmannian manifold of all d-dimensional linear subspaces of
Rn and consider the following Radon measure γn,d on G(n, d):

∀X ⊂ G(n, d) : γn,d(X) = Hn × . . .×Hn︸ ︷︷ ︸
d times

({
(v1, . . . , vd) ∈ (Rn)d :

‖vi‖ ≤ 1 and Vect(v1, . . . , vd) ∈ X}) . (100)

By “for almost every linear d-plane” we are referring to a subset Y ⊂ G(n, d)
such that γn,d(G(n, d) \ Y ) = 0.

Suppose that x ∈ R and y = (y2, . . . , yn) ∈ Rn−1. For convenience, in what
follows we will denote by (x, y) the element (x, y2, . . . , yn) ∈ Rn. We will also
use the following notations and variables:

• a ∈ Rn−1, 0 < α < 1 and β > 0;

• P is the affine hyperplane {1}×Rn−1 (identified with Rn−1) and p is the
orthogonal projector onto P ;

• Πa is the radial projection onto P centered at (0, a) ∈ Rn;

• F is an irregular d-set (with d ≥ 2) contained in

D = [α, 1]× [−β, β]n−1. (101)

Firstly, we want to show that for Hn−1 almost every a, Πa(F ) is d-irregular.
For that purpose, define

φa :

{
D −→ Rn

(x, y) 7−→
(
1
x
, a+ y−a

x

)
,

(102)

and notice that Πa = p ◦ φa. By putting (x′, y′) = φ0(x, y) =
(
1
x
, y
x

)
we get

φa(x, y) =

(
1

x
, a+

y

x
− a

x

)
= (x′, a+ y′ − x′a). (103)
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Besides, put b = (1, a) and consider the three following affine maps onto Rn:

pa : z = (x, y) 7−→ z − 〈z, b〉
‖b‖2

b =

(
x− x+ 〈y, a〉

1 + ‖a‖2
, y − x+ 〈y, a〉

1 + ‖a‖2
a

)
, (104)

fa : z = (x, y) 7−→ (x, y − xa) (105)

and

τa : z = (x, y) 7−→ z + b = (x+ 1, y + a) . (106)

Notice that

fa ◦ pa(x′, y′) =

(
x′ − x′ + 〈y′, a〉

1 + ‖a‖2
, y′ − x′a

)
(107)

which in turn gives

p ◦ τa ◦ fa ◦ pa ◦ φ0 = p ◦ φa = Πa. (108)

For convenience, let us identify P with Rn−1 and for H ∈ G(n− 1, d), suppose
that H (in fact, {1} ×H) is a d-dimensional linear subspace of P . Also, put
H ′ = R×H and denote by pH and pH′ respectively the orthogonal projections
onto H and H ′. Since pH ◦ p = p ◦ pH′ and pH′ ◦ fa = fpH(a) ◦ pH′ we deduce
from (108) that

pH ◦ Πa = p ◦ τa ◦ fpH(a) ◦ pH′ ◦ pa ◦ φ0. (109)

Since fpH(a) is 1 + ‖pH(a)‖-Lipschitz we get

Hd(pH ◦ Πa(F )) = Hd(p ◦ τa ◦ fpH(a) ◦ pH′ ◦ pa ◦ φ0(F ))

≤ Hd(fpH(a) ◦ pH′ ◦ pa ◦ φ0(F ))

≤ (1 + ‖a‖)dHd(pH′ ◦ pa ◦ φ0(F )).

(110)

Also, recall that pa is defined in (104) as the orthogonal projector onto the
linear hyperplane Ha perpendicular to b = (1, a). By putting V (a,H) =
Ha ∩ H ′, pH′ ◦ pa is the linear projection onto the linear d-plane V (a,H).
Suppose that (v1, . . . , vd) ∈ (Rn−1)d are such that R × Vect(u1, . . . , ud) = H ′

and ‖ui‖ ≤ 1. Then

V (a,H) = Vect ((−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud)) , (111)

with ‖(−〈u1, a〉 , u1)‖ ≤ 1 + ‖a‖.
Take r > 0, suppose that X ⊂ (Rn−1 ∩B(0, r))×G(n− 1, d) and put

Y = {V (a,H) : (a,H) ∈ X} ⊂ G(n, d). (112)
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In what follows, for convenience we will denote by (Ha)b the product measure
Ha× . . .×Ha. Using inequalities of Hausdorff measure of Lipschitz image, we
get the following, where C and D depend only on d and n:

(Hn−1 × γn−1,d)(X)

=(Hn−1)d+1 ({(a, u1, . . . , ud) : ‖ui‖ ≤ 1 and (a,Vect(u1, . . . , ud)) ∈ X})

≤
∑
j≥1

2j(n−1)Hn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),

(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : a ∈ X, 2−j < ‖ui‖ ≤ 2−j+1,

Vect(u1, . . . , un) = {0} × Rn−1 and (a,Vect(u1, . . . , ud)) ∈ X
})

≤
∑
j≥1

2−jd(n−1)Hn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),

(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : a ∈ X, 1/2 < ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × Rn−1 and (a,Vect(u1, . . . , ud)) ∈ X
})

≤CHn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),
(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × Rn−1 and (a,Vect(u1, . . . , ud)) ∈ X
})

≤CHn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),
(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × Rn−1 and (a,Vect(u1, . . . , ud)) ∈ X
})

≤C(1 + r)ndHn−d−1 × (Hn)d
({

(b, v1, . . . , vd) : b ∈ Rn−d−1, ‖b‖ ≤ r,

vi ∈ Rn, ‖vi‖ ≤ 1 and Vect(v1, . . . , vd) ∈ Y })
≤CDrn−d−1(1 + r)nd(Hn)d

({
(v1, . . . , vd) ∈ (Rn)d : ‖vi‖ ≤ 1 and

Vect(v1, . . . , vd) ∈ Y })
≤CD(1 + r)(n−1)(d−1)γn,d(Y ).

(113)

Since φ0 is bi-Lipschitz on D and F ⊂ D is d-irregular, F ′ = φ0(F ) is also
d-irregular, which can be expressed as

γn,d
({
H ∈ G(n, d) : Hd(pH(F ′)) > 0

})
= 0. (114)

We are now ready to show that for Hn−1 almost all a ∈ B(0, r), the radial
projection Πa(F ) is d-irregular. For that purpose, suppose that

X =
{

(a,H) ∈ Rn−1 ×G(n− 1, d) : ‖a‖ ≤ r and Hd (pH(F ′)) > 0
}
, (115)
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and let us compute the following quantity M(r), using (110) and (113):

M(r) =

∫
‖a‖≤r

 ∫
H∈G(n−1,d)

Hd(pH ◦ Πa(F ))dγ(n− 1, d)(H)

 dHn−1(a)

=

∫
‖a‖≤r

H∈G(n−1,d)

Hd(pH ◦ Πa(F ))d(Hn−1 × γ(n− 1, d))(a,H)

≤ (1 + r)d
∫

(a,H)∈X

Hd(pH′ ◦ pa(F ′))d
(
Hn−1 × γ(n− 1, d)

)
(a,H)

≤ (1 + r)dHd(F ′)
(
Hn−1 × γ(n− 1, d)

)
(X)

≤ CD(1 + r)(n−1)(d−1)Hd(F ′)γn,d(Y )

≤ CD(1 + r)(n−1)(d−1)Hd(F ′)γn,d
({
H ∈ G(n, d) : Hd(pH(F ′)) > 0

})
= 0.

(116)

Equation (116) is valid for any r > 0, which is enough to prove that Πa(F )
is d-irregular for Hn−1 almost all a ∈ Rn−1. It is also clear that all the above
calculations could have been done with any radial projection centered at (x, a),
with x < 0. As a consequence, for Hn almost all center (a, x) (with x ≤ 0),
the radial projection of F onto P is d-irregular.

