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Social evolution in structured populations
F. Débarre1,w, C. Hauert2 & M. Doebeli1,2

Understanding the evolution of social behaviours such as altruism and spite is a long-standing

problem that has generated thousands of articles and heated debates. Previous theoretical

studies showed that whether altruism and spite evolve may be contingent on seemingly

artificial model features, such as which rule is chosen to update the population (for example,

birth–death or death–birth), and whether the benefits and costs of sociality affect fecundity or

survival. Here we unify these features in a single comprehensive framework. We derive a

general condition for social behaviour to be favoured over non-social behaviour, which is

applicable in a large class of models for structured populations of fixed size. We recover

previous results as special cases, and we are able to evaluate the relative effects of benefits

and costs of social interactions on fecundity and survival. Our results highlight the crucial

importance of identifying the relative scale at which competition occurs.
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W
hy would an individual help or harm others if this
reduces its fitness relative to individuals that do not
exhibit the social behaviour? Because such behaviours

are widespread in nature, numerous theoretical studies have
sought to understand the conditions for the evolution of altruism
or spite. Although different theoretical frameworks and vocabul-
aries coexist, which sometimes generated heated debates between
the proponents of different schools of thought1–3, they all yield
the same kind of conclusions: whether described in terms of
games, or direct and indirect fitness or among and within group
interactions, altruism requires some form of assortment, so that
altruists interact more often with altruists than defectors do4,
while the evolution of spite requires negative assortment5.
Assortment occurs for instance through clustering in spatially
structured (that is, ‘viscous’) populations6, or through conditional
behaviour when there is kin or type recognition7–9. However, the
conditions for the evolution of altruism or spite often depend on
specific and sometimes artificial model assumptions, such as
whether generations are discrete (Wright–Fisher model) or
continuous (Moran10 model)11,12. In the latter case, the
sequence of events within one time step (death followed by
birth, versus birth followed by death) is of crucial importance for
the evolutionary outcome13,14, yet the choice itself seems
arbitrary15. Also, in most previous models, costs and benefits of
altruism or spite (that is, the ‘payoffs’) are assumed to affect the
fecundity of individuals, and costs and benefits for survival have
received much less attention16–18, despite the fact that such
effects are equally plausible and should hence be incorporated in
general models of social evolution.

Here we present a comprehensive modelling framework that
applies to a large class of population structures and not
only unites the various assumptions in a single model, but
identifies the crucial elements which support the evolution of
social behaviour. In structured populations, social behaviour
evolves if, for social individuals, the net social benefit of living
next to other social individuals outweighs the costs of competing
against them. We show that the latter depends on the way
the population is updated, the type of social game that is
played, and on how social interactions affect individual fecundity
and survival.

Results
Dispersal and social structures of the population. We consider a
population of fixed size N whose structure is described by two
graphs: a dispersal graph D and an interaction graph E, where
each node, also called site, corresponds to one individual of the
population. Individuals reproduce clonally, and D determines
dispersal patterns in the population: dij is the fraction of the
offspring produced by the individual at site i that disperse to and
compete to colonize site j (

P
j dij¼ 1). We assume that the

pattern of dispersal is similar for all individuals (technically,
D is transitive, see Supplementary Methods)14,18,19, and is
symmetrical (dij¼ dji), and we denote by dself¼ dii the fraction
of offspring that remain at their parent’s site. Most classical
population structures fall into this category19: metapopulations,
regular lattices, stepping stones, but also groups of groups, and so
on (see Fig. 1). Social interactions are reflected in the second
graph E, in which eij measures the strength of the social
interaction between the individual at i and the individual at j
(scaled so that

P
i eij¼ 1). We denote by eself the average strength

of social interactions with oneself (eself¼
P

ieii/N). Finally, the

structural average ed ¼
P

i

P
i eijdji=N can be interpreted as the

average over all pairs of sites (i, j) of the chance of receiving
benefits (eij) from a site where offspring have been sent (dji), but
also as a measure of the relatedness of an individual to its social

interaction partners, that is, as a measure of assortment. Hence,

four parameters (N, dself, eself, ed) summarize the dispersal and
social structure of the population.

A two-step life-cycle and two payoff matrices. The evolution of
the population is modelled using a Moran process. Each indivi-
dual is either social (S) or non-social (NS). Between two time
steps, exactly one individual dies and one individual reproduces,
so that the size of the population remains N. The identities of the
individuals who die and reproduce depend on the individuals’
fecundity and survival potential, both being affected by social
interactions and by the rules according to which the population is
updated. We consider two classic updating rules13: death–birth
(DB) and birth–death (BD) (these two rules are not restricted to
specific population structures, unlike some others, such as
budding20, that are limited to deme-structured populations). In
both cases, the first step (death in DB, birth in BD) involves
choosing a first individual from all individuals in the population,
while the second step (birth in DB, death in BD) involves only
those individuals that are connected by dispersal to the site
chosen in the first step (dispersal patterns being given by the D
graph). While previous studies only considered effects of social
interactions on one of the two steps, the framework we use here
allows us to consider the general case where costs and benefits of
social interactions can affect both steps, that is, both fecundity
and survival. Since effects on fecundity with a BD updating are
equivalent to effects on survival with a DB updating in the set of
population structures that we consider19, and vice versa, we will
give all our heuristic explanations in terms of a DB updating.

a Lattice b Groups

c d

Figure 1 | Transitive dispersal graphs D. Each duck corresponds to one

individual living on one site. The thickness of a link between sites i and

j is proportional to dij. (a) Lattice: dself¼0; dij¼ 1/k between i and its k

neighbours, and dij¼0 for non neighbours; here k¼ 3. (b) Group-structured

population: dij¼ (1�m)/n (where m is the chance of dispersing out of the

group and n is the size of the groups; here n¼ 3) when i and j belong to the

same group (thick links; the loops represent dself); dij¼m/(N� n) when i

and j belong to different groups (thin links). Our results are not limited to

these two structures and apply to transitive D graphs in general. (c) and (d)

are examples of other transitive dispersal graphs D.
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The fecundity and survival potential of a given individual living
at site i depend on its identity (social or non-social) and on the
identities of the individuals it interacts with. To which extent an
individual at site j interacts with the individual at i is determined
by the eji term of the E graph. The effects of this interaction on
the recipient’s fecundity and survival potential are given by two
general payoff matrices:

A 1½ � ¼
a 1½ � b 1½ �

c 1½ � d 1½ �

 !

for the first step that is; effects on survival with DBð Þ; and

A 2½ � ¼
a 2½ � b 2½ �

c 2½ � d 2½ �

 !

for the second step that is; effects on fecundity with DBð Þ:

In both matrices, the a (respectively b) terms refer to payoffs
received by a social individual when interacting with another
social individual (respectively a non-social), and the d (respec-
tively c) terms refer to payoffs received by non-social individuals,
when interacting with a non-social (respectively a social)
individual. We use a dynamical system analysis based on
moments (singlets, pairs, triplets of individuals and so on) of
the distribution of social individuals in a structured population,
and we assume weak selection, such that the fitness effects of
interactions are small, but individuals are not necessarily
phenotypically close21. We assume that mutations from one
type to the other are rare; a new mutation only occurs after the
previous one has been fixed or lost.

The scales of competition. The essential difference between the
two steps of the process is the scale of competition (see
equation (11), and Supplementary Methods), or, using a kin
selection terminology, the identity of the secondary recipients22 at
each step. In a DB updating, an increase in the survival of an
individual at site i indirectly harms all the individuals who can
send offspring to site i, and the magnitude of this indirect effect
on j is determined by dji. However, an increase in the fecundity of
an individual i indirectly harms all other individuals j who would
be competing with i for an empty site k, and the magnitude of
this indirect effect on j is determined by

PN
k¼1 dikdjk. Hence,

competition in the first step is among all individuals that are one
dispersal step away, while competition in the second step is
among all individuals that are two dispersal steps away. These
two different competition neighbourhoods are illustrated in
Supplementary Fig. 1, in the case of a lattice-structured
population. In other words, for both DB and BD updating
rules, the first step, which involves choosing a first individual
globally among all individuals of the population, results in a
narrower competitive radius than the second step, in which
another individual is chosen locally among the neighbours of the
first individual23. Thus, whether social interactions affect the first
or the second step results in a difference in the spatial scale over
which social interactions affect competition. This difference turns
out to be crucial for social evolution.

The condition for the evolution of social behaviour. We say
that social behaviour evolves when the long-term frequency of
social individuals is higher than the frequency of non-social
individuals; or, equivalently in the limit of rare and symmetric
mutations, when the probability of fixation of initially one social
individual in a non-social population is higher than the converse
probability of fixation: rS4rNS. Under our assumptions, we find

that this condition is satisfied when

1þ eself � 2
N

� �
a½1� þ a½2� � d½1� � d½2�
� ��

þ 1� eself Þð b½1� þ b½2� � c½1� � c½2�
� �

þ dself þ ed� 2
N

� �
a½2� � d½2�
� �

þ dself � ed
� �

b½2� � c½2�
� � �

40

ð1Þ

This condition generalizes previous results14,18 in two
important ways: first, the effects of benefits and costs are not
limited to fecundity but may also affect survival at the same time;
second, interactions are not restricted to games with equal-
gains-from-switching24 where a� c¼ b� d. Equal-gains-from-
switching occurs for instance in the Prisoner’s Dilemma (PD, see
below) but also, to first order, in any game with small phenotypic
differences between individuals25. With such payoffs, it is possible
to find explicit expressions for rS and rNS (see Fig. 2). In contrast,
our equation (1) also includes synergistic enhancement or
discounting.

Additional insights can be gained by defining an equivalent
payoff matrix, Ã, such that condition (1) can be rewritten as
(1 � 1) � Ã � (1 1)T40. The equivalent matrix Ã can be written as

~
A ¼

s½1�a½1� b½1�
c½1� s½1�d½1�

� 	
þ x

s½2�a½2� b½2�
c½2� s½2�d½2�

� 	
: ð2Þ

For each step i of the life-cycle, s[i] measures the amount of
assortment due to the population structure, that is, how much
individuals of the same type interact relative to individuals of
different types26 compared with how much they do in large
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Figure 2 | Fixation probabilities. Comparison of the analytical fixation

probability rS with equal-gains-from-switching (solid coloured lines) to the

frequency of fixation in numerical simulations (circles and squares), for

different values of the total population size N and two classic population

structures; results are scaled relative to 1/N, the neutral expectation

ðrS� 1=NÞ=ð1=NÞ ¼ N rS � 1ð Þ. Two population structures were

simulated: in blue, a lattice with k¼ 3 neighbours, two-player games

eself ¼ dself ¼ 0; ed ¼ 1=k
h i

; in red, groups of n¼ 3 individuals with public-

good games eself ¼ 1=n and dself ¼ 1�mð Þ=n ¼ ed; m ¼ 0:1
h i

. Fixation

probability: denoting B[i]¼ c[i]� d[i] and C[i]¼ d[i]� b[i], the approximate

fixation probability is B 1½ � N eself� 1ð Þ�C 1½ � N� 1ð Þþ B 2½ � N eselfþNed� 2
� �h

�C 2½ � NþN dself� 2ð Þ�= 2Nð Þ. Simulation data: 107 runs, ±95% confidence

interval (CI) (behind the dots). Parameters: b[1]¼ 1o, c[1]¼0.1o,

b[2]¼ 10o, c[2]¼0.5o, o¼0.0025.
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well-mixed populations (in which s[1]¼s[2]¼ 1):

s½1� ¼
1þ eself � 2=N

1� eself
;

s½2� ¼
1þ eself þ dself þ ed� 4=N

1� eself þ dself � ed
:

ð3Þ

The quantity x in equation (2a) measures the relative importance
of the second step of the life-cycle, compared with the first:

x ¼ 1� eself þ dself � ed
1� eself

: ð4Þ

In a large well-mixed population, x¼ 1.

