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Abstract

How do mutation and gene flow influence population persistence, niche

expansion and local adaptation in spatially heterogeneous environments? In

this article, we analyse a demographic and evolutionary model of adaptation

to an environment containing two habitats in equal frequencies, and we

bridge the gap between different theoretical frameworks. Qualitatively, our

model yields four qualitative types of outcomes: (i) global extinction of the

population, (ii) adaptation to one habitat only, but also adaptation to both

habitats with, (iii) specialized phenotypes or (iv) with generalized pheno-

types, and we determine the conditions under which each equilibrium is

reached. We derive new analytical approximations for the local densities

and the distributions of traits in each habitat under a migration–selection–
mutation balance, compute the equilibrium values of the means, variances

and asymmetries of the local distributions of phenotypes, and contrast the

effects of migration and mutation on the evolutionary outcome. We then

check our analytical results by solving our model numerically, and also

assess their robustness in the presence of demographic stochasticity.

Although increased migration results in a decrease in local adaptation,

mutation in our model does not influence the values of the local mean

traits. Yet, both migration and mutation can have dramatic effects on popu-

lation size and even lead to metapopulation extinction when selection is

strong. Niche expansion, the ability for the population to adapt to both hab-

itats, can also be prevented by small migration rates and a reduced evolu-

tionary potential characterized by rare mutation events of small effects;

however, niche expansion is otherwise the most likely outcome. Although

our results are derived under the assumption of clonal reproduction, we

finally show and discuss the links between our model and previous quanti-

tative genetics models.

Introduction

Over a landscape, physical factors may change, different

habitats may be present and different species may be

encountered. These abiotic and biotic heterogeneities

result in spatially heterogeneous selection pressures.

The interplay between spatially heterogeneous selec-

tion, mutation and migration is of paramount impor-

tance in evolutionary ecology, because these effects are

at the core of the understanding of species geographic

ranges (Gaston, 2009). Two factors are usually invoked

to explain limited species ranges (Polechov�a et al.,

2009): (i) gene flow, by which migration from regions

where the population is adapted and numerous to mar-

ginal regions prevents adaptation there, because of gene

swamping (Haldane, 1956; Lenormand, 2002), and (ii)

a lack of genetic variance to allow for adaptation to a
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new niche (Hoffmann et al., 2003; Blows & Hoffmann,

2005), which can be a consequence of gene flow, but

can also be due to a limited amount of mutational

influx. Understanding the effects of mutation and

migration on adaptation in heterogeneous environ-

ments may also have more applied importance in path-

ogen and pest management (Peck, 2001). Pathogens

and pests are often facing heterogeneous environments

where different habitats may be characterized by differ-

ent levels of control agents – pesticides, herbicides, anti-

biotics, etc. – (Comins, 1977; Mani, 1989; Singer et al.,

2006), different hosts (Koskella et al., 2011) or even

different organs within the same host (Sanju�an et al.,

2004). Understanding the effects of gene flow (Lenor-

mand & Raymond, 1998) and mutation (Bull et al.,

2007; Martin & Gandon, 2010) is key to predicting the

evolution of drug resistance and to optimizing the effi-

cacy of treatments.

In this article, we consider a two-habitat model with

explicit demographic dynamics, a setting similar to the

models studied by Mesz�ena et al. (1997), Day (2000) and

Ronce & Kirkpatrick (2001). We study the conditions

under which the whole environment can be colonized,

and how migration and mutation influence the level of

adaptation. Note that we use the terms ‘dispersal’ and

‘migration’ interchangeably, as is commonly done (Ronce,

2007), although, strictly speaking, we are modelling

dispersal (but the use is for instance to talk about a

‘migration–selection’ balance, and not a ‘dispersal-selec-

tion’ balance). We assume that the two habitats are pres-

ent in equal frequencies in the environment, and that

adaptation to one or the other habitat is governed by a

quantitative trait. Maladapted populations have a

reduced growth rate, and cannot fill up their habitat.