Let us resume proof of lemma 6. Without loss in generality, by working in
the affine subspace Affine(δ) we can assume that k = n. Fix x ∈

◦
δ \ E. Since

E is closed, one can find a ball B(x) centered at x such that B ⊂
◦
δ \E. If we

consider a face Fi ∈ Fk−1(δ), included in the affine hyperplane Hi, by using
the same notations as those in lemma’s 5 proof we have

∀x ∈
◦
δ \ E : inf

y∈Ci(x)∩E
d(x,Hi) > 0. (117)

Using the above part of the proof, one can find a ball Bi(x) ⊂ B(x) such that
Πδ,y(E ∩ Ci(y)) is d-irregular for Hk almost all y ∈ Bi(x). By iterating this
argument over all faces of δ, one can find a ball B′(x) =

⋂
iBi(x), centered at

x, such that for Hk almost all y ∈ B′(x):

Πδ,y(E) is d-irregular. (118)

Since E is a null k-set (recall that d < k), by repeating over all x ∈
◦
δ \E this

achieves proving the lemma.

3 Existence of a minimal candidate
Before we start with the main result, we give ourself two handy tools that will
allow us either to build a polyhedric mesh and a Lipschitz map that send a

29



given d-set onto its d-dimensional subfaces, or to build a Lipschitz map that
sends a given d-set onto the subfaces of an existing grid, each time with some
kind of optimal control over the potential d-dimensional measure increase.

3.1 Polyhedral approximation

We will now proceed into proving the following analogous for compact d-sets
of the classical polyhedral approximation theorem for integral currents. Notice
that the requirements on E are very minimalist: we do not even suppose that
E is rectifiable.

Theorem 3 (Polyhedral approximation). Suppose that 0 < d < n and that
h : Rn → [1,+∞[ is continuous.

There is a positive constant J > 0 such that for all open bounded domain
U ⊂ Rn, for all closed d-set E ⊂ U and for all ε > 0, R > 0, one can build
a n-dimensional complex S and a Lipschitz map φ : Rn → Rn satisfying the
following properties:

• φ|Rn\U = IdRn\U and ‖φ− IdRn ‖∞ ≤ ε;

• R(S) ≥ M , R(S) ≤ J and the boundary faces F∂(S) of S are the same
as the ones of a dyadic complex;

• φ(E) ⊂ U(Fd(S)) and U(S) ⊂ U ;

• Jdh(φ(E)) ≤ (1 + ε)Jdh(E).

Proof. To begin with, suppose that E = ER ∪ EI , where ER is d-rectifiable,
EI is d-irregular and ER ∩ EI = ∅. Let us fix ε > 0, ε′ > 0, R > 0 and apply
lemma 4 to E: at Hd almost every point of ER, one can find rmax(x) > 0, ρ and
u such that for all r < rmax(x), inequality (71) is true. Since h is continuous
over the compact set U , one can find A > 0 such that 1 ≤ h(x) ≤ A for all
x ∈ U , and for all x ∈ U one can find r′max(x) > 0 such that

∀y ∈ B(x, r′max(x)) : (1− ε′)h(x) ≤ h(y) ≤ (1 + ε′)h(x). (119)

Denote by B the collection of closed balls centered at a point x of ER where rmax

is defined, with radius at most min
(
rmax(x)
1+ρ

, r′max(x), ε
2

)
. By a Vitali covering

lemma, one can extract a countable subset B̂ = {Bi : i ∈ N} from B of pairwise
disjoint balls such that

Hd

(
ER \

⋃
i

Bi

)
= 0. (120)

For each ball Bi ∈ B̂ centered at xi with radius r, denote by ρi and ui the
constants given by lemma 4 at xi, put ri = r

1+ρi
and consider the compact set

Ki = C(xi, ri, ui), (121)

30



as defined in (69). Call Hi the approximate tangent d-plane at xi. Our upper
bound on the radii of balls in B implies that

Hd(ΠHi,riρi,Ki(E ∩B(xi, ri + riρi) \Ki)) ≤ ε′Hd(E ∩B(xi, ri + riρi)). (122)

Consider a finite subset B from B̂ such that

Hd

ER \ ⋃
B∈B

B

 ≤ ε′Hd(E) (123)

and define the magnetic projections product (see proposal 2)

ψ0 =
∏
Bi∈B

ΠHi,riρ,Ki . (124)

Notice that Supp ΠHi,riρ,Ki ⊂ (Ki)riρ ⊂ Bi — which are pairwise disjoint balls
of radii at most ε

2
— and ΠHi,riρ,Ki is

(
2 + ui

ρi

)
-Lipschitz, so ψ0 is γ-Lipschitz

with

γ = 2 + max
Bi∈B

ui
ρi
, (125)

‖ψ0 − ‖∞ ≤
ε

2
, (126)

and the definition of ψ0 does not depend upon the choice of the order of
multiplication in (127).

Suppose that α > 0. If α is small enough, one can build in each Ki a dyadic
complex Si of stride α (see definition 5) in an orthonormal basis centered at xi
with d vectors parallel to Hi. There is also a constant αi depending on ui and
ri such that, if α < αi and by taking in Si every possible dyadic cube included
in Ki:

Hd(ψ0(E) ∩Ki \ U(Si)) ≤ ε′Hd(ψ0(E) ∩Ki) ≤ ε′Hd(E ∩Bi). (127)

By putting αmax = mini αi and by taking α < αmax, one can build all these
dyadic complexes Si of stride α such that Σ2 =

⋃
i Si is a n-dimensional com-

plex obtained as a finite union of dyadic complexes verifying (127). Let us
define:

E1 = E \
⋃
Bi∈B

Bi,

E2 = E ∩
⋃
Bi∈B

Bi \Ki,

E3 = {x ∈ E ∩
⋃
Bi∈B

Ki : ψ0(x) /∈ U(Si)},

E4 = {x ∈ E ∩
⋃
Bi∈B

Ki : ψ0(x) ∈ U(Si)}.

(128)
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Notice that E = E1 t E2 t E3 t E4, that ψ0|E1 = IdE1 and by (123), (122)
and (127) we also have the following inequalities:

Hd(ψ0(E1 ∩ ER)) = Hd(E1 ∩ ER) ≤ ε′Hd(E),

Hd(ψ0(E2)) ≤ ε′Hd(E2) ≤ ε′Hd(E),

Hd(ψ0(E3)) ≤ Hd(E3) ≤ ε′Hd(E).

(129)

By summing and putting ε′′ = 3ε′A we obtain

Jdh (ψ0((E1 ∩ ER) t E2 t E3)) ≤ 3ε′AJdh(E) = ε′′Jdh(E). (130)

On the other hand, ψ0|U(Si) is the orthogonal projector onto Hi with U(Si) ⊂
Bi. Since each Bi has radius at most r′max(xi), by (122) we have

Jdh(ψ0(E4)) ≤ (1 + ε′)Hd(ψ0(E4)) ≤ (1 + ε′)Hd(E4) ≤ (1 + ε′)2Jdh(E), (131)

and we can notice already that ψ0(E4) ⊂ U(Fd(S)), since we chose the orien-
tation of Si parallel to Hi.

By hypothesis, E and ∂U are compact, and since E ∩ ∂U = ∅ we have

a = inf
(x,y)∈E×∂U

d(x, y) > 0. (132)

Consider theorem 1 (in what follows, ρ is the minimal distance required to
merge dyadic grids together, and c1 the constant used to control the upper
radii) and suppose that we took

α < min

(
αmax,

a

4
√
n
,
mini ρi
16
√
n
,
mini ρi

2ρ
,

R

2c1
√
n
,

ε

2c1
√
n

)
(133)

when building our dyadic grids Si. Fix an arbitrary orthonormal basis in Rn.
By taking all possible cubes of stride α in this basis that are included in U and
disjoint with all the (Ki)riρi/2, one can build a dyadic complex Σ1 such that:

U(Σ1) ⊂ U \
⋃
i

(Ki)riρi/2,

U(Σ1) ⊃ E1,

U(Σ1) ⊃
⋃
i

(
(Ki)riρi \ (Ki)7riρi/8

)
.