Contrasting the conditions on each step. By definition of the
dispersal graph D, the offspring of an individual are located one
dispersal step away, which happens to correspond to the com-
petitive radius during the first step of the Moran process. Indi-
viduals are therefore directly competing against their offspring,
and the detrimental effects of kin competition exactly cancel the
social benefits of living next to related individuals27,28. As a result,
population structure barely has any effect on the evolution of
social behaviour if social interactions affect the first step of the
process (see s[1] in equation (3)), compared with large well-mixed

populations. In this case, the relative effect of population
structure is limited to the benefits a social individual provides
to itself (eself), while small population sizes reduce same-type
interactions: s[1] is smaller when N is smaller. This also confirms
that even with synergistic effects in the first step
(a[1]� c[1]ab[1]� d[1]), spatial structure does not facilitate the
evolution of altruism29 compared with well-mixed populations.
Equation (1) also confirms that in the absence of kin
discrimination or synergistic effects (a[1]� c[1]¼ b[1]� d[1]), the
evolution of spite (c[1]� d[1]o0) requires small population sizes
(small N), and limited self-interactions (eself-0).

In contrast, population structure is of crucial importance for
the evolution of social behaviour whenever social interactions
affect the second step of the process (s[2] in equation (3) and x in
equation (4)). This is because the radius of the competitive circle
is wider at the second step (two dispersal steps away): individuals
are therefore competing against less related individuals, on
average, than at the first step23. This observation had been made
with specific models. For instance, conditions for general games
and regular graphs of degree k (and large N) were derived by
Ohtsuki et al.13; these conditions reduced to (c[2]� d[2])/
(d[2]� b[2])4k when a[2]� c[2]¼ b[2]� d[2]. For this restricted
set of games, Taylor et al.14 derived a generalization that extended
to small populations sizes and covered a broad range of
structures, including weighted graphs and distinct interaction E

a Prisoner’s dilemma
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Figure 3 | Evolution of social behaviour under different allocations of benefits and costs. Comparing the conditions for the evolution of social behaviour

(altruism in (a–c), spite in (d)), depending on whether benefits and costs affect the first or second step of the process, for four classical games. Results are

shown for different population sizes (full line: N-N, large dashed: N¼ 60, dashed: N¼ 24, dotted: N¼ 12) and two structures: in magenta, dself¼ 1/3, in

cyan dself¼0; in both cases eself¼0 and ed ¼ 1=3. Social individuals are favoured (rS4rNS) in the shaded areas. The grey (benefits and costs on the first

step exclusively) and black dots (benefits and costs on the second step exclusively) in the corners correspond to the only parameter combinations that

have been analysed previously in this context13,14,18,19,30. Parameters: (a) Prisoner’s dilemma, c0/b0 ¼0.15; (b) Snowdrift, c0/(2b0 � c0)¼0.65; (b) Stag hunt,

(b0 þ c0)/2b0 ¼0.6; (d) Simple spite, c0/b0 ¼0.02.
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and dispersal D graphs. In particular, their derivation also
included the (c[2]� d[2])/(d[2]� b[2])4hg/l rule for regular
graphs30, where g and h are the number of neighbours on the g
and h graphs, respectively, and l the number of overlapping edges.
Our formula (1) not only confirms and generalizes these findings
but also offers additional insights, and we illustrate the
implications of our results in Fig. 3.

Combining the two steps. We now consider four classical games
that can be expressed in terms of benefits and costs (that is, two-
parameter games), and we assume that social individuals can
allocate these benefits and costs in different proportions to
fecundity and survival effects, or more generally to the first
and second step in the life-cycle. Then the benefits and costs
affecting the first step (fecundity in BD, survival in DB) are
B[1]¼ b0(1� lb) and C[1]¼ c0(1� lc), respectively, while the
benefits and costs affecting the second step (survival in BD,
fecundity in DB) are B[2]¼ b0(1� lb) and C[2]¼ c0(1� lc),
respectively. Two of the games that we consider have equal-
gains-from-switching: a Prisoner’s dilemma (PD) with payoff

matrix on step k given by MPD
½k� ¼

B k½ � �C k½ � �C k½ �
B k½ � 0

� 	
, and

the equivalent spite version with negative benefits (SS), whose

payoff matrices are MSS
½k� ¼

�B k½ � �C k½ � �C k½ �
�B k½ � 0

� 	
. We also

consider a Snowdrift game (SD) with payoff matrices MSD
½k� ¼

B k½ � �C k½ �=2 �C k½ �
B k½ � 0

� 	
and a Stag hunt game (SH)

MSH
½k� ¼

2B k½ � �C k½ � �C k½ �
B k½ � B k½ �

� 	
. For each game, we assess how

the allocation of benefits and costs on either step of the life-cycle
affects the evolution of social behaviour, and do so for two
population structures that differ by whether an individual can be
replaced by their offspring or not (that is, whether dself40 or
dself¼ 0). The results are illustrated in Fig. 3. We find that the
optimal allocation of the benefits only depends on whether these
correspond to altruism (positive benefits) or spite (negative
benefits). Altruism (Fig. 3a–c) is most favoured if benefits are
allocated to the second step of the process, which gives more
weight to interactions of individuals of the same type (s[2]4s[1]).
Spite, on the contrary, is more likely to evolve when the (negative)
benefits affect the first step rather than the second one (Fig. 3d),
and requires small population sizes. Let us now consider costs. In
our examples, the optimal cost allocation depends on both the
type of game, the size of the population (N) and on the fraction of
an individual’s propagules that remain at the exact same site
(dself). For example, for a sufficiently large dself (magenta lines in
Fig. 3), altruism is most favoured if costs affect the first step of the
process. With a low dself, however (dself¼ 0 for the cyan lines in
Fig. 3), the allocation of the cost may not matter (for example,
Fig. 3a,d, Prisoner’s dilemma with large (N), or better be on the
second step (for example, Fig. 3b, Snowdrift), or finally better be
on the first step (for example, Fig. 3c, Stag hunt).

While we just described cases where social interactions are of
the same type on both steps, our framework also allows for the
consideration of mixed cases. Focusing on games with equal-
gains–from-switching, with eself¼ 0 (like in Fig. 3a,d), our results
suggest that, behaviours that are spiteful in the first step and
altruistic in the second will be favoured by selection.

Discussion
The simplicity and generality of our condition for the evolution of
social behaviour hinges on two standard and widely used

assumptions of weak selection and constant population size.
Extending our results to unsaturated populations17,31, as well as
to all possible network structures, is an important future
challenge. Meanwhile, our results unify and generalize a great
number of existing studies on the evolution of altruism or spite in
structured populations, and yield new insights when social
behaviour can affect both fecundity and survival. In particular,
the results highlight the crucial feature determining the outcome
of social evolution: the evolution of social behaviour is
determined by the scale at which social interactions affect
competition.

Methods
Notation. The population lives in an environment with N sites, labelled {1, y, N}.
An indicator variable Xi(t) gives the occupation of site i at time t: 1 (respectively 0)
means that the site is occupied by a social individual (respectively non-social).
Notation ‘� ’ denotes a population average, and varS a population variance: �X tð Þ ¼PN

i¼1 Xi tð Þ=N and varS X tð Þð Þ ¼
PN

i¼1 Xi tð Þ� �X tð Þð Þ2=N ¼ X2 tð Þ� �X2 tð Þ. The
index S in the population variance varS is here to distinguish this variance from the
variance of the state of sites var½XiðtÞ� ¼ Et X2

i


 �
� Et Xi½ �2

� �
; in the same way there

is a distinction between average (� ) and expectation (Et[]). We denote by

piðtÞ ¼ Et Xi½ � ¼ P XiðtÞ ¼ 1ð Þ ð5Þ
the expectation of the state of the individual at site i and at time t; a vector p(t)
groups the expected state of all sites, and p tð Þ ¼ pi tð Þ is the expected frequency of
social individuals in the population at time t. Because of population structure, we
also have to take into account the dynamics of pairs and triplets of individuals. We
denote by

PijðtÞ ¼ Et XiXj

 �

¼ P XiðtÞ ¼ 1;XjðtÞ ¼ 1
� �

ð6Þ

the expectation of the state of pairs of sites, and group them in a matrix P(t). We
note that the notion of relatedness classically used in kin selection studies is dif-
ferent and involves probabilities of identity in state or probabilities of identity by
descent, without conditioning on the type of the individuals: Gij¼P(Xi(t)¼Xj(t))
Relatedness Rij is often defined as a standardized measure of identity19:

Rij ¼
Gij �G

1�G
; ð7Þ

where G ¼
PN

i¼1

PN
j¼1 Gij=N2. Our measure of assortment Pij(t) can therefore be

expressed as a function of this measure of relatedness Rij:

PijðtÞ ¼ Et XiXj

 �

¼ RijðtÞ� 1
� �

Et varSX½ � þ pðtÞ: ð8Þ

We also need to account for associations between triplets of individuals, and we
denote by

�ijkðtÞ ¼ Et XiXjXk

 �

¼ P XiðtÞ ¼ 1;XjðtÞ ¼ 1;XkðtÞ ¼ 1
� �

ð9Þ

the expectation of the state of triplets of sites, and group them in a three-
dimensional array P(t).

The dispersal and social structures of the population are represented by two
graphs D and E. We denote by dij the fraction of the offspring of the individual
living at site i that is sent to site j, and by eij the strength of the interaction from i to
j; all these parameters are grouped in two matrices D and E. The dispersal graph is
assumed to be symmetric, so that dij¼ dji (or equivalently D¼DT, where T denotes
transposition); the dispersal graph is also assumed to be transitive, so that the
dispersal structure looks the same from every site14 (note that the transitivity
assumption is not required to derive equation (11), but it is needed to obtain
explicit expressions for the expected state of pairs of individuals (equation (12))).

The fecundity and survival of individuals in the population are affected by
pairwise interactions with other individuals, described by the interaction graph E.
For our derivation, it is more convenient to rewrite the payoff matrices A[1] and
A[2] (whose expressions are given in the main text) as follows:

A½i� ¼
b0½i� � c0½i� þ d0½i� � c0½i�

b0½i� 0

 !
; ð10Þ

with b0[i]¼ c[i]� d[i], c0[i]¼ d[i]� b[i], and d0[i]¼ a[i]� b[i]� c[i]þ d[i]. The two
formulations are equivalent32. The effects of pairwise interactions add up, and we
assume that their effects on fecundity and survival are weak, of order ooo1: in
other words, selection is weak. Note that this type of weak selection differs from
weak selection due to small phenotypic differences (‘d-weak selection’21) classically
used in kin selection models.

Expected change in the frequency of social individuals. We first derive a
general equation for the change in the frequency of social individuals, under weak
selection and for a symmetric dispersal graph (D¼DT). We show in the
Supplementary Methods how this expression relates to the Price equation33.
Denoting by Tr(M) the trace, that is, the sum of diagonal elements, of a matrix M,
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the expected change in the frequency of social individuals in the population is
(details of the calculations are presented in the Supplementary Methods):

DpðtÞ ¼ o
N2 ð½ TrðET � PÞ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{direct effects

� TrðET � P �DÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{competition ¼ secondary effects

Þb0½1�
� ðTrðPÞ �TrðP �DÞÞc0½1�
þ ðTrðET � PÞ �TrðET �� �DÞÞd0½1�
þ ðTrðET � PÞ �TrðET �� �D �DÞÞb0½2�
þ ðTr Pð Þ �TrðP �D �DÞÞc0½2�
þ ðTrðET � PÞ �TrðET �� �D �DÞÞd0½2�

i
ð11Þ

Supplementary Figure 2 (direct effects) and Supplementary Fig. 3 (secondary
effects) illustrate the different terms of equation (11). The first three lines
correspond to the first step (fecundity effects under BD, survival effects under DB),
the last three lines to the second step (survival effects under BD, fecundity effects
under DB). For each step, we can distinguish between direct effects (first column)
and competition terms (second column). These competition terms correspond to
secondary effects in kin selection models22 or to circles of compensation23, and
differ among the two steps: the competitive radius includes individuals one
dispersal step away in the first step (P �D terms), and two dispersal steps away in
the second step (P �D �D terms). This equation is dynamically not closed, because
it depends on higher moments such as pairs (P) and triplets (P) of social
individuals.