When maladaptation is too high, it leads to a demo-

graphical collapse, or even to global population extinc-

tion. Our model assumes that individuals reproduce

asexually (or alternatively, that individuals are haploid

and the trait is coded by a single locus with a continuum

of possible alleles). To study this model, we have to fol-

low both the local densities in each habitat and the distri-

butions of phenotypes, and see how local selection,

migration and mutation affect them. Borrowing tools

from different frameworks (local stability analysis from

adaptive dynamics (Geritz et al., 1998), moment-based

approaches like in quantitative genetics (Lynch & Walsh,

1998; B€urger, 2000)), we derive analytical approxima-

tions for the densities and distributions of traits in each

habitat. First, we study the limiting case where the

genetic variance due to mutations is very low, and we

fully characterize the equilibria of our model. Second,

we extend this analysis to mutations that are more

frequent and/or of larger effect, and we derive approxi-

mations for the level of adaptation under a migration–
selection–mutation balance. We evaluate the accuracy of

these approximations by comparing them to numerical

solutions of our deterministic model. In addition, we also

check the robustness of our conclusions when demo-

graphic stochasticity is allowed, by running stochastic

individual-based simulations. Finally, we also show how

our analysis relates to the quantitative genetics frame-

work and to models with sexual reproduction.

Model

Phenotypic model

We model an environment containing two different

habitat types, labelled 1 and 2, present in equal frequen-

cies, and with the same maximal density of individuals

(i.e. with the same carrying capacity; see Fig. 1). Adapta-

tion to one or the other habitat is governed by a quanti-

tative trait z. In each habitat, there is selection towards

an optimal value of the trait; without loss of generality,

because it amounts to rescaling the trait z (see section

A.1.3 in the Appendix for more details), we assume that

the optimum value is h1 ¼ 0 in habitat 1 and h2 ¼ 1 in

habitat 2. Locally, populations grow logistically [note

that we rescaled our equations, so that the r and K

parameters of the logistic equation will not appear in our

formulas], but maladapted individuals suffer from an

increased death rate, g � ð1 � fjðzÞÞ, where g is the

(scaled) strength of selection, and fj the fitness function

in habitat j. We assume that the fitness functions are

symmetric, so that f2ð1 � zÞ ¼ f1ðzÞ, and we can also

define a trade-off function u that links the fitness values

in both habitats: f2ðzÞ ¼ uðf1ðzÞÞ. We derive some results
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Fig. 1 (a) The model: two symmetrical habitats connected by

dispersal. (b) Exponential growth rate q ¼ 1 � gð1 � fjðzÞÞ in
both habitats, with quadratic fitness functions, for different values

of g (written on the right). Phenotypes with negative qs are not

viable, which is why the area below the q = 0 axis is shaded.
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with these general fitness functions, but then use specific

functions, and assume quadratic fitness effects:

f1ðzÞ ¼ 1� z2; f2ðzÞ ¼ 1� ð1� zÞ2: (1)

Offspring inherit their parent’s trait modulo mutations.

These mutations occur at rate l0, and add an increment y

to the parent’s phenotype; we assume that the distribu-

tion of these mutational effects is a Gaussian l(y), with

mean 0 (there is no directional effect of mutations). This

corresponds to a continuum of alleles model (Kimura,

1965). For the sake of simplicity, we additionally assume

that there is a direct mapping between genotype and

phenotype, that is, we ignore environmental variations.

Finally, individuals disperse among habitats, at rate m,

which is the same for both habitats, and is independent

of genotype. Note that m is a rate, and can therefore take

any positive value. Let njðzÞ be the density distribution in

habitat j, at time t, measured relative to the local carrying

capacity (l 6¼ j refers to the other habitat); with our

assumptions, its dynamics read:

@njðzÞ
@t

¼ 1�
Z þ1

�1
njðyÞdy

� �
� g� 1� fjðzÞ

� �� �
njðzÞ

þmðnlðzÞ � njðzÞÞ

þ l0

Z þ1

�1
lðyÞnjðz � yÞdy� njðzÞ

� �
:

(2a)

The first line of eqn (2a) corresponds to logistic growth

(first term in the brackets) and to selection (second term

in the brackets). Note that the resulting exponential

growth rate (i.e. the growth rate when the local density is

close to 0), is qðz; gÞ ¼ 1 � g � ð1 � fjðzÞÞ, and that q is

not always positive. This means that maladapted popula-

tions can go extinct (as in Ronce & Kirkpatrick, 2001). We

show in Fig. 1b how the strength of selection parameter g

affects this exponential growth rate, when quadratic fit-

ness functions are used. The second line of eqn (2a) corre-

sponds to the dispersal of individuals from one habitat to

the other. Finally, the third line corresponds tomutations.