(134)

By using theorem 1 separately in each (Ki)riρi (which are pairwise disjoint)
we can build a complex S such that Σ1 t Σ2 ⊂ S, E ⊂ U(S) ⊂ U , R(S) ≥M
(with M depending only on n) and

R(S) ≤ c1R(Σ1 t Σ2) ≤ min
(
R,

ε

2

)
. (135)

Put F0 = ψ0(E) and let us reason by induction. Suppose that at rank
k ∈ {1, . . . , n − d} we have found a Lipschitz map ψk−1 which verifies, by
putting Fk−1 = ψk−1(E):
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• ψk−1|E4 = ψ0|E4 ;

• ψk−1(E1 ∩ EI) is d-irregular and there is a constant C > 0 depending
only on d and n such that Jdh(ψk−1((E1∩ER)tE2tE3)) ≤ Ck−1ε′′Jdh(E);

• Fk−1 ⊂ U(Fn−k+1(S)).

Notice that by construction and (130), ψ0 verifies all three properties at rank
k = 1.

For all δ ∈ Fn−k+1(S) we can apply lemma 6 and lemma 5 to respectively

ψk−1(E1∩EI)∩δ and ψk−1((E1∩ER)tE2tE3)∩δ, and find a center xδ ∈
◦
δ\Fk−1

such that Πδ,xδ ◦ (ψk−1(E1 ∩ EI) ∩ δ) is also d-irregular and

Hd(Πδ,xδ ◦ ψk−1(((E1 ∩ ER) t E2 t E3) ∩ δ)) ≤
Kd,kR(S)−2dHd(ψk−1(((E1 ∩ ER) t E2 t E3) ∩ δ)) (136)

where Kd,k depends only on d and k. Notice that ψ0|E4 is defined as the
orthogonal projector onto Hi inside Ki, and since we supposed that ψk−1|E4 =
ψ0|E4 we have

ψk−1(E4) ⊂ U(Fd(S)) ⊂ U(Fn−k(S)). (137)

As a consequence, for all subface δ ∈ Fn−k+1(Σ2) we have ψk−1(E4) ∩ δ ⊂ ∂δ,
and since E4 ⊂ U(Σ2):

∀δ ∈ Fn−k+1(S) : Πδ,xδ |ψ0(E4)∩δ = Idψ0(E4)∩δ . (138)

Since E is closed, for all δ ∈ Fn−k+1(S) we can find some n−k-dimensional
ball Bδ ⊂ δ such that Bδ ∩Fk−1 = ∅. Since Πδ,xδ |δ\Bδ is Lipschitz, by applying
lemma 2 we can extend it on δ as a Lipschitz map ψδ. And since ψδ|∂δ = Id∂δ,
by applying lemma (3) to the n − k + 1-dimensional complex Fn−k+1(S), we
can build a Lipschitz extension ψ on U .

Put ψk = ψ ◦ ψk−1 and let us check that ψk verifies all three induction
hypothesis:

• ψk|E4 = ψ ◦ ψk−1|E4 = ψ ◦ ψ0|E4 = ψ0|E4 by (138);

• we already know that ψk(E1 ∩ EI) is d-irregular. Since R(S) ≥ M ,
by (136) and by putting C = AM−2d maxkKd,k we also obtain

Jdh(ψk((EI ∩ E1) t E2 t E3)) ≤ CJdh(ψk−1((EI ∩ E1) t E2 t E3))

≤ Ckε′′Jdh(E);
(139)

• by construction, for all δ ∈ Fn−k+1(S) we have ψk(δ) ⊂ ∂δ ∈ Fn−k(S).
Since we supposed that Fk−1 ⊂ U(Fn−k+1(S)), we also have Fk = ψk(E) ⊂
U(Fn−k(S)), which achieves proving the induction.
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Take k = n − d, put φ = ψn−d and recall that we built φ as the product
φ = f ◦ ψ0 where f is such that f(δ) ⊂ δ for all δ ∈ F(S). Using (135) we get
‖f − IdRn ‖∞ ≤ ε

2
and by (126):

‖φ− IdRn ‖∞ ≤ ‖ψ0 − IdRn ‖∞ + ‖f − IdRn ‖∞ ≤ ε. (140)

Notice that since φ(E1 ∩EI) is d-irregular and included in U(Fd(S)) (which is
d-rectifiable) then Hd(φ(E1 ∩ EI)) = 0. Using (131) we finally get:

Jdh(φ(E)) ≤ Jdh(φ(E1 ∩ EI)) + Jdh(φ((E1 ∩ ER) t E2 t E3 t E4))

≤ Jdh(φ((E1 ∩ ER) t E2 t E3)) + Jdh(E4)

≤ Cn−dε′′Jdh(E) + Jdh(ψ0(E))

≤ (Cn−dε′′ + (1 + ε′)2)Jdh(E).

(141)

By taking ε′ small enough such that Cn−dε′′ + (1 + ε′)2 ≤ 1 + ε, this achieves
proving theorem 3.

The following lemma is very similar, except that the polyhedric mesh is
fixed. The control over the potential measure increase is given by a multiplica-
tive constant depending on the shape of the polyhedrons and subfaces of the
mesh.

Lemma 7 (Polyhedral deformation). Suppose that 0 ≤ d < n, that U ⊂ Rn

is an open bounded domain and that S is a n-dimensional complex such that
U(S) ⊂ U .

There exists a constant K > 0 depending only on d and n such that for all
closed d-set E ⊂ U(S), one can build a Lipschitz map φ : Rn → Rn satisfying
the following properties:

• φ|Rn\U = IdRn\U and for all subface α ∈ F(S): φ(α) = α and φ|α = Idα
if dimα ≤ d;

• φ(E) ⊂ U(Fd(S));

• Hd(φ(E)) ≤ KR(S)−2d(n−d)Hd(E) and for all subface α ∈ F(S): Hd(φ(E∩
◦
α)) ≤ KR(S)−2d(n−d)Hd(E ∩ ◦α).

The proof is pretty straightforward: we just have to use an induction rea-
soning like the one in the above proof of theorem 3.

Proof. By building optimal radial projections in subfaces of dimension n, n−1,
. . . till dimension d+ 1 and extend them on Rn using lemma 3 we build a map
φ that verifies all the required topological constraints, and such that

∀α ∈ F(S) : Hd(φ(E ∩ ◦α)) ≤ KR(S)−2d(n−d)Hd(E ∩ ◦α) (142)

where K depends only on d and n.
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Our two previous polyhedral approximation and deformation statements
(theorem 3 and lemma 7) are not complete, in the sense that the set we obtain
in the end may not be made of complete polyhedrons, but instead may contain
“holes”. In each polyhedron that is not completely covered, it is possible to
continue our radial projections in the previous dimension till all remaining
subfaces are completely covered. At the end, the set we obtain is a finite union
of subfaces of dimension at most d (i.e. a d-dimensional skeleton, as introduced
in section 1).

Lemma 8 (Polyhedral erosion). Suppose that 0 ≤ d < n, that U ⊂ Rn is
an open bounded domain and that S is a n-dimensional complex such that
U(S) ⊂ U .

For all closed set E ⊂ U(Fd(S)) one can build a Lipschitz map φ : Rn → Rn

satisfying the following properties:

• φ|Rn\U = IdRn\U and for all subface α ∈ F(S): φ(α) = α, and φ|α = Idα
or φ(α ∩ E) ⊂ ∂α;

• there is a d-dimensional skeleton S ′ of S such that φ(E) = U(S ′);

• Hd(φ(E)) ≤ Hd(E).

Later, this lemma will be used in conjunction with theorem 3 or lemma 7 to
restrict ourselves to a finite subclass of competitors for which finding a minimal
set is trivial.

Proof. For ≤ j ≤ d and F ⊂ Rn, put

Sj(F ) =
⋃

δ∈Fj(S)
F∩δ=δ

δ, S ′j(F ) =
⋃

δ∈Fd(S)

F∩
◦
δ 6=
◦
δ

F ∩ δ. (143)

Notice that when F ⊂ U(Fj(S)), Sj(F ) ∩ S ′j(F ) ⊂ U(Fj−1(S)) and we can
find F ′ ⊂ U(Fj−1(S)) such that F = Sj(F ) ∪ S ′j(F ) ∪ F ′.