Evaluating the moments. We show that the dynamics of pairs and triplets occur
at a much faster time scale than the dynamics of the average frequency, so that we
can evaluate them using a separation of time scales34 or quasi-equilibrium
approximation.

Using the fact that the dispersal graph D is transitive14,23 and that selection is
weak, we obtain the following equalities for the pairs (1N,N is a N-by-N matrix
containing only 1s, and IN is the identity matrix):

P�P�D ¼ �fðtÞ1N;N þNfðtÞIN ;
P�P�D�D ¼ � 2fðtÞ1N;N þNfðtÞ IN þDð Þ; ð12Þ

where fðtÞ ¼ N=ðN � 1Þð ÞEt varS X½ � (details of the calculations are in the
Supplementary Methods). Note that we did not use the pair approximation35 to
derive equation (12).

For triplets of individuals, we use recent results26,32 showing how to express
terms with triplets as functions of pairs plus a frequency-dependent term scaled by
a factor a[i] for each step i (see Supplementary Methods for details). The a[i] factors
will remain implicit, but they will vanish in the final condition for the evolution of
social behaviour.

Explicit dynamics. We use the expressions we derived for pairs (equation (12))
and triplets of individuals back in the equation for the frequency dynamics
(equation (11)), thus arriving at a closed dynamical system, given below in
equation (16). We denote by dself¼ dii, the fraction of propagules that remain
at their parent’s site (the same for all sites i on a transitive graph), by
eself ¼ ð1=NÞ

PN
l¼1 ell the average interaction with oneself, and finally a

compound parameter summarizing the dispersal and interaction graphs (recall that
dkl¼ dlk),

ed ¼ 1
N

XN

l¼1

XN

k¼1

elkdkl ¼
1
N

XN

l¼1

XN

k¼1

elkdlk ¼
1
N

Tr ET �D
� �

ð13Þ

that can be interpreted as the average chance of receiving benefits (elk) from a site
where offspring have been sent (dkl). We then define two compound parameters,
sDE and tDE, that depend on the population structure and the different payoffs:

sDE ¼ o þ b0½1�
Neself � 1

N � 1
� c0½1�

�

þ d0½1�
N þNeself � 2

2ðN � 1Þ � a½1�
2

� 	

þ b0½2�
Neself þNed� 2

N � 1
� c0½2�

N þNdself � 2
N � 1

þ d0½2�
N þNdself þNeself þNed� 4

2ðN � 1Þ � a½2�
2

 !!
;

ð14Þ

and

tDE ¼ o d0½1�a½1� þ d0½2�a½2�
� �

: ð15Þ

With these definitions, we find that the expected change in the frequency of social
individuals can be written as follows:

DpðtÞ ¼ ðsDE þ tDEpðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
sDE ðpðtÞÞ

�E½varSðpðtÞÞ� ð16Þ

In other words, the structured population behaves as a well-mixed one, under
linear frequency-dependent selection given by sDE (p(t)).

Fixation probabilities. The fixation probability of a single mutant under a Moran
process with a linear frequency-dependent selection coefficient is a classical
result36–38. Accordingly, the fixation probability of a social mutant in a population
of non-social individuals, when selection is weak, can be approximated as

rS �
1
N
þ N � 1

2N
sDE þ tDE

N þ 1
3N

� 	
ð17Þ

Reciprocally, the fixation probability of initially one non-social individual in a
population of social individuals is

rNS �
1
N
þ N � 1

2N
�ðsDE þ tDEÞþ tDE

N þ 1
3N

� 	
ð18Þ

We define the evolutionary success of social individuals by the condition

rS4rNS ð19Þ
Using equations (17) and (18), this condition becomes 2sDE þ tDE40. Finally,

using the definitions (14) and (15) we obtain equation (1) in the main text.

Simulations. Stochastic simulations were coded in C; the population was updated
following a Moran process as described in the main text, and the simulation
stopped when the social trait was either fixed or lost. Fixation probabilities, with
initially only one social individual in the population, were estimated after 107 runs
for each parameter combination. The simulation scripts are available on Dryad:
doi:10.5061/dryad.r28qk.
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population. Prog. Theor. Phys. 88, 1035–1049 (1992).
36. Nowak, M., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of

cooperation and evolutionary stability in finite populations. Nature 428,
646–650 (2004).

37. Durrett, R. Probability Models for DNA Sequence Evolution, vol. XII of
Probability and Its Applications 2nd edn, Ch. 1 (Springer, New York, 2008).

38. Huang, W. & Traulsen, A. Fixation probabilities of random mutants under
frequency dependent selection. J. Theor. Biol. 263, 262–268 (2010).

Acknowledgements
We thank S.P. Otto and M.C. Whitlock for comments on the manuscript, S. Lion,
P. Taylor, T. Day, A. Gardner and F. Rousset for clarifications on their articles, and three
reviewers for comments. F.D. acknowledges funding from NSF grant DMS 0540392,
and from UBC’s Biodiversity Research Centre (NSERC CREATE Training Program
in Biodiversity Research). C.H. acknowledges support from NSERC and from the
Foundational Questions in Evolutionary Biology Fund, grant RFP-12-10. M.D.
acknowledges support from NSERC.

Author contributions
F.D. designed and analysed the model; all authors wrote the manuscript; F.D. wrote the
Supplementary Information.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/
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SUPPLEMENTARY FIGURES

(a) 1-circle (b) 2-circle

Supplementary Figure 1: The different competition neighbourhoods
(1-circle in (a), 2-circle in (b)), as seen by a focal individual (with the double
outline), in the specific example of a lattice-structured population where
k = 4 neighbours. The shaded dots are the individuals that the focal is
competing against, and the intensity of the shading reflects the strength of
competition (white: no competition).
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Supplementary Figure 2: Schematic description of the different terms
for the first step (survival) of the process. Orange nodes are occupied
by social individuals, light gray nodes by non-social individuals. The node
with the thick edge is the node that is potentially going to be replaced. Full
arrows represent dispersal patterns (d), dashed arrows represent social
interactions (e)
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Supplementary Figure 3: Schematic description of the different terms
for the second step of the process. The legend is the same as in Sup-
plementary Fig. 2, and white nodes correspond to any type of individual
(social or non social).
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SUPPLEMENTARY METHODS

We first introduce notation and main assumptions. Then, we derive an equa-
tion for ∆p(t ), the change in the expected frequency of social individuals (i.e.,
helpers) in the population. ∆p(t ) depends on the frequency of social individu-
als in the population, p(t ), but also on higher moments such as pairs and triplets
of social individuals. We then evaluate these higher moments, where we write
the equations for their dynamics and show that these occur on a faster time scale
than the dynamics of the global frequency of social individuals. Using a separa-
tion of time scales and a mean-field relaxation approximation, we are able to ex-
press pairs and triplets of social individuals as functions of the global frequency
of social individuals. We then use these expressions and manage to express the
change in the expected frequency of social individuals∆p(t ) as a function of p(t )
only; the system is now closed, because we have as many equations as variables.
Then, we estimate the fixation probability of a single "social" mutation. Finally,
we illustrate our results with four specific games.

Notation and assumptions

Population

We model a population living in an environment with exactly N sites, each site
hosting at most one individual. We assume that more offspring are produced
than there are sites that could host them, so that the population is saturated.
As a result, there are no empty sites, and each site contains exactly one individ-
ual (i.e., the population is inelastic). There are two types of individuals in the
population: social individuals, also referred to as helpers (S) and non social in-
dividuals, also referred to as defectors (NS). Social individuals provide benefits
to others (potentially including themselves; the benefits can be negative, in the
case of spiteful behaviour), but suffer from costs.

We denote by Xi (t ) the random variable describing the type of individual
present at the i th site (i ∈ {1, . . . , N }) at time t . For all i , Xi (t ) is an indicator
variable, and takes values:

xi =
{

1 if at t , the individual at site i is of type S

0 if at t , the individual at site i is of type NS
. (1)

We denote by pi (t ) = Et [Xi ] the expectation of the state of the individual at site
i and at time t . Because Xi (t ) is an indicator variable, we have

pi (t ) = Et [Xi ] =P (Xi (t ) = 1) . (2)
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In the course of our calculations, we will also need the expectation of the states
of pairs and triplets of sites, which we will denote as follows:

Pi j (t ) = Et
[

Xi X j
]=P(

Xi (t ) = 1, X j (t ) = 1
)

, (3)

Πi j k (t ) = Et
[

Xi X j Xk
]=P(

Xi (t ) = 1, X j (t ) = 1, Xk (t ) = 1
)

. (4)

At t , the state of the population is described by a random vector X (t ) = {X1(t ), . . . , XN (t )},
and we write x = {x1, . . . , xN } the value of X (t ) for one realization of the process.
Note that at each time t , there are 2N possible configurations of the population,
with different probabilities.
The notation " " denotes an average across the whole population:

x =
N∑

i=1

xi

N
; (5)

The quantity x is also the frequency of individuals of type S in the population for
one given realization of the process(1). Finally, the expectation of the frequency
of social individuals at time t is denoted by p(t ):

p(t ) = Et

[
X

]
=

N∑
i=1

pi (t )

N
[because of linearity of E]. (6)

Interactions between individuals

Definitions

Two graphs, D and E , describe the dispersal and interaction patterns between
the N sites, respectively. Dispersal refers to where an individual’s offspring can
be sent, and interaction refers to to whom benefits are given. Using the same
notations as in Ref. 1, we denote by di j the fraction of the offspring of the indi-
vidual living at site i that is sent to site j ; we denote by ei j the strength of the
interaction from i to j , measured relative to all interactions strengths received
by j . With these definitions of di j and ei j , we have:

∀i ,
N∑

j=1
di j = 1, (7)

∀ j ,
N∑

i=1
ei j = 1. (8)

(1)We will see in the course of the derivation of the results that indicator variables (that take
values in {0,1}) are very useful and simplify a lot our calculations. We note however that indicator
variables can only be used when there are only two possible states in the population (here, S and
NS), and that the situation would be more complicated with more states, for instance if there were
empty sites.
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These two conditions mean that in a monomorphic population (i.e., when only
one type of individual is present), all individuals produce the same number of
offspring, and receive the same amount of benefits from other sites. We note
that we can write both graphs as matrices:

D = {
di j

}
i∈{1,...,N }
j∈{1,...,N }

, (9)

E = {
ei j

}
i∈{1,...,N }
j∈{1,...,N }

. (10)

This matrix notation will help us write expressions in a more compact way.

Assumptions on the D graph

Symmetric dispersal We further assume that, for an individual at node i , the
chance of receiving propagules from node j is the same as the chance of sending
propagules to j , so that:

∀{i , j } d j i = di j , (11)

which implies in particular that

∀i ,
∑

j
d j i = 1. (12)

This means that the D matrix describing the D graph is symmetric (DT = D).
This assumption is needed to simplify the general expression of the change in
the global frequency of social individuals (section “Equation for the change of
the frequency of social individuals”). When talking about graphs, the vertices are
often referred to as "nodes"; each node corresponds to one site, and we use the
two words interchangeably.

Transitivity To give explicit expressions for the dynamics of social individuals
(sections “Evaluating the moments” and after), we need to evaluate formulas for
pairs and triplets of individuals, and we will have to make further assumptions
on the D graph. Let us first recall a few definitions. An isomorphism T of the
graph D is a bijection of the node set that preserves the graph1;2. In other words,
T is a permutation of the node set such that for all i and j in {1, . . . , N }, di j =
dT(i )T( j ). We will assume that the D graph is transitive: it means that for all
nodes i and j , there is an isomorphism T that transforms i into j :

∀{i , j } ∈ {1, . . . , N }, ∃T, T(i ) = j . (13)

This condition may seem restrictive, and it is indeed if we consider all possible
dispersal graphs D (of which exists an infinity for any population of size N since
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we consider weighted graphs). However, this condition actually corresponds to
the large majority of structures that are considered in studies on structured pop-
ulations. For instance, populations subdivided in demes of equal sizes, or living
on a lattice, satisfy our assumptions (see examples given in the main text).

Payoffs

All individuals in the population have the same baseline fecundity (W 0
F ) and

propensity to die (W 0
S ), to which are added relative payoffs due to interactions

with other individuals. In game theory studies3, payoffs are usually on fecun-
dity; here we allow for payoffs both on birth rates (fecundity) and death rates
(survival) and use the subscripts F and S to distinguish between them.

Linearity As classically assumed in this type of study, the payoffs add up in a
linear manner: the benefits of an interaction with k individuals is the sum of
the k benefits received, so that we only need to specify the outcome of pairwise
interactions. These pairwise interactions are usually represented with payoff
matrices. We consider general payoff matrices, which we reparametrize in the
following way:

( S NS

S a b
NS c d

)
=

( S NS

S b−c+d −c
NS b 0

)
. (14)

The two parametrizations are equivalent, with
b = c−d
c = d−b
d = a−b−c+d.

(15)

The a,b,c,d parametrization is used to present the results in the main text, but
our calculations are easier with the b,c,dnotation. The parameter b corresponds
to the benefits given by social individuals to any kind of individual, while d cor-
responds to the additional benefits given to others social individuals only (also
called "synergy"4). Finally, c corresponds to the costs of being social. Since we
consider payoffs on both survival and fecundity, we have two payoff matrices:

AS =
(
bS −cS +dS −cS

bS 0

)
and AF =

(
bF −cF +dF −cF

bF 0

)
. (16)
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Weak selection Finally, we will assume weak selection, i.e., that the payoffs are
similar for all individuals; they will be scaled by a factor ω¿ 1 (note that in the
main text, ω is directly included in the payoffs). The type of weak selection that
we consider here corresponds to what has been called5 w-weak selection (small
fitness contributions from the game), as opposed to δ-weak selection (small dis-
tance in phenotype space), which is the type of weak selection usually consid-
ered in kin selection studies. While the two types of weak selection converge
when the payoff matrices are such that there are equal gains from switching i.e.,
d= 0 6, they otherwise usually yield different answers .

Life-cycles

The population is of fixed size N , so at each time step, the number of individu-
als who die is equal to the number of newly established individuals. Although
the equation (37) derived below will actually be valid irrespective of the actual
number of individual who die between two time steps, we will focus on a Moran
process 7, where only one individual dies—and therefore, only one individual
reproduces—between two time steps.

With this constraint of only one individual dying between two time steps,
the number of possible life-cycles is quite restricted. Two different life-cycles
are usually considered for the dynamics in saturated populations: Death-Birth
(DB), and Birth-Death (BD). It has already been shown elsewhere with transitive
population structures that these DB and BD processes are in fact symmetrical
(DB with payoffs on fecundity is equivalent to BD with payoffs on survival 8;9), so
we focus on DB in this section. The DB life-cycle goes as follows. At time t , the
fecundities and death propensities of all individuals in the population are com-
puted according to the interaction graph E ; each individual produces (a large
number of) propagules, which disperse along the competition graph D: each
propagule produced by the individual at node i is sent to node j with a prob-
ability di j . Then, individuals die, each with a probability equal to their death
propensity; in a Moran process, only one individual dies between two time steps.
Immediately after this, one propagule is chosen among all propagules present in
the node where death occurred and becomes a new adult at this node—so po-
tentially, if di i 6= 0, the new individual can be the offspring of the individual who
just died. All newborns are adults in the next step and can potentially reproduce
(i.e., there is no age structure in the population).

Note that in both cases, the fecundities and death propensities are recom-
puted at each time step; the process is therefore without memory: the state of
the population at time t +1 only depends on its state at time t .
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Mutation We assume that mutations from one type to the other (S → NS and
NS → S) are so rare, that they actually only occur once one of the two types (S
or NS) is already fixed in the population. Except for these rare mutation events,
individuals breed true: the offspring of each reproducing individual have the
same state as their parent. This is why there will not be terms accounting for
mutation in our equations describing the change of the frequency of social indi-
viduals from one time step to the next.

Criteria for the evolution of social behaviour

When does natural selection favour the evolution of social behaviour? The an-
swer to this question depends on the chosen time scale to evaluate the evolu-
tionary success of social individuals. There are at least three different criteria:

1. The frequency of social individuals is expected to increase from one time
step to the next. This criterion depends on the current state of the popula-
tion and corresponds to a very short time scale.

2. The probability of fixation of a single "social" mutation appearing in a non-
social population (ρS) is greater than the probability of fixation of a neutral
mutation (1/N ). This criterion corresponds to a long time scale.

3. The probability of fixation of a single "social" mutation appearing in a non-
social population (ρS) is greater than the probability of fixation of a "non-
social" mutation in a population of social individuals (ρNS). This crite-
rion corresponds to a very long time scale. Assuming symmetric and rare
mutation (µS→NS = µNS→S), this condition is equivalent to saying that the
population as a whole spends more time in the S state than in the NS state.

The three criteria are the same only in a limited number of cases, where both
dS and dF , the synergistic terms, are nought —this corresponds to the particu-
lar case of a Prisoner’s Dilemma, or equal-gains-from-switching types of payoff
matrices 6—, and, at the first order, under δ-weak selection (small phenotypic
distances; see above) 10. In the general case, the three criteria are different, and
they will still be under the type of weak selection that we consider here (w-weak
selection, small fitness contributions from the game); we will define success us-
ing the third criterion (ρS > ρNS), for which explicit solutions can be obtained.
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Equation for the change of the frequency of social
individuals

In this section, we derive an equation for the change in the frequency of social
individuals from one generation to the other. The frequency of social individuals
in the population at time t + 1 for one realization of the process depends on
the configuration of the whole population at time t , X (t ) = x. We will keep its
expression as general as possible, making clear when different assumptions are
needed.

Change in the frequency of social individuals

A first derivation

To show that our equations are compatible with other frameworks, and in par-
ticular with the Price equation, we introduce a new notation. For one realization
of the process, we denote by ξi (t ) the number of individuals in the population at
time t +1 that are the offspring of the individual who was in site i at time t . Note
that "offspring" is meant in a general sense: an individual who survives until the
next time step is considered here as its own offspring. Because the population
size is constant and equal to N , we have

∀t ,
N∑

i=1
ξi (t ) = N so that ξ(t ) =

N∑
i=1

ξi (t )

N
= 1. (17)

In the general case, ξi (t ) can take any value between 0 and N (with the con-
straint (17)). In a Moran process, only one individual dies and one individual re-
produces between t and t +1; if we denote by id the site where death occurred,
and ir the site in which the individual who reproduced was, we have,

ξi (t ) =


2 for i = ir

0 for i = id

1 for i 6= ir and i 6= id

when id 6= ir , and (18)

∀i , ξi (t ) = 1 when id = ir (self replacement).

We denote by Wi (t ) the expected number of offspring at t+1 of the individual
living at site i at t , given that the population is in state X (t ) = x:

Wi (t ) = Et
[
ξi (t )|X (t )=x

]
. (19)
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With this definition, the expected frequency of social individuals at time t + 1
given that the population is in state X (t ) = x at time t is

E
[

X (t +1)
∣∣∣

X (t )=x

]
= 1

N

N∑
i=1

Wi (t )xi (t ) =W x, (20)

so that the expected change, which we will write ∆x is,

∆x = E
[

X (t +1)
∣∣∣

X (t )=x

]
−x(t )

= 1

N

N∑
i=1

(Wi (t )−1) xi . (21)

We define spatial (hence the S subscript) covariance as follows:

covS
(
y, z

)= y z − y z. (22)

We have seen in equation (17) that ξ(t ) = 1; then we also have W (t ) = 1, and we
can rewrite (21) as

∆x = covS (W , x) . (23)

Equation (23) is a version of the Price equation11, and it directly follows from
our definition of ξi (t ). This equation, however, gives us the expected frequency
of social individuals at t + 1, given that the population is in state X (t ) = x at
time t . To be able to compute fixation probabilities, we will need unconditional
expected changes in the frequency of social individuals. Using the law of total
expectation, the expected frequency of social individuals at time t + 1 can be
written as

p(t +1) = Et+1

[
X

]
= E

[
E
[

X (t +1)
∣∣∣

X (t )

]]
(24)

so that the expected change in the frequency of social individuals between t and
t +1 is

∆p(t ) = p(t +1)−p(t )

= Et

[
W X −X W

]
[because W = 1]. (25)

Using the covariance notation defined in (22), we obtain

∆p(t ) = Et [covS (W , X )] . (26)

Again, this result is a consequence of our definition of Wi (t ), the expected num-
ber of offspring (sensu lato, that is, including the parent if it survives) of the in-
dividual living at site i at time t , given that the population is in state X (t ) = x.
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We now need to specify Wi (t ). With a Death-Birth (DB) updating, symbol P
denoting a probability, we have

Wi (t ) =
N∑

j=1
P

(
Individual at j dies

)×P(
An offspring from i wins site j

)
+P (Individual at i survives)

=
N∑

j=1
P

(
Individual at j dies

)×P(
An offspring from i wins site j

)
+ (1−P (Individual at i dies)) . (27)

We now have to specify the probabilities of dying and reproducing in a given
site. We define the probability that the individual at site j dies as in a Moran
process: it is the relative death propensity of this individual, compared to the
whole population.

∀ j , P
(
Individual at j dies

)= W 0
S

(
1−ωwS j

)∑N
k=1 W 0

S (1−ωwSk )
(28)

= 1

N

1−ωwS j

1−ωwS
, (29)

where wSk represents the effects of social interactions on the death propensity
of the individual living at site k, given X (t ) = x. As introduced previously, ω
scales the strength of selection. We note that when there is no selection on sur-
vival (∀k, wSk = 0), the probability that the individual at j dies reduces to 1/N .
We call this step the global step because the probability of dying depends on an
individual’s death propensity compared to the death propensities of all other
individuals in the population (see the denominator in (28)).

The probability that the offspring of the individual at site i wins site j de-
pends on the effects of sociality on fecundity, but also on the dispersal graph D:
the propagules have to be sent to site j , which occurs with probability di j , and
competition is against all propagules arriving at site j :

∀{i , j }, P
(
An offspring from i wins site j

)= W 0
F (1+ωwF i ) di j∑N

k=1 W 0
F (1−ωwF k ) dk j

(30)

= di j

d̂ j

1+ωwF i

1+ω∑N
k=1 wF k dk j /d̂ j

, (31)

where d̂ j measures how many links go to site j on the D graph:

d̂ j =
N∑

k=1
dk j ; (32)

12



in the particular case where the links are symmetrical on the D graph, that is,
when dk j = d j k , then we have d̂ j = 1, because by construction

∑N
j=1 dk j = 1.

In the absence of selection on fecundity (∀k, wF k = 0), the probability that the
offspring from i wins the emptied site j is di j /d̂ j . We call this step the local
step because the probability of giving birth depends on an individual’s fecundity
compared to the fecundities of the individuals in the neighbourhood, neigh-
bourhood being defined through the dispersal graph D (see the denominator
in (30)).