We will use again a similar argument as in lemma 3. Put ψ0 = IdRn ,
Ed = E and notice that since S is a complex, S ′j(Ed) = ∅ for all j > d. Let us
reason by decreasing induction over j, and suppose that at rank j ∈ {1, . . . , d}
we have built a Lipschitz map ψj over Rn such that, by putting Ej = ψj(E)
we have:

Hd(Ej) ≤ Hd(E) and ∀k ∈ {j + 1, . . . , n} : S ′k(Ej) = 0. (144)

Put
T =

{
α ∈ Fj(S) : Ej ∩

◦
α 6= ∅ and Ej ∩

◦
α 6= ◦

α
}
. (145)

If T = ∅ we have finished. If not, since Ej is closed then for all α ∈ T we can
find a d-dimensional open ball B ⊂ ◦

α \ Ej centered at xα. By using lemma 2
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we can extend Πα,xα|α\B over α and obtain a Lipschitz map ψα such that

ψα(Ej ∩ α) ⊂ U(Fj−1(S))

Hd(ψα(Ej ∩ α)) = 0 ≤ Hd(Ej ∩ α).
(146)

Suppose that α ∈ T , k > j and that β ∈ Fk(S) is such that ◦α ∩ β 6= ∅. Since
S is a complex, this implies that α ⊂ ∂β ⊂ β. By (144), either Ej ∩ β = β or

Ej∩
◦
β = ∅ and since Ej∩

◦
α 6= ◦

α the second case is true. As we have previously
done in lemma 3, we can build Lipschitz extensions of all the ψα (for α ∈ T )
over Rn with pairwise disjoint supports and such that

Suppψα ∩
(
(Rn \ U) ∪ (Fj \ S ′j(Fj))

)
= ∅. (147)

Put

ψ =
∏
α∈T

ψα

ψj−1 = ψ ◦ ψj.
(148)

Since ψ|Fj\S′j(Fj) = IdFj\S′j(Fj) and ψ|S′j(Fj) is a product of extensions of radial
projections in j-dimensional subfaces of S, then for all k > j − 1:

S ′k(Sj(Ej−1)) = S ′k(S
′
j(Ej−1)) = ∅. (149)

Beside, since Ej−1 = Sj(Ej−1) ∪ S ′j(Ej−1) ∪ E ′ where E ′ ⊂ U(Fj−1(S)) then
S ′k(E

′) = ∅ and we get:

S ′k(Ej−1) = S ′k(Sj(Ej−1)) ∪ S ′k(S ′j(Ej−1)) ∪ S ′k(E ′) = ∅. (150)

Also, it is clear that Hd(Ej−1) ≤ Hd(E), which achieves proving the induction.
If we iterate the above process till rank j = 0 and put φ = ψ0, for all k > 0

we have S ′k(φ(E)) = ∅, which is enough to conclude.

3.2 Limits of uniformly concentrated minimizing sequences

In what follows we give a way to convert any minimizing sequence of ele-
ments of E into another minimizing sequence of polyhedric and quasiminimal
competitors, with uniform constants (depending only on dimensions d and n).
Notice that the following lemma may prove to be more useful in “real problems”
than theorem 4, because it gives more control over the topological constraint
embedded in F, especially when involving the boundary of U .

Lemma 9 (Polyhedral optimization). Suppose that 0 < d < n and that U ⊂
Rn.

There is a positive constant M ′ > 0 (depending only on d and n) such that

• for all continuous function h : U → [1,M ],
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• for all relatively closed d-subset E ⊂ U ,

• for all relatively compact subset V ⊂⊂
◦
U and for all ε > 0,

one can find a n-dimensional complex S and a subset E ′′ ⊂ U satisfying the
following properties:

• E ′′ is a Diam(U)-deformation of E over U and by putting W =
◦
U(S) we

have V ⊂⊂ W ⊂⊂ U and there is a d-dimensional skeleton S ′ of S such
that E ′′ ∩W = U(S ′);

• Jdh(E ′′) ≤ (1 + ε)Jdh(E);

• there are d+1 complexes S0, . . . , Sd with Sl ⊂ Fl(S) such that, by putting{
Ed = U(Sd) ∩W
El = U(Sl) ∩W l

{
W d = W

W l−1 = W l \ El,
(151)

then E ′′ ∩ W = Ed t Ed−1 t . . . t E0 and for all l ∈ {0, . . . , d}, El

is (MM ′,Diam(W ))-quasiminimal over W l for Hl. Furthermore, El is
optimal in the sense that if all the El′ are fixed for l′ > l, any deformation
of E overW l′ verifying the same above properties cannot decrease Jdh(El).

Proof. To begin with, we can always suppose that U is bounded. Otherwise,
take an open bounded neighborhood U ′ ⊂ U of V such that V ⊂⊂ U ′ and
replace U by U ′. That way, we can assume that Hd(E) < ∞. Since V ⊂⊂ U
we have

A = inf
(x,y)∈∂U×∂V

d(x, y) > 0, (152)

which means that in any orthonormal basis and for R < A
8
√
N

one can build a
dyadic complex T of stride R such that V ⊂⊂ U(T ) ⊂⊂ U .

Fix ε > 0, put

R =
A

8
√
n
, (153)

and apply theorem 3 to the closed d-set E ∩ V in the open domain U , with
the above constant R: we build a dyadic complex S such that R(S) < R,
R(S) > J and U(S) ⊂⊂ U , and a Lipschitz map ψ1 such that ‖ψ1−IdRn ‖∞ < ε,
ψ1(E∩V ) ⊂ U(Fd(S)) and Jdh(ψ1(E∩V )) ≤ (1+ ε)Jdh(E∩V ). Using lemma 8
with ψ1(E∩V ), we build a Lipschitz map ψ2 such that ψ2 ◦ψ1(E∩V ) = U(S ′)
where S ′ is a d-dimensional skeleton of S and

Jdh(ψ2 ◦ ψ1(E ∩ V )) ≤ (1 + ε)Jdh(E ∩ V ). (154)

If we build an additional layer of cubes around S, and by stopping the radial
projections of theorem 3 and lemma 8 at dimension n − 1 in the boundary
faces of S we can even assume that

Jdh(ψ2 ◦ ψ1(E)) ≤ (1 + ε)Jdh(E) (155)
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and
ψ2 ◦ ψ1|

Rn\
◦
U(S)

= Id
Rn\

◦
U(S)

. (156)

Later, we will implicitly make the same assumptions when using lemmas 7
and 8.

Since F∂(S) is the same as a dyadic complex, and sinceR(S) < R, by (152)
and (153) we can add dyadic cubes around S until

V ⊂⊂ U(S) ⊂⊂ U. (157)

Put W =
◦
U(S) and E ′ = ψ2 ◦ ψ1(E), and recall that by lemma 8:

∀δ ∈ S : ψ2(δ) ⊂ δ. (158)

This implies that ‖ψ2 − IdRn ‖∞ ≤ R(S) < R, and we get

‖ψ2 ◦ ψ1 − IdRn ‖ < 2R < A. (159)

By (152) and using proposal 1 with ψ2 ◦ ψ1 and the identity deformation over
U we build a deformation (φt) over U such that φ1 = ψ2 ◦ ψ1, and E ′ is an
Almgren competitor of E such that E ′ \W = E \W .