So replacing the probabilities of dying and giving birth in (27) by their ex-
pressions (29) and (31), we get

Wi (t ) =
N∑

j=1

1

N

1−ωwS j

1−ωwS
× di j

d̂ j

1+ωwF i

1+ω∑N
k=1 wF k dk j /d̂ j

+1− 1

N

1−ωwSi

1−ωwS
. (33)

We now use the fact that we assume weak selection (ω¿ 1):

Wi (t ) =1+
N∑

j=1

1

N

(
1−ωwS j +ωwS +ωwF i −ω

N∑
k=1

wF k
dk j

d̂ j

)
× di j

d̂ j

− 1

N

(
1−ωwSi +ωwS

)+O(ω2).

(34)

We define ˆ̂di as follows

ˆ̂di =
N∑

j=1

di j

d̂ j
, (35)

so that we can rewrite Wi (t ):

Wi (t ) =1+
N∑

j=1

1

N

(
1−ωwS j +ωwS +ωwF i −ω

N∑
k=1

wF k
dk j

d̂ j

)
× di j

d̂ j
(36)

−
N∑

j=1

1

N

(
1−ωwSi +ωwS

)× di j

d̂ j
ˆ̂di

+O(ω2)

Wi (t ) =1+
N∑

j=1

1

N

((
1− 1

ˆ̂di

) (
1+ωwS

)+ω(
wSi

ˆ̂di

−wS j

)
+ω

(
wF i −

N∑
k=1

wF k
dk j

d̂ j

))
× di j

d̂ j
+O(ω2).

(37)

Equation (37) is valid when selection is weak, and for any dispersal graph D sat-
isfying (7). From now on, we are going to focus on graphs that are such that for

all sites i and j , di j = d j i , which implies that d̂ j = 1 = ˆ̂d j . In this case, equation
(37) simplifies into

Wi (t ) = 1+ω
N∑

j=1

1

N

((
wSi −wS j

)+(
wF i −

N∑
k=1

wF k dk j

))
×di j +O(ω2) , (38)
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and the expected change in the global frequency of social individuals, given the
state X (t ) = x(t ), is, using (25),

∆p(t ) = Et

[
1

N

N∑
i=1

(
ω

N

N∑
j=1

(
wSi −wS j +wF i −

N∑
k=1

wF k dk j

)
di j +O(ω2)

)
Xi

]
.

(39)
Thanks to the assumption of weak selection and the Taylor-expansion made

in equation (34), we have transformed products and ratios into sums and differ-
ences, and we can therefore study separately the effects of social behaviour on
fecundity and survival. We define ∆S(t ) and ∆F (t ) as follows:

∆S(t ) = Et

[
ω

N 2

N∑
i=1

N∑
j=1

(
wSi −wS j

)
di j Xi

]
(40)

∆F (t ) = Et

[
ω

N 2

N∑
i=1

N∑
j=1

(
wF i −

N∑
k=1

wF k dk j

)
di j Xi

]
, (41)

so that we have
∆p(t ) =∆S(t )+∆F (t )+O(ω2) . (42)

BD life-cycle With a Birth-Death life-cycle, we simply have to switch the F and

S labels.

Another derivation

The derivation we used in section “A first derivation” allowed us to draw a link
with the Price equation. This derivation is however not classical under a Moran
process. In this section, we briefly outline another derivation. For the sake of
brevity, we focus as previously on dispersal graphs D that are symmetric, i.e.,
such that ∀{i , j }, di j = d j i , an assumption made from equation (38) above, and
used throughout the remainder of the article.

As mentioned previously, under a Moran process, there is only one death
and one birth (as previously, we focus on a DB updating, BD being obtained by
switching the F and S subscripts). At time t , the number of social individuals
in the population is

∑N
k=1 xk , given that the population is in state X (t ) = x. We

denote by T +
t the probability that there is one more social individual at time

t +1, and T −
t the probability that there is one less social individual at t +1, given

X (t ) = x. The number of social individuals increases if a non-social dies between
t and t +1 and is replaced by a social individual:

T +
t =

N∑
i=1

(1−xi )× W 0
S (1−ωwSi )∑N

k=1 W S
0 (1−ωwSk )

×
∑N

j=1 x j W 0
F (1+ωwF j )d j i∑N

k=1 W 0
F (1+ωwF k )dki

. (43)
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With our weak selection assumption, and using the fact that since di j = d j i , we
have

∑N
j=1 d j i = 1, this expression becomes

T +
t =

N∑
i=1

N∑
j=1

1

N

(
1+ω

[
−wSi +

N∑
k=1

wSk

N
+wF j −

N∑
k=1

wF k dki

])
(1−xi ) x j d j i +O(ω2)

T +
t =

N∑
i=1

N∑
j=1

1

N

(
1+ω

[
−wS j +

N∑
k=1

wSk

N
+wF i −

N∑
k=1

wF k dk j

])
(1−x j ) xi d j i +O(ω2)

(44)
[switching the i and j indices, and using the fact that di j = d j i ].

Similarly, given that the population is in state X (t ) = x, the number of social
individuals decreases with probability

T −
t =

N∑
i=1

xi (t )× W 0
S (1−ωwSi )∑N

k=1 W S
0 (1−ωwSk )

×
∑N

j=1(1−x j )W 0
F (1+ωwF j )d j i∑N

k=1 W 0
F (1+ωwF k )dki

T −
t =

N∑
i=1

N∑
j=1

1

N

(
1+ω

[
−wSi +

N∑
k=1

wSk

N
+wF j −

N∑
k=1

wF k dki

])
xi (1−x j )d j i +O(ω2),

(45)

and we can check that these two expressions are compatible our previous deriva-
tion, by noting that the expected change in the frequency of social individuals at
time t +1 given X (t ) = x can be written as

∆x =+ 1

N
T +

t − 1

N
T −

t . (46)

With the expressions of T +
t and T −

t given in equations (44) and (45), we get

∆x = 1

N

N∑
i=1

[
ω

N

N∑
j=1

(
wSi −wS j +wF i −wF j +

N∑
k=1

wF k dki −
N∑

k=1
wF k dk j

)
d j i +O(ω2)

]
xi

= 1

N

N∑
i=1

[
ω

N

N∑
j=1

(
wSi −wS j +wF i −

N∑
k=1

wF k dk j

)
d j i +O(ω2)

]
xi , (47)

because

N∑
i=1

N∑
j=1

(
wF j −

N∑
k=1

wF k dki

)
xi d j i =

N∑
i=1

N∑
j=1

wF j xi d j i −
N∑

i=1

N∑
k=1

wF k dki xi [using (11)].

= 0;

and taking the expectation, (47) is the same as (39).
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Remark

Because the population average of Wi (t ) is 1 since the population remains of
size N , an individual at site i produces more offspring than the average when
Wi (t ) > 1, which occurs when, at the first order inω, and using a general notation
(The subscripts ([1],[2]) being (S,F ) for DB, and (F , S) for BD):

N∑
j=1

(
w[1]i −w[1] j +w[2]i −

N∑
k=1

w[2]k dk j

)
×di j > 0. (48)

This equation simplifies greatly when selection only affects one step of the
process only—and previous studies only considered the two cases below.

1. When selection affects the first step only, equation (48) simplifies into

w[1]i −
N∑

j=1
w[1] j di j > 0, (49)

where we used the fact that, by definition,
∑

j di j = 1. The dispersal graph
D defining neighbourhood, equation (49) means that the individual at site
i is expected to have more offspring than the average individual in the
population (Wi (t ) > 1) if its fitness w[1]i is greater than the average fitness
of its neighbours,

∑N
j=1 w[1] j di j . There is therefore direct competition be-

tween the individual at site i and its neighbours, the strength of this com-
petition being scaled by di j (= d j i ). This is linked to what has been called
the 1-circle 2. This 1-circle is illustrated in Supplementary Fig. 1(a) for the
specific case of a lattice structured population with k = 4 neighbours for
each individual.

2. When selection affects the second step only, equation (48) simplifies into

w[2]i −
N∑

j=1

N∑
k=1

w[2]k dk j di j > 0. (50)

Equation (50) means that an individual at site i is expected to have more
offspring than the average individual if its fitness w[2]i is greater than the
average fitness of all its neighbours’ neighbours,

∑N
j=1

∑N
k=1 w[2]k dk j di j .

This is linked to what has been called the 2-circle 2 , which is illustrated in
Supplementary Fig. 1(b).

Hence, the inclusive fitness of an individual living at focal site i (Wi (t )) is dif-
ferently affected at each step of the process. The first step of the process involves
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competition with the focal’s neighbours, while the second step involves compe-
tition with the neighbours’ neighbours; the two effects sum up (thanks to our
assumption of weak selection).

Specifying the fitnesses

We next specify the w terms. Since the fecundity and survival expressions will be
equivalent, we leave the S and F subscripts aside for the moment. We will need
to recall that the w terms are conditional to the state X (t ) of the population.

General expressions

For an individual at site j and at time t , the state of the population being given
by X (t ) = x, we have

w j =
N∑

l=1
el j

(
bxl −cx j +dxl x j

)
w j =

N∑
l=1

el j
(
bxl +dxl x j

)−cx j [because of (8)]. (51)

Summing over all the other sites l , we count the benefits and costs received by
the individual at j ; the interaction between l and j is scaled by el j (interaction
graph E ). Unconditional benefits (b) are received from site l if this site is occu-
pied by a social individual (xl ), while additional benefits (synergistic terms d)
are received if both individuals at l and j are social individuals (xl x j ). Finally,
costs (c) are paid only if the individual at j is a social individual (x j ).

Survival terms

We now plug the expression for wS derived above into the expression of ∆S(t )
given in equation (40). We first note that

N∑
i=1

N∑
j=1

wS j di j xi =
N∑

i=1

N∑
j=1

wSi d j i x j [exchanging the i and j indices]

=
N∑

i=1

N∑
j=1

wSi di j x j , (52)
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where we used the fact that di j = d j i . We can hence rewrite ∆S(t ) as follows

∆S(t ) = Et

[
ω

N 2

N∑
i=1

N∑
j=1

(
wSi Xi (t )−wSi X j (t )

)
di j

]

= ω

N 2

N∑
i=1

N∑
j=1

N∑
l=1

el i

(
bS

(
Et [Xl Xi ]−Et

[
Xl X j

])
(53)

+dS
(
Et [Xl Xi ]−Et

[
Xl Xi X j

])
−cS

(
Et [Xi ]−Et

[
Xi X j

]))
di j ,

where we used the fact that for all sites i Xi (t )2 = Xi (t ), because Xi takes values
0 and 1. We can rewrite ∆S(t ) in a more compact way:

∆S(t ) =βS bS +δS dS −γS cS , (54)

where the βS , γS and δS are defined below.

Survival benefits The first term, βS , is as follows:

βS = ω

N 2

N∑
i=1

N∑
j=1

N∑
l=1

(
Et [Xl Xi ]−Et

[
Xl X j

])
el i d j i . (55)

So far, the focus was on the benefits received by i , but we can now rewrite this
equation from another perspective, looking at the benefits given by l :

βS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

(
Et [Xl Xi ]−Et

[
Xl X j

])
d j i , (56)

and this formulation is similar an inclusive fitness formulation1, which we did
not assume, but instead derived. Note that this derivation required one assump-
tion only on the dispersal D graph, namely the fact that dispersal is symmetrical
(di j = d j i ), as well as the assumption of weak selection. We can also write equa-
tion (56) as follows:

βS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

(
Et

[
Xl Xi (1−X j )

]−Et
[

Xl (1−Xi )X j
])

d j i . (57)

This expression is used in Supplementary Fig. 2, a figure that provides a schematic
description of the β, γ and δ terms. It will also be useful in section “Simplifying
the δS and δF terms”, to simplify δS .
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We can also rewrite the expression for βS using matrices. We denote by P
the matrix such that Pi j = Et

[
Xi X j

]
; in particular, we have PT = P. Then, (56)

becomes

βS = ω

N 2 Tr
(
ET . (P−P.D)

)
, (58)

where Tr is the trace (sum of diagonal elements).

Survival costs For the costs on survival, we have

γS = ω

N 2

N∑
i=1

N∑
j=1

(
Et [Xi ]−Et

[
Xi X j

])
d j i . (59)

Using the fact that
∑

l el i = 1 (equation (8)), we can rewrite the expression for γS

as follows:

γS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

(
Et

[
Xl Xi (1−X j )

]+Et
[
(1−Xl )Xi (1−X j )

])
d j i . (60)

This expanded notation is used in Supplementary Fig. 2, and in section “Simpli-
fying the δS and δF terms”. Using matrix notation, we get

γS = ω

N 2 Tr(P−P.D) . (61)

Survival synergistic effects For the synergy terms, we have

δS = ω

N 2

N∑
i=1

N∑
j=1

N∑
l=1

el i
(
Et [Xl Xi ]−Et

[
Xl Xi X j

])
d j i ; (62)

after reorganizing the sums, we obtain the following expression:

δS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

(
Et [Xl Xi ]−Et

[
Xl Xi X j

])
d j i . (63)

This expression can be rewritten as follows (see Supplementary Fig. 2):

δS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

(
Et

[
Xl Xi (1−X j )

])
d j i . (64)

If we defineΠ the tensor of order 3 (or three-dimensional array), such thatΠi j k =
Et

[
Xi X j Xk

]
, using a matrix notation, we get

δS = ω

N 2 Tr
(
ET . (P−Π.D)

)
. (65)
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Fecundity terms

We now plug the expression for wS derived above into the expression of ∆S(t )
given in equation (40). We note that, just by switching summation indices,

N∑
i=1

N∑
j=1

N∑
k=1

wF k dk j di j xi =
N∑

i=1

N∑
j=1

N∑
k=1

wF i di j dk j xk (66)

We can hence rewrite ∆F (t ) as follows:

∆F (t ) = Et

[
1

N

N∑
i=1

N∑
j=1

1

N
ω

(
wF i Xi −

N∑
k=1

wF i Xk dk j

)
×di j

]

= Et

[
ω

N 2

N∑
i=1

N∑
j=1

N∑
k=1

(
wF i Xi −

N∑
k=1

wF i Xk

)
dk j di j

]
[since dk j = d j k ,

∑
k

dk j = 1]

= ω

N 2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

el i

(
bF (Et [Xl Xi ]−Et [Xl Xk ]) (67)

+dF (Et [Xl Xi ]−Et [Xl Xi Xk ])

−cF (Et [Xi ]−Et [Xi Xk ])

)
dk j di j ,

As previously with the survival terms, we can rewrite ∆F (t ) in a more com-
pact way:

∆F (t ) =βF bF +δF dF −γF cF , (68)

where the βF , γF and δF are defined below.

Fecundity benefits The first term, βF , is as follows:

βF = ω

N 2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

el i (Et [Xl Xi ]−Et [Xl Xk ]) dk j di j . (69)

Again, we can change the focus and rewrite this equation from another perspec-
tive, looking at the benefits given by l :

βF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

(Et [Xl Xi ]−Et [Xl Xk ]) dk j di j , (70)

an expression that can also be rewritten as follows:

βF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

(Et [Xl Xi (1−Xk )]−Et [Xl (1−Xi )Xk ]) dk j di j . (71)
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This expression is depicted in Supplementary Fig. 3, and will be used in sec-
tion “Simplifying the δS and δF terms” to simplify δF . Using matrices, we obtain
the following compact expression:

βF = ω

N 2 Tr
(
ET . (P−P.D.D)

)
. (72)

Fecundity costs For the costs on fecundity, we have

γF = ω

N 2

N∑
i=1

N∑
j=1

N∑
k=1

(Et [Xi ]−Et [Xi Xk ]) dk j di j . (73)

As for the survival costs, we can use the fact that
∑

l el i = 1, and rewrite the ex-
pression as follows (see Supplementary Fig. 3):

γF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

(Et [Xl Xi (1−Xk )]+Et [(1−Xl )Xi (1−Xk )]) dk j di j .

(74)
We can also rewrite γF with matrices:

γF = ω

N 2 Tr(P−P.D.D) . (75)

Fecundity synergistic effects For the synergy terms, we have

δF = ω

N 2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

el i (Et [Xl Xi ]−Et [Xl Xi Xk ]) dk j di j ; (76)

after reorganizing the terms, we obtain the following expression:

δF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

(Et [Xl Xi ]−Et [Xl Xi Xk ]) dk j di j , (77)

that we can also write as follows (see Supplementary Fig. 3):

δF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

(Et [Xl Xi (1−Xk )]) dk j di j . (78)

Finally, with matrices, we can rewrite δF as

δF = ω

N 2 Tr
(
ET . (P−Π.D.D)

)
. (79)
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Together

If we go back to equation (42), we can rewrite it as

∆p(t ) =βS bS +δS dS −γS cS +βF bF +δF dF −γF cF +O(ω2) (80)

for a Death-Birth process, or, more generally,

∆p(t ) =β[1]b[1] +δ[1]d[1] −γ[1] c[1] +β[2]b[2] +δ[2]d[2] −γ[2] c[2] +O(ω2) (81)

To derive equation (80), we have had to assume weak selection (ω ¿ 1),
that all nodes produce the same number of offspring when the population is
monomorphic (

∑
j di j = 1), and the fact that the dispersal graph D is symmet-

rical (∀i , j ,di j = d j i , or, in matrix notation, D = DT ), but this equation is valid
even if D is not transitive, and no assumption is necessary (and no will be in the
following), besides (8) (

∑
l el i = 1), for the interaction graph E .

All the expressions that we have derived so far depend not only on the ex-
pected state of each site i , Et [Xi ], but also on higher spatial moments such as
the expected state of pairs (Et

[
Xi X j

]
) and triplets of sites (Et

[
Xi X j Xk

]
, for the

δS and δF terms only). We would like to express the change in the frequency
of social individuals as a function of the frequency of social individuals at time
t only. To do so, we have to evaluate spatial moments, which we will do in the
following section. This will require a separation of time scales, which is made
possible by the assumption of weak selection.

Link with relatedness

In our derivation, for the β and γ terms, we need to evaluate Et
[

Xi X j
]

pairs; as
observed before,

Et
[

Xi X j
]=P(

Xi (t ) = 1, X j (t ) = 1
)

. (82)

Inclusive fitness derivations often use instead probabilities of identity in state
or probabilities of identity by descent, without conditioning on the type of the
individuals:

Gi j =P
(
Xi (t ) = X j (t )

)
; (83)

relatedness is often defined as12

Ri j =
Gi j −G

1−G
, (84)

where

G =
N∑

i=1

N∑
j=1

Gi j

N 2 . (85)
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While our derivation does not require the use of these relatedness coeffi-
cients, a link can be made by noticing that

Gi j (t ) = 1−Et [Xi ]−Et
[

X j
]+2Et

[
Xi X j

]
. (86)

To leading order ω0, on a transitive dispersal graph, Et [Xi ] = Et
[

X j
] = Et

[
X

]
=

p(t ). Noting that since Xi is an indicator variable, X = X 2, using the same defi-
nition of covariance as in (22), and writing varS (x) = covS (x, x), we obtain after
simplifying

Ri j (t ) = 1+ Et
[

Xi X j
]−p(t )

Et [varS (X )]
(87)

or, equivalently,

Et
[

Xi X j
]= (

Ri j (t )−1
)
Et [varS (X )]+p(t ). (88)

Evaluating the moments

We need to find expressions for the dynamics of pairs (Xi X j (t )) and triplets
(Xi X j Xk (t )), in order to give explicit expressions of the βS , βF , γS , γF , δS and
δF terms in equation (80). We derive these equations neglecting terms in ω and
higher (recall thatω scales the strength of selection). We start with the dynamics
of pairs.

Dynamics of pairs

Let us consider two sites, i and j 6= i . We first derive an expression for the prob-
ability that sites i and j are both occupied by social individuals at time t + 1,
P

(
Xi (t +1) = 1, X j (t +1) = 1

)
= E

[
Xi (t +1)X j (t +1)

]
given that the population is

in state X (t ) = x at time t . As mentioned in section “Equation for the change of
the frequency of social individuals”, we focus on symmetric graphs, i.e., graphs
such that ∀i , j , di j = d j i . Since we consider a Moran process, at most one indi-
vidual changes between t and t +1. To the leading order ω0, we have:

∀i , j 6= i , E
[

Xi (t +1)X j (t +1)|X (t )=x
]=xi

1

N

N∑
k=1

xk dk j +
1

N

N∑
k=1

xk dki x j

+
(
1− 2

N

)
xi x j +O(ω).

(89)

The first term in equation (89) means that the individual who died during t and
t + 1 was the individual at i (whichever its status was) (1/N ) and it is replaced
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by a social individual coming from site k (
∑

k xk dki ), and while site j , whose
occupancy is unchanged, is occupied by a social individual (x j ); the second term
is similar, except for the fact that j is the site where death occurs. Finally, the
third and last term corresponds to the situation where death occurred in a site
which is neither i nor j (1− 2/N ), and these two sites are occupied by social
individuals (xi x j ).

The expected change between t and t + 1, given the state X (t ) = x of the
population at t is, for all i and j 6= i ,

∆x y = E
[

Xi (t +1)X j (t +1)|X (t )=x
]−xi x j

= 1

N

[
N∑

k=1
xk xi dk j +

N∑
k=1

xk x j dki −2 xi x j

]
+O(ω), (90)

and if we take the expectation over all population configurations at time t , we
get

∀i , j 6= i , ∆Pi j (t ) = E[
E
[

Xi (t +1)X j (t +1)|X (t )
]]−Et

[
Xi X j

]
(91)

= 1

N

[ N∑
k=1

Et [Xk Xi ] dk j +
N∑

k=1
Et

[
Xk X j

]
dki −2Et

[
Xi X j

]]+O(ω),

Hence, the dynamics of pairs are of order ω0 = 1, and so will be the dynamics
of triplets. We have seen previously (equation (40)–(41)) that the dynamics of
singlets are of order ω, and with weak selection ω¿ 1. In order words, at the
zeroth order inω, we have∆p(t ) =O(ω). This means that, while the dynamics of
singlets are extremely slow, the dynamics of pairs and triplets occur on a much
faster time scale; we can therefore decompose the two time scales.

Separation of time scales for the pairs

Quasi equilibrium 6= equilibrium The dynamics of pairs are much faster than
the dynamics of singlets, so we can separate time scales and use a quasi-equilibrium
approximation (a technique also called relaxation projection13). Note that a
quasi-equilibrium is not an equilibrium: if, for all pairs of sites i and j 6= i ,
the expectation of the change is 0 (as will be the case when an equilibrium is
reached), then nothing happens any more in the population, and the global dy-
namics do not change either: we will have ∆p(t ) = 0 too(2). We are concerned
here with population dynamics, not equilibria. Our quasi-equilibrium approx-
imation will be such that once the quasi equilibrium is reached, the expected

(2)Population geneticists may note here that a similar reasoning is made with quasi-linkage ap-
proximations (QLE).

24



change for pairs of individuals only depends on lower moments (singlets); we
denote by f (t ) this expected change at the quasi equilibrium.

Mean field relaxation projection We will assume that once the quasi equilib-
rium is reached, the dynamics of pairs and triplets become equivalent to their
dynamics in an unstructured population with the same frequency of social indi-
viduals X ; in other words, we will do a mean field relaxation projection.