Consider the set S of subsets of U obtained as an union of E \W with a
d-dimensional skeleton of S:

S = {U(T ) ∪ (E \W ) : T ⊂ Fd(S) ∪ . . . ∪ F0(S)}, (160)

and the set E of competitors of E obtained by a deformation with support in
W :

E = {φ1(E) : (φt) is a Diam(W )-deformation over U and Supp(φ) ⊂ W}.
(161)

Notice that S∩E is finite since F(S) is finite, and non-empty since it contains
E ′. Then we can find E ′′ ∈ S ∩ E such that

Jdh(E ′′) = min{Jdh(F ) : F ∈ S ∩ C}, (162)

and furthermore
Jdh(E ′′) ≤ Jdh(E ′) ≤ (1 + ε)Jdh(E). (163)

Let us check that E ′′ meets all the announced quasiminimality require-
ments. Suppose that F is an Almgren competitor of E ′′ obtained by a Diam(W )-
deformation (φt) over W . Since F is also an Almgren competitor of E we have
F ∈ E. By applying lemmas 7 and 8 to F and S, as we did previously with E
we can build an Almgren competitor F ′ ∈ E∩S of F obtained by a deformation
(ψt) over W such that for all subface α ∈ F(S):

Hd(ψ1(F ∩
◦
α)) ≤ KR(S)−2d(n−d)Hd(F ∩ ◦α) ≤ K ′Hd(F ∩ ◦α), (164)
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where K ′ = KJ−2d(n−d) depends only on d and n. Recall that E ′′ ∩W is an
union of subfaces of dimension at most d of S. Then, for all subface α of
dimension at least d+ 1, F ∩ E ′′ ∩ ◦α = ∅ and as a consequence:

F \ E ′′ =

 ⊔
α∈F(S)
dim(α)>d

F ∩ ◦α

 t
 ⊔

α∈F(S)
dim(α)≤d

(F \ E ′′) ∩ ◦α

 . (165)

Notice that the Lipschitz maps given by lemmas 7 and 8 are such that for all
subface α of dimension at most d, ψ1|α = Idα or ψ1(α∩F ) ⊂ ∂α, which gives:

Hd(ψ1(F \ E ′′)) =

 ∑
α∈F(S)
dim(α)>d

Hd(ψ1(F ∩
◦
α))

+ d

 ∑
α∈F(S)
dim(α)≤d

Hd(ψ1((F \ E ′′) ∩
◦
α))



≤

 ∑
α∈F(S)
dim(α)>d

K ′Hd(F ∩ ◦α)

+

 ∑
α∈F(S)
dim(α)≤d

Hd((F \ E ′′) ∩ ◦α)


≤ max(K ′, 1)

∑
α∈F(S)

Hd((F \ E ′′) ∩ ◦α)

= K ′Hd(F \ E ′′).
(166)

Since F ′ ∈ E ∩S we have Jdh(F ′) ≥ Jdh(E ′′), and more precisely, by removing
E ′′ ∩ F ′:

Jdh(E ′′ \ F ′) ≤ Jdh(F ′ \ E ′′). (167)

Besides, F ′ \E ′′ = ψ1(F ) \E ′′ ⊂ ψ1(F \E ′′) because ψ1(E
′′) = E ′′ (recall that

E ′′ ∩W is an union of subfaces of S, and that by lemma 7, for all α ∈ F(S),
ψ1(α) = α) and Jdh(E ′′\F ′) ≤ Jdh(ψ1(F \E ′′)). Using our bounds on h and (166)
we get

Hd(E ′′ \ F ′) ≤MHd(ψ1(F \ E ′′)) ≤ KMHd(F \ E ′′). (168)

Suppose that δ is a subface of S of dimension at least d + 1. Notice that
ψ1(F ∩

◦
δ) is included in U(Fd(δ)), and that by lemma (7):

Hd(ψ1(F ∩
◦
δ)) ≤ K ′Hd(F ∩

◦
δ). (169)

Conversely, if α ∈ Fd(S) then either α ∈ E ′′ ∩ F ′ or ◦α ∩ E ′′ ∩ F ′ = ∅ since
E ′′ ∩W and F ′ ∩W are both unions of subfaces of S. In the first case, the
topological properties of the Lipschitz map given by lemmas 7 and 8 imply
that

α \ F ⊂ ψ1

 ⋃
δ∈S(α)

◦
δ

 , (170)
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where
S(α) = {β ∈ F(S) : β 6= α and α ∈ F(β)} . (171)

Consequently, for all α ∈ Fd(S) such that α ⊂ E ′′ ∩ F ′:

Hd(α \ F ) ≤ Hd

α ∩ ⋃
δ∈S(α)

ψ1(F ∩
◦
δ)

 . (172)

By summing over all d-dimensional faces of S that are included in E ′′∩F ′∩W
and by (168) we get:

Hd((E ′′ ∩ F ′) \ F ) =
∑

α⊂E′′∩F ′
Hd (α \ F )

≤
∑

α⊂E′′∩F ′
Hd

α ∩ ⋃
δ∈S(α)

ψ1(F ∩
◦
δ)


= Hd

 ⋃
α⊂E′′∩F ′

⋃
δ∈S(α)

α ∩ ψ1(F ∩
◦
δ)


≤ Hd

 ⋃
α⊂F ′

⋃
δ∈F(S),dim(δ)>d

α ∩ ψ1(F ∩
◦
δ)


≤ Hd

( ⋃
α⊂F ′

α

)
∩

 ⋃
δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)


= Hd

F ′ ∩ ⋃
δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)


= Hd

 ⋃
δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)


≤

∑
δ∈F(S),dim(δ)>d

Hd

(
ψ1(F ∩

◦
δ)

)

≤
∑

δ∈F(S),dim(δ)>d

K ′Hd

(
F ∩

◦
δ

)

= K ′Hd

 ⋃
δ∈F(S),dim(δ)>d

F ∩
◦
δ


= K ′Hd(F \ U(Fd(S)))

≤ K ′Hd(F \ E ′′).

(173)
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To achieve proving that E ′′ is quasiminimal, let us split E ′′ \ F :

E ′′ \F = (E ′′ \ (F ′∪F ))t ((E ′′∩F ′)\F ) ⊂ (E ′′ \F ′)∪ ((E ′′∩F ′)\F ). (174)

Using (174), (168) and (173) we obtain

Hd(E ′′ \ F ) ≤ Hd(E ′′ \ F ′) +Hd((E ′′ ∩ F ′) \ F )

≤ K ′(M + 1)Hd(F \ E ′′)
≤MM ′Hd(F \ E ′′),

(175)

where M ′ = 2K ′ depends only on d and n. Using the fact that E ′′ \ F ⊂ ξφ1
and F \ E ′′ ⊂ φ1(ξφ1) we also have the following set equalities:

E ′′ ∩ ξφ1 = ((E ′′ \ F ) ∩ ξφ1) t (E ′′ ∩ F ∩ ξφ1)
= (E ′′ \ F ) t (E ′′ ∩ F ∩ ξφ1),

(176)

and

φ1(E
′′ ∩ ξφ1) = φ1(E

′′) ∩ ((φ1(ξφ1) \ E ′′) t (ξφ1 ∩ E ′′))
= F ∩ ((φ1(ξφ1) \ E ′′) t (E ′′ ∩ ξφ1))
= ((F \ E ′′) ∩ φ1(ξφ1)) t (F ∩ E ′′ ∩ ξφ1)
= (F \ E ′′) t (F ∩ E ′′ ∩ ξφ1).

(177)

Using (175), (176) and (177) we finally get

Hd(E ′′ ∩ ξφ1) = Hd(E ′′ \ F ) +Hd(E ′′ ∩ F ∩ ξφ1)
≤MM ′Hd(F \ E ′′) +Hd(E ′′ ∩ F ∩ ξφ1)
≤ max(MM ′, 1)

(
Hd(F \ E ′′) +Hd(F ∩ E ′′ ∩ ξφ1)

)
= MM ′Hd(φ1(E

′′ ∩ ξφ1)),

(178)

which achieves proving that E ′′ is (MM ′,Diam(W ))-quasiminimal over W for
Hd.

Let us now verify the last point of the lemma. Suppose that S ′ ⊂ F(S) is a
d-dimensional skeleton of S and consider the following definition for 0 < l ≤ d:{

F∗d (S ′) = Fd(S) ∩ S ′

F∗l−1(S ′) = {α ∈ Fl−1(S) ∩ S ′ : ∀l′ ≥ l,∀β ∈ F∗l′(S ′), α 6⊂ β} .
(179)

The complexes F∗l (S ′) are in fact the l-dimensional polyhedrons of S ′ that are
not a subface of any polyhedron of S ′ with higher dimension. Let us also define
Sd =

{
T ⊂ F(S) : (E \W ) ∪ U(T ) ∈ C and Jdh(U(T )) = min

G∈C∩S
Jdh(G ∩W )

}
S l−1 =

{
T ∈ S l : J l−1h (U(F∗l−1(T ))) = min

T ′∈Sl
J l−1h (U(F∗l−1(T ′)))

}
.