Getting back to the equation for the pairs, (91), once the quasi equilibrium
is reached, we have ∆Pi j = f (t ), that is,

1

N

[ N∑
k=1

Et [Xk Xi ] dk j +
N∑

k=1
Et

[
Xk X j

]
dki −2Et

[
Xi X j

]]= f (t ), (92)

which is equivalently written as

∀i , j 6= i , Et
[

Xi X j
]= 1

2

(
N∑

k=1
Et

[
X j Xk

]
dki +

N∑
k=1

Et [Xi Xk ]dk j

)
−φ(t ) , (93)

where

φ(t ) = N f (t )

2
. (94)

When the D graph is transitive. . . calculations become easier. As described
in section “Assumptions on the D graph”, we say that D is transitive if for all
sites i and j , there is an isomorphism T (i.e., a transformation that leaves the
graph structure unchanged) such that T(i ) = j (recall that classical structures
like deme-structured populations, or lattices, fall into this category). Denoting
by T the matrix corresponding to the transformation T, and D being the matrix
representing the dispersal graph D (defined in (9)), this means that

TT .D.T = D, (95)

and since T corresponds to a permutation, TT = T−1. We can follow a previous
method 2 (their Appendix A) and rewrite (91) with matrices, noting that for all
sites, Pi i (t +1) = Pi i (t )+O(ω):

P(t +1)−P(t ) = 1

N
[D.P(t )+P(t ).D−2P(t )]+L(t )+O(ω), (96)

where L(t ) is a diagonal matrix, whose i th diagonal element is

Li (t ) =− 2

N
[(D.P(t ))i i −Pi i ] . (97)
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Initially, there is one social individual who can be anywhere in the popu-
lation, so that P(0) = 1

N IN (IN being the identity matrix). The transitivity of D
implies the transitivity of P (at all times), which, in turn, implies the transitiv-
ity of L(t ). Since L(t ) is a diagonal matrix, this means that all its diagonal ele-
ments are equal: L(t ) = c(t )IN . Hence, we have D.P(0) = P(0).D and also for all
t , L(t ).D = D.L(t ). Then, by induction, equation (96) implies that at all times, the
dispersal matrix D and the matrix P commute 2:

D.P = P.D, (98)

where we dropped the time dependency of P for notational simplicity. This
means that the two sums in the right hand side of equation (93) are equal 1;9.
So with a transitive D graph, equation (93) reads now:

∀i , j 6= i , Et
[

Xi X j
]= N∑

k=1
Et

[
X j Xk

]
dki −φ(t )

=
N∑

k=1
Et [Xi Xk ]dk j −φ(t )

. (99)

We can sum equation (99) over j 6= i :

∑
j 6=i
Et

[
Xi X j

]= ∑
j 6=i

N∑
k=1

Et [Xi Xk ]dk j −
∑
j 6=i

φ(t )

=
N∑

j=1
Et

[
Xi X j

]−Et [Xi ] =
N∑

k=1
Et [Xi Xk ] (1−dki )− (N −1)φ(t ),

where we used the fact that Xi (t )2 = Xi (t ) (because Xi (t ) is an indicator vari-
able), and that

∑N
j=1 dk j = 1 (by definition). Hence, on a transitive graph, we

have:

∀i , Et [Xi ] =
N∑

k=1
Et [Xi Xk ]dki + (N −1)φ(t ) . (100)

We denote by 1N ,N the N by N matrix that contains only ones; and IN the
identity matrix; we can combine the results (99) and (100) as follows:

P = P.D−φ(t )1N ,N +N φ(t )IN . (101)

Right-multiplying both sides by D, and simplifying, we also obtain

P = P.D.D−2φ(t )1N ,N +N φ(t ) (IN +D) . (102)
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Evaluating φ(t )

Our mean-field relaxation approximation means that at the quasi equilibrium,
the population behaves like an unstructured one. In an unstructured popula-
tion, for all i and j , di j = 1/N . We note that, in an unstructured population of
fixed size, we have

∀i , j 6= i Et
[

Xi X j
]= E[

E
[

Xi (t )X j (t )|X (t )=x(t )
]]

[law of total expectation]

= E[
P

(
Xi (t ) = 1, X j (t ) = 1|X (t )=x(t )

)]
= Et

[
X

N X −1

N −1

]
. (103)

We plug this expression in equation (100), and after rearranging we get

φ(t ) = N

N −1
Et

[
X −X

2
]

; (104)

we note that since Xi takes values 0 and 1,

X 2 =
N∑

i=1

X 2
i

N
=

N∑
i=1

Xi

N
= X , (105)

so that, using the same definition of covariance as in (22), we obtain

φ(t ) = N

N −1
Et [covS (X , X )] = N

N −1
Et [varS (X )] . (106)

Simplifying the δS and δF terms

The δ factors in (80) appear in front of the synergistic terms d, and contain
triplets of individuals (see (62) and (76)), while the expressions of the β (factor in
front on the unconditional benefits b) and γ (in front of the costs c) terms only
involve at most pairs of individuals. We show below how our relaxation approx-
imation allows us to write the δ terms as functions of the β and γ terms and the
expected global frequency of social individuals, p(t ) 14;15.
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Survival terms

The expression of δS (see equation (62)) appears within the expressions of βS

(55) and γS (59), as can be seen below:

βS −δS =− ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

Et
[
(1−Xi ) X j Xl

]
d j i

=−Et [FS(X )] [hereby defining FS ]; (107)

γS −δS = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

Et
[

Xi (1−X j ) (1−Xl )
]

d j i

= Et [FS(1−X )] . (108)

We therefore have

δS = βS +γS

2
+ Et [FS(X )]−Et [FS(1−X )]

2
. (109)

We will now use again the mean-field relaxation approximation that we used in
section “Evaluating φ(t )”, which will allow us to express triplets as a function
of lower moments (pairs and singlets). We note that in a well-mixed population,
FS(X )−FS(1−X ) = 0 when X = 1/2. Secondly, we note that FS(X ) = 0 when X = 0
or X = 1. We assume that taken together, these two considerations mean that
there exist a constant αS such that we can write 15 (recalling that Et [varS (X )] =
Et

[
X (1−X )

]
)

δS = βS +γS

2
+

(
p(t )− 1

2

)
ωαS ×Et [varS (X )] . (110)

We note that in a well-mixed population, we have

δS = βS +γS

2
+

(
p(t )− 1

2

) (
γS −βS

)
. (111)

Fecundity terms

We are going to use a similar argument for the fecundity terms. The expression
of δF (see equation (76)) also appears within the expressions of βF (69) and γF
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(73), as can be seen below:

βF −δF =− ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

Et [(1−Xi ) Xk Xl ] dk j di j

=−Et [FF (X )] [hereby defining FF ]; (112)

γF −δF = ω

N 2

N∑
l=1

N∑
i=1

el i

N∑
j=1

N∑
k=1

Et [Xi (1−Xk ) (1−Xl )] dk j di j

= Et [FF (1−X )] . (113)

We therefore have, once the quasi-equilibrium is reached and provided the mean-
field relaxation approximation holds,

δF = βF +γF

2
+ Et [FF (X )−FF (1−X )]

2
. (114)

Same as for the survival terms, we note that in an unstructured population,
FF (X ) = FF (1−X ) when X = 1/2, and that that FS(X ) = 0 when X = 0 or X = 1, so
that we obtain a similar formula as (110):

δF = βF +γF

2
+ω

(
p(t )− 1

2

)
αF ×Et [varS (X )] , (115)

and we note that in a well-mixed population,

δF = βF +γF

2
+

(
p(t )− 1

2

) (
γF −βF

)
. (116)

Dynamics on a transitive graph

We have seen in equation (42) that thanks to the assumption of weak selection,
we can look at the payoffs on survival and fecundity independently. We will start
with the effects on survival, and will then turn to effects on fecundity.

Survival terms (first step)

Costs on survival

Using the expression of γS derived in equation (61), and the relaxation solu-
tion (101):

γS = ω

N 2 Tr(P−P.D)

= ω

N 2 Tr
(−φ(t )1N ,N +N φ(t )IN

)
, (117)
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and we obtain
γS = ω

N
(N −1)φ(t ). (118)

Benefits on survival

For the benefits, we have, using (58), then the relaxation solution (101):

βS = ω

N 2 Tr
(
ET . (P−P.D)

)
= ω

N 2 Tr
(
ET .

(−φ(t )1N ,N +N φ(t )IN
))

. (119)

Because of (8), Tr
(
ET .1N ,N

) = N , and we denote by eself the average interaction
with oneself:

eself =
1

N

N∑
l=1

el l , (120)

so that βS simplifies into

βS = ω

N
(Neself −1) φ(t ). (121)

Conclusion for the effects on the first step of the process

Collecting the different expressions, we obtain

γS = ω

N
(N −1)φ(t )

βS = ω

N
(Neself −1) φ(t )

δS = βS +γS

2
+ω

(
p(t )− 1

2

)
αS ×Et [varS (X )]

(122)

System (122) reveals that, when the social interactions influence the first step
of the process, population structure does not influence the dynamics of the fre-
quency of social individuals in the population.

Fecundity terms (second step)

Costs on fecundity

We use the expression of γF derived in equation (75), then the relaxation solu-
tion (102):

γF = ω

N 2 Tr(P−P.D.D)

= ω

N 2 Tr
(−2φ(t )1N ,N +N φ(t ) (IN +D)

)
.

(123)
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Denoting by dself = di i the probability that offspring stay at their parent’s site,
which is the same for all i because the D graph is transitive, γF simplifies into

γF = ω

N
(N +N dself −2) φ(t ). (124)

Benefits on fecundity

We now turn to the benefits on fecundity, whose expression is given in equa-
tion (72), and we again use the relaxation solution (102):

βF = ω

N 2 Tr
(
ET . (P−P.D.D)

)
= ω

N 2 Tr
(
ET .

(−2φ(t )1N ,N +N φ(t ) (IN +D)
)) (125)

As previously, we note that Tr
(
ET .1N ,N

) = N , and that Tr
(
ET .IN

) = N eself (see
equation (120)). We now define

ed = 1

N

N∑
l=1

N∑
k=1

elk dkl =
1

N
Tr

(
ET .D

)
, (126)

and we obtain

βF = ω

N

(
N eself +N ed −2

)
φ(t ). (127)

Conclusion for the effects on the first step of the process

Collecting the different expressions for the terms involved in the second step of
the process, we get

γF = ω

N
(N +N dself −2) φ(t )

βF = ω

N

(
N eself +N ed −2

)
φ(t )

δF = βF +γF

2
+ω

(
p(t )− 1

2

)
αF ×Et [varS (X )]

(128)

Comparing these expressions to the expressions for the first step of the pro-
cess, (122), we see that spatial structure does influence the evolution of social
behaviour, when the effects of the behaviour affect the second step of the pro-
cess.
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Conclusion

Going back to equation (80), using the expressions derived in systems (122) and
(128) and our evaluation ofφ(t ) derived in (106), we obtain the following change
in the expected frequency of social individuals in the population:

∆p(t ) =
(
+bS

Neself −1

N −1

+dS

(
N +N eself −2

2(N −1)
− αS

2
+αS p(t )

)
−cS

+bF
N eself +N ed −2

N −1

+dF

 N +N dself +N eself +N ed −4

2(N −1)
− αF

2
+αF p(t )


−cF

N +N dself −2

N −1

)
ω ×Et [varS (X )]

, (129)

and we define σDE as

σDE =
(
+bS

Neself −1

N −1
+dS

(
N +N eself −2

2(N −1)
− αS

2

)
−cS

+bF
N eself +N ed −2

N −1
+dF

 N +N dself +N eself +N ed −4

2(N −1)
− αF

2

−cF
N +N dself −2

N −1

)
ω

(130)

and τDE as

τDE =
(
dS αS +dF αF

)
ω, (131)

and
sDE (p(t )) =σDE +p(t )τDE , (132)

so that sDE (p(t )) is a selection coefficient and we can rewrite (129) as

∆p(t ) = sDE (p(t ))×Et [varS (X )] . (133)
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A note for δ-weak selection