(180)
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Notice that Sd is not empty since the skeleton that we used to build E ′′ is in it,
and by induction it is easy to check that S0 is not empty. Without changing
the above proof we can assume that we took E ′′ = (E \W ) ∪ (U(S ′′)) where
S ′′ ∈ S0. For 0 ≤ l ≤ d, put

Sl = F∗l′(S ′′), (181)

and use the same notations as in the last point of the lemma. We can use the
same argument as we used above to prove the quasiminimality of E ′′, to prove
that each El is quasiminimal for Hl over W l.

Before stating and proving our main theorem we provide the following
lemma which will allow use to consider minimization problems with respect to
the integral functional Jdh instead of Hd only, and consider the case of almost-
minimal sets as well with a gauge function closely related to h.

Lemma 10 (Lower semicontinuity of Jdh with respect to Hd). Suppose that
U is an open domain, that h : U → [1,M ] is lower semicontinuous and that
(Ek)k∈N is a sequence of measurable subsets of U .

If there is a measurable set E ⊂ U such that for all open subset V ⊂⊂ U :

Hd(E ∩ V ) ≤ lim inf
k→∞

Hd(Ek ∩ V ), (182)

then the following holds:

Jdh(E) ≤ lim inf
k→∞

Jdh(Ek). (183)

Proof. Fix an integer m > 0 and for l ≥ 0, put

Xl = {x ∈ U : h(x) > 2−ml} (184)

Notice that Xl is open because h is lower semicontinuous, and for x ∈ U set

hm(x) = 2−m
∑
l≥0

1Xl(x), (185)

where 1Xl stands for the characteristic set function of Xl. Since h is bounded,
the sum in (185) is finite and for all open subset V ⊂⊂ U :

Jdhm(E ∩ V ) = 2−m
∑
l≥0

lHd(E ∩Xl ∩ V )

≤ 2−m
∑
l≥0

l lim sup
k→∞

Hd(Ek ∩Xl ∩ V )

= lim sup
k→∞

Jdhm(Ek ∩ V ).

(186)

Besides, notice that
h ≤ hm ≤ h+ 2−m, (187)
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which gives

Jdh(E) ≤ Jdhm(E) ≤ lim inf
k→∞

Jdhm(Ek) ≤ lim inf
k→∞

Jdh(Ek) + 2−mH, (188)

where H = supkHd(Ek). Consider the two possibles cases:

1. if H <∞ then by taking limits in (188) we have finished;

2. if H =∞, there are two more possible cases:

• if lim infk→∞Hd(Ek ∩ V ) =∞ we have finished;

• otherwise, we can extract a subsequence (E ′k)k∈N of (Ek) such that
supkHd(E ′k) <∞,

lim
k→∞
Hd(E ′k ∩ V ) = lim inf

k→∞
Hd(Ek ∩ V ), (189)

and go back to the above case 1 by replacing Ek with E ′k.

We now have all the required ingredients to proceed into proving the main
result. A large part of the argument is based upon the proof of the second
point of theorem 2 (see [Dav03a]). Our polyhedral optimization theorem 9
allows us to build a polyhedric minimizing sequence for which we have to make
sure that the subfaces of dimension less than d do not converge towards a set
of positive d-dimensional measure. This will be done using the optimality
of subdimensional cores we obtained before. Notice that we do not require
our minimizing sequence to be made of reduced sets, which might prove to
be convenient when trying to control the topological constraint when taking
limits, since the subdimensional cores can play a topological role.

Theorem 4 (Main result). Let U be an open, bounded domain of Rn, 0 ≤
d < n, F a non-empty family of relatively closed subsets of U stable under
the Diam(U)-deformations over U such that infF∈FHd(F ) < ∞ and h : U →
[1,M ] a continuous function such that

∀(x, y) ∈ U2 : h(y) ≤ (1 + h̃(‖x− y‖))h(x) (190)

where h : ]0,Diam(U)[ verifies

lim
r→0

h̃(r) = 0. (191)

Then one can build a sequence (Ek)k∈N of elements of F satisfying the
following properties:

• Ek
U−⇁ E ′;

• Jdh(E ′) ≤ inf
F∈F

Jdh(F );

43



• E ′ is almost-minimal with gauge function h̃ over U .

More precisely, by putting

El = kerld(E) and U l = U \
⊔

d≥l′>l

El′ (192)

for 0 ≤ l ≤ d, the following holds:

• kerld(Ek)
U l−⇁ El;

• J lh(E
l) ≤ inf

F∈F
F\U l=E\U l

J lh(kerld(F ));

• El is almost-minimal with gauge function h̃ over U l.

Notice that we did not require that all the elements of F have finite measure.
However, we can always consider the subclass F′ of d-sets of F (which is not
empty since infF∈FHd(F ) < ∞), which is stable under deformations on U
because of the Lipschitz condition in definition 6 and we can use F′ instead of
F.

Proof. Suppose that (Uk)k∈N is an increasing sequence of open and relatively
compact subsets of U such that ⋃

k∈N

Uk = U. (193)

For instance, one can take

Uk =

{
x ∈

◦
B(0, 2k) : B(x, 2−k) ⊂ U

}
. (194)

For k ≥ 0, set εk = 2−k and choose Ek ∈ F such that:

Jdh(Ek ∩ Uk) ≤ εk + inf
F∈F

Jdh(F ∩ Uk). (195)

Set η > 0. By applying lemma 9 to Ek∩Uk inside Uk, one can build an open set
Wk such that Uk ⊂⊂ Wk ⊂⊂ U , a n-dimensional complex Sk and an Almgren
competitor

E ′k = (Ek \ Uk) t
⊔

0≤l≤d

El
k ∈ F (196)

such that Jdh(E ′k ∩ Uk) ≤ (1 + η)Jdh(Ek ∩ Uk), and El
k = U(Sl) (for 0 ≤ l ≤ d)

where Sl ⊂ Fl(Sk), where each El
k is (MM ′,Diam(Uk)-quasiminimal over U l

k

for Hl. Notice that Jdh(Ek∩Uk) ≤MHd(Ek∩Uk) < +∞, because Ek is a d-set
included in U , which is bounded. By taking η = εk

Jdh(Ek∩Uk)
> 0 and by (195),

we get:

Jdh(E ′k ∩ Uk) ≤ εk + Jdh(E ∩ Uk) ≤ 2εk + inf
F∈F

Jdh(F ∩ Uk). (197)
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We can extract from (E ′k) a convergent subsequence that converges towards
a relatively closed subset El of U locally on every compact of U . By setting

U l = U \
⋃

d≥l′>l

El′ (198)

and extracting multiple subsequences, we can even assume that El
k ∩ U l con-

verges towards El locally on every compact of U l. To summarize, once we have
extracted all our convergent subsequences, we obtain:

∀l ≤ d : El
k

U l−⇁ El , E ′k =
⊔

0≤l≤d

El
k , E ′k

U−⇁ E and E =
⊔

0≤l≤d

El.

(199)
Now fix l ≤ d, suppose that V ⊂⊂ U l and for ε > 0, put:

Wε =
⋃

x∈Ed∪Ed−1...∪El+1

B(x, ε). (200)

Since El′

k
U l
′

−⇁ El′ when l′ > l, one can find k0 such that

∀k ≥ k0 :
⋃

d≥l′>l

El′

k ⊂ Wε. (201)

Besides, V ⊂⊂ U l and U l ∩ El′ = ∅ when l′ > l, so we can take ε > 0 small
enough such that V ∩Wε = ∅, which in turn gives:

∀k ≥ k0, ∀l′ > l : El′

k ∩ V = ∅. (202)

Since El
k is (MM ′,Diam(Wk))-quasiminimal overW l

k, it is also (MM ′,Diam(U))-
quasiminimal over V ∩W l

k when k ≥ k0. Furthermore, since V is compact and
included in U , which is covered by

⋃
k Uk by (193), by taking a finite covering

we can assume that k0 is large enough such that

∀k ≥ k0 : V ⊂ Uk. (203)

We can also assume that, for instance, R(Sk) ≤ εk — by taking R small
enough in lemma’s 9 proof. That way, again by taking k0 large enough, we
can assume that we can extract a subset S ′k from Sk verifying

V ⊂⊂ U(S ′k) ⊂⊂ W l
k. (204)

By extracting another subsequence, we can even suppose that for instance
R(Sk+1) ≥ 8

√
nR(Sk), and extract our complexes S ′k such that:

∀k ≥ k0 : U(S ′k) ⊂ U(S ′k+1). (205)

Suppose that we have done all the above setup, put

D = Hl(U(Fl(Sk0))) and D′ = min
α∈Fl(S′k0)

Hl(α), (206)
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and suppose that k ≥ k0. Our next goal is to prove the two following state-
ments:

Hl(El
k ∩ V ) ≤MM ′D, (207)

Hl(El
k ∩ V ) ∈ {0} ∪ [

D′

M ′ ,+∞[. (208)

Firstly, put W ′
k =

◦
U(S ′k). By applying lemma 7 to the closed l-set El

k in
the complex S ′k0 , we get a deformation (ψt) over W ′

k0
such that, by putting

E ′lk = ψ1(E
l
k) we have E ′lk ∩W ′

l ⊂ U(Fl(S ′k)),

Hl(E ′lk ) ≤ D and Hl(E ′lk ) ≤M ′Hl(El
k ∩W ′

k0
). (209)

Using the quasiminimality of El
k over W l

k we get directly

Hl(El
k ∩W ′

k0
) ≤MM ′Hl(E ′lk ) ≤MM ′D, (210)

and since V ⊂ W ′
k0

by (204), we obtain (207).
Now, if we suppose that Hl(El

k ∩W ′
k0

) < D′

M ′
then by (208) we have

Hl(E ′lk ) < D′ = min
α∈Fl(S′k0 )

Hl(α) (211)

and since E ′lk ⊂ W ′
k0
⊂ U(Fl(S ′k0)) this means that for all α ∈ Fl(S ′k0 , α∩E

′l
k 6=

α. By using lemma 8 we can build a deformation (ψ′t) over W ′
k0

such that:

E ′′lk = ψ′1(E
′l
k ) ⊂ U(Fl−1(S ′k0)). (212)

Using the quasiminimality of El
k again and by (212), we get

Hl(El
k ∩W ′

k0
) ≤MM ′Hl(E ′′lk ∩W ′

k0
) = 0, (213)

and since V ⊂
◦

W ′
k0

by (204), we get (208).
Applying theorem 2 to the sequence (El

k ∩ U)k≥k0 — which converges to-
wards El ∩ V — gives us the following points:

• El∩V is (MM ′,Diam(U))-quasiminimal over U and kerl(El∩V )El∩V ;

•
Hl(El ∩ V ) ≤ lim inf

k→∞
Hl(El

k ∩ V ) ≤MM ′D <∞ (214)

so El ∩ V is a closed relative l-subset of V ;

•
Hl(El ∩ V ) ≥ C lim sup

k→∞
Hl(El

k ∩ V ) ∈ {0} ∪ [
CD′

M ′ ,+∞[, (215)

and consequently two cases are possible:
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– if Hl(El ∩ V ) = 0 then kerl(El ∩ V ) = ∅ and

lim sup
k→∞

Hl(El
k ∩ V ) = 0, (216)

which means that for k large enough, El
k ∩V = ∅ and El∩V = ∅ =

kerl(El ∩ V ) (since El
k ∩ V

V−⇁ El ∩ V );

– if Hl(El ∩ V ) > 0 then for k large enough we have Hl(El
k ∩ V ) ≥

D′

M ′
> 0, so El

k ∩ V 6= ∅.

We get from the second point that kerl
′
(El) = ∅ and Hd(El′) = 0 if l′ > l.

If we take for V a ball centered on El and relatively compact in U l with
arbitrary small radius, the third point tells us that El

k
U l−⇁ kerl(El) and that

kerl(El) = El, and as a consequence:

kerld(E
′
k)

U l−⇁ kerld(E). (217)

The first point implies that El is (MM ′,Diam(U))-quasiminimal over U l. And
using lemma 10 we also get:

Jdh(E) = Jdh(Ed)

≤ lim inf
k→∞

Jdh(Ed
k ∩ Uk)

= lim inf
k→∞

inf
F∈F

Jdh(F ∩ Uk)

≤ inf
F∈F

Jdh(F ).

(218)

Notice that we could start again all the above process with an initial sequence
(E ′k) such that, for instance:

J lh(E
′
k ∩ V l

εk
) ≤ 2εk + inf

F∈F,F\V lεk=E
′
k\V lεk

J lh(F ∩ V l
εk

), (219)

where

V l
εk

= Uk \

 ⋃
l+1≤l′≤d
x∈El′

B(x, εk)

 . (220)

That way we would ensure that

J lh(kerld(E)) ≤ inf
F∈F

F\U l=E\U l

J lh(kerld(F )), (221)

and by defining new limits El′ for l′ ≤ l and a new V l
εk
, by induction we could

prove the last point of theorem 4.
At this point, all that is left to prove is the almost-minimality of the El:

suppose that δ > 0 and that (ft) is a δ-deformation over U . Let us apply
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the last point of theorem 2 to the sequence (E ′k): we get a Lipschitz map g
over U and using proposal 1 we can build a δ-deformation (gt) over U , with g1
verifying equation 40.

Suppose that M = 1. For k large enough we have ξf1 ∪ ξg1 = ξf1 ⊂ Uk and
we can even suppose that Supp(g) ⊂⊂ Uk. By (219) and since g1(Ek) ∈ F we
automatically have

Hd(g1(E
′
k ∩ ξg1)) ≥ Hd(E ′k ∩ ξg1)− 2εk. (222)

By (40) and provided that k is large enough we also get

Hd(f1(E ∩ ξf1)) ≥ Hd(E ∩ ξf1)− 4εk, (223)

and since εk → 0:
Hd(f1(E ∩ ξf1)) ≥ Hd(E ∩ ξf1), (224)

which achieves proving that E is minimal over U .
When M > 1, we can find a ball B with radius δ such that ξg1 ⊂ ξf1 ⊂ B.

Again, by (219) we have

Jdh(g1(E
′
k ∩ ξg1)) ≥ Jdh(E ′k ∩ ξg1)− 2εk, (225)

and by (190):

Hd(g1(E
′
k ∩ ξg1)) ≥ (1 + h̃(δ))Hd(E ′k ∩ ξg1)− 2εk. (226)

Using (40) again, we obtain

Hd(f1(E ∩ ξf1)) ≥ (1 + h̃(δ))(Hd(E ∩ ξf1)− 2εk)− 2εk, (227)

which similarly gives in turn

Hd(f1(E ∩ ξf1)) ≥ (1 + h̃(δ))Hd(E ∩ ξf1). (228)

The above argument we used to prove the almost-minimality of E could be
done again in decreasing dimension for El inside U l, which achieves proving
the last point of theorem 4.

3.3 An example of application

As we outlined before, we cannot ensure that the minimal candidate given
by theorem 4 is still in our topological class F. More precisely, it is easy to
find cases for which there is not even a solution to our measure minimization
problem in F — and even more since we supposed that U is open. For instance,
when n = 2 and d = 1, take U =]− 2, 2[2\[−1, 1]2 and consider the class F of
paths joining x = (1,−2) to y = (1, 2) with open extremities, and included in
U . Clearly, F is stable under the Diam(U)-deformations over U and it is easy
to check that infF∈FH1(F ) = 4 but every element of F is of length greater
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than 4 since the open line segment joining x to y is not in F. Notice that in
that case, the minimal candidate given by theorem 4 is in fact the union of the
two open line segments joining x to (1,−1) and y to (1, 1). The convergence
notion “over all compact set of U ” we had to used because U is open is rather
weak near the boundary of U and for this reason we can cause gap to appear in
E when taking limit in our minimizing sequence, as in the previous example.

However, in the context of a more restrictive notion of minimal sets than
Almgren-minimal sets (see below) our approach can give complete existence
results. The definition of this other kind of minimal sets is borrowed from
Guy David in [Dav08], where the reader might find more details about how
they can be useful to study the regularity of minimal segmentations for the
Mumford-Shah functional.