In this study, we focus on w-weak selection (weak effects of the interactions), but
this section highlights the difference between w- and δ- weak selection 5. Let us
briefly go back to the payoff matrices, and denote by x ′ the expressed phenotype
of a social individual (S), and x the expressed phenotype of a non-social (NS).
We denote by B(x1, x2) benefits given by a x2 individual to a x1 individual, and
C (x) the cost paid by a x individual. Under δ-weak selection, we have x ′ = x +δ,
where δ¿ 1. A payoff matrix can therefore be written as follows:

A(x ′, x) =
(
B(x ′, x ′)−C (x ′) B(x ′, x)−C (x ′)
B(x, x ′)−C (x) B(x, x)−C (x)

)
= A0(x)+δA′(x)+O(δ2), (134)

where the matrix

A0(x) = (B(x, x)−C (x))

(
1 1
1 1

)
(135)

corresponds to baseline payoffs that are the same for all individuals, while the
difference among types is contained in

A′(x) =
(
∂B
∂x1

(x, x)+ ∂B
∂x2

(x, x)−C ′(x) ∂B
∂x1

(x, x)−C ′(x)
∂B
∂x2

(x, x) 0

)
. (136)

We note that A′(x) corresponds to a payoff matrix without synergistic terms d: if
we define {

b = ∂B
∂x2

(x, x)

c = C ′(x)− ∂B
∂x1

(x, x)
, (137)

then we can rewrite A′(x) as

A′(x) =
(
b−c −c
b 0

)
. (138)

Hence, with δ-weak selection, the sign of the selection coefficient becomes
frequency independent (τDE , defined in (131), is zero), and the three criteria
enumerated in section “Criteria for the evolution of social behaviour” are equiv-
alent, as previously demonstrated10. But, as we have seen, the situation is dif-
ferent with w-weak selection.

Fixation probability

Fixation probability of a "social" mutation

Our choice of a mean-field relaxation means that we assume that once the relax-
ation manifold is reached, the dynamics of the structured population become
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equivalent to the dynamics in a well-mixed population, with a frequency de-
pendent selection coefficient sDE (p(t )) given by equation (132). Note that in the
main text, we use a a,b,c,d parametrization of the payoff matrices, instead of b,
c, d (see (15) for the equivalence between the two parametrizations), and also
that the ω term is merged in the payoff terms, so that it does not appear.

In a Moran process, we can get explicit expressions of the fixation probability
of a single mutant16;17. Writing p(t ) = y(t )/N = y/N (dropping the time depen-
dency for the sake of notational simplicity), at the first order in ω, the fixation
probability of initially one mutant social individual (y(0) = 1) with a selection
coefficient sDE (p(t )) reads:

ρS ≈ 1

1+∑N−1
K=1Π

K
x=1

[
1− (

σDE +τDE
y
N

)]
≈ 1

1+∑N−1
K=1

(
1−∑K

x=1

(
σDE +τDE

y
N

))
≈ 1

1+∑N−1
K=1

(
1−K σDE −τDE

1
N

K (K+1)
2

)
≈ 1

1+
(
N −1−σDE

(N−1) N
2 −τDE

1
N

N (N−1)(N+1)
6

)
≈ 1

N

1

1−σDE
N−1

2 −τDE
1
N

(N−1)(N+1)
6

,

(139)

so that we get:

ρS ≈ 1

N
+ N −1

2 N

(
σDE +τDE

N +1

3 N

)
. (140)

We note that when N gets large, the term between the brackets in (140) becomes
equivalent to sDE (1/3). Social behaviours get fixed more often than a neutral
mutation if ρ > 1/N . If we denote by p∗ = −σDE

τDE
the value of p at which the

selection coefficient sDE is zero, we note that, when N is large,

ρ > 1/N ⇐⇒ sDE (1/3) > 0

⇐⇒
{

p∗ < 1
3 if τDE > 0

p∗ > 1
3 if τDE < 0.

(141)

This is the generalization of the "one-third" law 18. We also note that this result
is valid for any kind of weak, linearly frequency dependent selection (i.e., where
the selection coefficient can be written as s(p) =σ+τp, withσ and τ small com-
pared to 1), and is hence not restricted to social interactions.

34



Fixation probability of a "non-social" mutation

We write q(t ) = 1−p(t ) the expected frequency of non-social individuals in the
population. We know that

∆q(t ) =∆(1−p(t )) =−∆p(t ), (142)

so that, following (133) we can write

∆q(t ) = (−(σDE +τDE )+q(t )τDE

)
Et [varS (X )] . (143)

Following (140), the probability of fixation of a single non-social mutant in a
social population is

ρNS ≈ 1

N
+ N −1

2 N

(
−(σDE +τDE )+τDE

N +1

3 N

)
. (144)

Conclusion

Our evolutionary criterion described in section “Criteria for the evolution of so-
cial behaviour” states that social individuals are favoured by natural selection
when

ρS > ρNS, (145)

which, given the formulas presented in equations (140) and (144), means that
we need

2σDE +τDE > 0. (146)

Given the definitions of σDE and τDE presented in (130) and (131), this is equiv-
alent to(
+bS

Neself −1

N −1
+dS

(
N +N eself −2

2(N −1)

)
−cS

+bF
N eself +N ed −2

N −1
+dF

 N +N dself +N eself +N ed −4

2(N −1)

−cF
N +N dself −2

N −1

)
> 0

(147)

Going back to the a, b, c, d parametrization of the payoffs (see equation (15)),
after simplifying, and using the general notation for the first and second step
(for DB, the subscript [1] is S and [2] is F , and conversely for BD), condition (147)
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becomes{ (
1+eself − 2

N

) (
a[1] +a[2] −d[1] −d[2]

)+ (1−eself)
(
b[1] +b[2] −c[1] −c[2]

)
+

(
dself +ed − 2

N

)(
a[2] −d[2]

)+ (
dself −ed

)(
b[2] −c[2]

) }
> 0

.

(148)

Illustrations

Parameters

In the following, we investigate the relative effect of allocating benefits and costs
of social interactions to fecundity or survival, or, most generally, the first or sec-
ond step of the process. We consider three canonical games (Prisoner’s Dilemma,
Snowdrift, Stag Hunt); we give expressions with general population structures,
and illustrate the results with specific ones.

Allocation of Benefits and Costs

An individual receiving a benefit B allocates a fraction λB of it to the life-history
trait that corresponds to the second step of the Moran process (i.e., fecundity for
a Death-Birth updating, or survival for a Birth-Death updating):

B[1] = (1−λB )B , and B[2] =λB B. (149)

Similarly, a fraction λC of the cost paid by social individuals affects the second
step of the process:

C[1] = (1−λC )C , and C[2] =λC C . (150)

Population structures

We recapitulate here the values of the key parameters of the dispersal graph D

and interaction graph E for specific population structures.

Well-mixed population Every individual interacts with every individual in the
population, including itself, and its offspring can go anywhere, including staying
at the parent’s site:

dself =
1

N
, eself =

1

N
, ed = 1

N
. (151)
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Full graph Every individual interacts with every other individual in the popu-
lation (excluding itself), and its offspring can go anywhere, except for staying at
the parent’s site:

dself = 0, eself = 0, ed = 1

N −1
. (152)

Regular graph of degree k Each individual is connected to exactly k other in-
dividuals, interacts with them socially and its offspring disperses to one of these
k sites.

dself = 0, eself = 0, ed = 1

k
. (153)

Deme structured population 1 The population is subdivided into demes of n
individuals exactly; each individual interacts socially with all the members of its
deme (including itself); its offspring stays in the deme with probability 1−m
(landing at any of the n sites with equal chance) or disperses to a different deme
with probability m.

dself =
1−m

n
, eself =

1

n
, ed = 1−m

n
. (154)

Deme structured population 2 The dispersal structure is the same as in the
first deme structured population, but now individuals interact with the other
members of their deme, excluding themselves:

dself =
1−m

n
, eself = 0, ed = 1−m

n
. (155)

Prisoner’s Dilemma

The payoffs at step i read

M PD
[i ] =

(
B[i ] −C[i ] −C[i ]

B[i ] 0

)
. (156)

Defining the cost to benefit ratio r = C
B (r > 1), social individuals are favoured

whenever condition (148) is satisfied—note that this is the particular case where
the three conditions detailed in section “Criteria for the evolution of social be-
haviour” are equivalent—:(

eself −
1

N

)
− r

(
1− 1

N

)
+λB

(
ed − 1

N

)
+ r λC

(
1

N
−dself

)
> 0. (157)
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In most cases (unless the D and E graphs do not overlap), ed > 1/N , so that
strategies allocating the benefits to the second step (higher λB ) are favoured.
The effect of the cost depends on whether an individual can replace itself (dself).
If it cannot, as is the case on a lattice, then allocating the cost to the second step
is favourable (higher λC ), but this effect vanishes when the population becomes
large, and allocating the cost on fecundity or survival does not matter any more.
If an individual can replace itself, i.e., if some of its offspring stay on the same
site (dself > 1/N ) as is the case in a population structured in demes, then it is
better to allocate the costs to the first step of the process.

Snowdrift

The payoffs at step i read

M SD
[i ] =

(
B[i ] −C[i ]/2 B[i ] −C[i ]

B[i ] 0

)
. (158)

Defining the cost to benefit ratio r ′ = C
2B−C (0 < r ′ < 1), condition (148) is satis-

fied when(
1+eself −

2

N

)
−2r ′ (1−eself)+λB (1+r ′)

(
ed +dself −

2

N

)
+r ′λC

(
2

N
+ed −3dself

)
> 0.

(159)
In general, allocating the benefits to the second step (higher λB ) is more con-
ducive to the evolution of social behaviour, except in the particular case of a full

graph (dself = 0, ed = 1
N−1 ). Here again, the effect of the allocation of the cost

depends on whether individuals can replace themselves. When they do not, al-
location of the costs to the second step is favoured, while when they do substan-
tially, as for instance in a deme-structured population, it is better to allocate the
costs to the first step.

Stag Hunt

The payoffs at step i read

M SH
[i ] =

(
2B[i ] −C[i ] 0

B[i ] B[i ]

)
. (160)

Using the cost to benefit ratio r ′′ = B+C
2B ( 1

2 < r ′′ < 1), condition (148) is satisfied
when(
1+3eself −

4

N

)
−2r ′′

(
1+eself −

2

N

)
+λB ×2

(
ed − 1

N

)
+λC (2r ′′−1)

(
2

N
−dself −ed

)
> 0.

(161)
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The term in front of λB has the same sign as in the Prisoner’s Dilemma game:
benefits on the second step are favoured. The effect of the cost is such that (ex-
cept for a full graph), allocation to the first step (lower λC ) is more conducive to
the evolution of social behaviour.

Simple Spite

The payoffs at step i read

M SS
[i ] =

(−B[i ] −C[i ] −C[i ]

−B[i ] 0

)
. (162)

We can use the same cost to benefit ratio r = C
B (r > 1) as for the Prisoner’s

Dilemma. Social individuals are favoured whenever condition (148) is satisfied
(and here too, this is the particular case where the three conditions detailed in
section “Criteria for the evolution of social behaviour” are equivalent):

−
(
eself −

1

N

)
− r

(
1− 1

N

)
−λB

(
ed − 1

N

)
+ r λC

(
1

N
−dself

)
> 0. (163)

Since the cost terms are equivalent to the ones in the Prisoner’s Dilemma
game, the effects of λC are the same. The effect of λB differs however, because
of the minus sign in front of the benefit terms in the payoff matrix M SS

[i ] . As men-

tioned previously, in most structured populations, ed > 1/N , so that strategies
allocating the benefits to the first step (lower λB ) are favoured.
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