Let E be a closed set in Rn. A Mumford-Shah competitor for E (a “MS-
competitor” in short) is a closed set F such that we can find a closed ball B
verifying

F \B = E \B (229)

and for all x, y ∈ Rn \ (B ∪ E), “F separates x from y whenever E does” (i.e.
if x and y lie in different connex components of Rn \ E then they also lie in
different connex components of Rn \ F ). We say that E is MS-minimal if

Hn−1(E \ F ) ≤ Hn−1(F \ E) (230)

for all MS-competitor F of E.
The following statement can be used to find MS-minimizers inside a local-

ized class of MS-competitors. In fact, we have to give an upper bound on the
size of the ball in which we allow our sets to be changed. Also, we have to give
some way to ensure that our minimizing limit will not come too close to the
boundary of the ball when taking limit in our minimizing sequence, to avoid
gaps to appear as we explained above.

Corollary 1 (MS-minimal competitors inside a ball). Suppose that n ≥ 1 and
that E is a closed set. For all ball B, E has a MS-minimal competitor E ′
inside B (i.e. E ′ is minimal like in (230) amongst all MS-competitors F of E
such that F \B = E \B).

The statement still holds when B is any compact convex set, although we
will prove it only in the case when B is a ball. However, the proof may be
adapted easily for this case.

Proof. For convenience, let us suppose that B is open and centered at the
origin, denote by π the radial projection onto ∂B centered at the origin and
set B′ = 2B. For F ⊂ Rn we also define the two set functions

H(F ) = (F ∩B) ∪ {tx : x ∈ F ∩ ∂B and 1 ≤ t ≤ 2} ∪ {2x : x ∈ F \B}

I(F ) = (F ∩B) ∪
{x

2
: x ∈ F \B′

}
.

(231)
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These functions will be used to turn E into a cone inside B′ \B and to easily
build deformations on B′ \H(E). Notice that I ◦H(F ) = F and that F is a
MS-competitor of F ′ if and only if H(F ) is a MS-competitor of H(F ′).

For R > 0 small enough, one can build a dyadic complex S inside B′ such
that B ⊂ U(S) ⊂ B′. In fact, by fixing an orthonormal basis with origin at
(R/2, . . . , R/2) and by taking all possible cubes inside B′ we can even assume
that for all x ∈ B′ \U(S), the line segment [0, x] intersects U(F∂(S)) = ∂U(S)
at an unique point y. In that case the map f : x 7→ y is Lipschitz, possibly
with a very large constant depending on R.

Fix A ≥ 1, set U = B′ \ (H(E) \B), and define h : U → [1, A] by

h(x) =

{
1 if x ∈ U(S),
A otherwise.

(232)

We also consider the class E of relatively closed subsets F of B ∩ U such that
F ∪ (H(E)\B) are MS-competitors of H(E). Notice that E is not empty since
H(E) ∩ U ∈ E and that infF∈EHn−1(F ) < ∞ since ∂B ∩ U ∈ E. We also
denote by F the class of deformations over U of the elements of E, which are
also MS-competitors of H(E) (see [Dug66, Dav08]).

Our function h is only lower semicontinuous over U although theorem 4
requires h to be continuous over U . However, if we consider how we proved
theorem 9 back then we can always suppose that we did a covering of E\∂U(S)
by balls included in U \ ∂U(S), and assume that we built our global dyadic
grid (the one we used to merge all the grids in the balls of our almost covering
together) such that its faces cover ∂U(S)∩Wk — in fact, we have to consider a
dyadic complex in the same basis as S whose stride divides the stride of S. In
that case, the upper semicontinuity of h is not needed anymore, since it is only
used when doing our magnetic projections to locally flatten E onto its tangent
planes, and E ∩ ∂U(S) is already flattened onto the faces of our polyhedric
grid.

With that minor modification we can therefore apply theorem 4 to F, h
and U : we get a measure-minimizing sequence (Ek) of elements of F such that

Ek ∩
◦
Wk = U(S ′k) ∩

◦
Wk (where S ′k is an optimal n− 1-dimensional skeleton of

a complex Sk with Wk = U(Sk) and U(S) ⊂ Wk),

Ek
U−⇁ E ′ and Jn−1h (E ′) ≤ inf

F∈F
Jn−1h (F ). (233)

Fix k > 0. Since Ek \ U(S) ⊂ Wk ⊂⊂ U , by using Kirszbraun theorem with f
and since U \B is a cone we can build a Diam(Wk)-deformation (φt) over Wk

such that φ1|Ek\U(S) = f |Ek\U(S) and φ1|U(S) = IdU(S). Since Ek \ B ⊂⊂ U we
can even suppose (by taking Sk large enough) that Ek\U(S) ⊂ Wk. Therefore,
if we denote by α the Lipschitz constant of f we get:

Hn−1(φ1(Ek \ U(S))) ≤ αn−1Hn−1(Ek \ U(S)). (234)
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Using our polyedric deformation lemmas 7 and 8 with φ1(Ek) we can build a
deformation (ψt) over U such that

ψ1 ◦ φ1(Ek) ⊂ U(S) (235)

and ψ1 ◦ φ1(Ek) is polyhedric inside U(S) (i.e. it is a finite union of subfaces
of dimension at most n− 1 of Sk). However, since Ek was already polyhedric
inside U(S) we also have

ψ1|Ek∩U(S) = IdEk∩U(S) (236)

and

Hn−1(ψ1 ◦ φ1(Ek \ U(S))) ≤ CHn−1(φ1(Ek \ U(S)))

≤ Cαn−1Hn−1(Ek \ U(S)),
(237)

with C depending only on n. Therefore, we get

Jn−1h (ψ1 ◦ φ1(Ek)) ≤
Cαn−1

A
Jn−1h (Ek \ U(S)) + Jn−1h (Ek ∩ U(S)). (238)

If we suppose that we took A > Cαn−1 then necessarily Hn−1(Ek \U(S)) =
0 since Ek is optimal amongst all its polyhedric deformations. Notice that this
argument also apply for the n − 2-dimensional measure (since kern−2n−1(Ek) is
also optimal in theorem 9), and so on till dimension 0. Therefore, this proves
that Ek \U(S) = ∅, which means that Ek never gets too close to ∂B′ and that
E ′ ⊂ U(S).

We are now ready to show that E ′ is a MS-competitor of H(E). For that
purpose, suppose that x, y ∈ Rn \ (B′ ∪H(E)) are separated by H(E), pick a
path γ from x to y and let us show that γ intersects E ′ ∪ (H(E) \ U). Since
Ek ∈ F, γ intersects Ek ∪ (H(E) \U) at some point xk and by compacity of γ
we can find x ∈ γ and extract a subsequence such that limk→∞ xk = x. Also,
notice that either xk ∈ H(E)\U or xk ∈ Ek ⊂ U(S) for all k and therefore x ∈
(H(E)\U)∪U(S). If x ∈ H(E)\U we have finished. If x ∈ U(S)\(H(E)\U),
then for k0 large enough and k ≥ k0 we have B(x, ‖x − xk‖) ⊂ U . Since
Ek

U−⇁ E ′ we can find a sequence yk of points of E ′ ∩ B(x, ‖x − xk0‖) that
converges towards x, and since E ′ ∩B(x, ‖x− xk0‖) is closed this is enough to
prove that x ∈ E ′.

To conclude, let us denote by π the radial projection onto ∂B centered at
the origin, and for x ∈ U(S) put

g(x) =

{
π(x) if x /∈ B,
x otherwise.

(239)

Again by applying Kirszbraun theorem we can build a Diam(U)-deformation
(φt) over B′ such that φ1(H(E) ∩ B) = H(E) ∩ B and φ1|E′ = g|E′ . Notice
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that g is 1-Lipschitz and therefore g(E ′) ∈ F with Hn−1(g(E ′)) ≤ Hn−1(E ′).
Put

E ′′ = I(g(E ′) ∪ (H(E) \ U)) (240)

and notice that by (233), E ′′ is a MS-competitor of E that meets the following
requirements:

E ′′ \B = E \B and Hn−1(E ′′ ∩B) ≤ inf
F MS-competitor of E

F\B=E\B

Hn−1(F ∩B).

(241)
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