Note that all parameters and variables in eqn (2a) have

been rescaled to reduce the number of parameters (see

section A.1.3 in the Appendix).

If we assume that the variance of the mutation ker-

nel l is small enough, we can use a diffusion approxi-

mation for the mutation term of eqn (2a) (Kimura,

1964; Lande, 1975; Rice, 2004). We can rewrite the

third line of eqn (2a), and we obtain the following:

@njðzÞ
@t

¼ 1�
Z þ1

�1
njðyÞdy

� �
�g� 1� fjðzÞ

� �� �
njðzÞ

þmðnlðzÞ�njðzÞÞþVm

2

@2njðzÞ
@z2

;

(2b)

where Vm is the variance of the mutation kernel

(Var(l)) times the probability of mutation (l0).

Numerical solutions and simulations of the
full model

Numerical (deterministic) solutions of the full model

(2b) are done by discreticizing the trait space in

nz = 501 units, and by solving the 2*nz coupled differ-

ential equations in R (R Development Core Team,

2010) with the ode.1D function of the deSolve package

(Soetaert et al., 2010). The results are presented in Fig. 2

(filled curves), and in Figs 5 and 6 (dashed curves).

Individual-based stochastic simulations are run to

check whether drift changes our predictions, since the

analytical model does not take it into account. Continu-

ous time is simulated using a Gillespie algorithm (Gil-

lespie, 1977); the simulations are also coded in R.

Results are presented in Figs 5 and 6 (dots).

Results

Model (2a) yields four qualitatively different types of

outcomes, illustrated in Fig. 2. These outcomes are glo-

bal population extinction (labelled 0, Fig. 2a); an asym-

metric equilibrium, where the whole population is

adapted to one habitat only (A, Fig. 2b); and symmetric

equilibria, where the global population is either unimo-

dal (SM, Fig. 2d) or bimodal (SP, Fig. 2c). We use differ-

ent frameworks and sets of assumptions to further

describe these equilibria and their stabilities.

Moment-based approach

Derivation of the equations
Except under some specific cases, it is not possible to ana-

lyse in general the whole model (2a) (or its diffusion

equivalent (2b)). We start by rewriting model (2a) using

summary variables to describe the distributions of densi-

ties in each habitat; these summary variables are, for each

habitat j, the total local densities nj ¼
Rþ1
�1 njðzÞdz, and

the local mean traits �zj ¼
Rþ1
�1 zðnjðzÞ=njÞdz. Specifically,

we follow the difference between the local mean trait

and the local optimum, that is, �z1 � h1 ¼ �z1 and

h2 � �z2 ¼ 1 � �z2. We also need to define the local vari-

ances, vj ¼
Rþ1
�1 ðz � �zjÞ2ðnjðzÞ=njÞdz, and third central

moments 1j ¼
Rþ1
�1 ðz � �zjÞ3ðnjðzÞ=njÞdz. The details of

the derivations are presented in Appendix A.2. To study

the dynamics of these summary variables, however, we

need to evaluate the mean fitnesses in each habitat, and

these expressions depend on the distributions of traits.

A Taylor expansion of the fitness functions allows us to

write the mean fitnesses as a function of the fitness of

the mean traits, and of the local variances:

�fj ’ fjð�zjÞ þ vj
f 00j ð�zjÞ
2

: (3)

Equation (3) is exact with quadratic fitness functions

(see eqn (1); this is because the third and higher
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derivatives are null), and is valid otherwise with wide

enough fitness functions (Abrams et al., 1993; Abrams,

2001) [e.g. when Gaussian fitness functions are used,

for small distances between the local optima (jh2 � h1j)
relative to the width of the functions, which corre-

sponds to weak trade-offs (D�ebarre & Gandon, 2010)].

After some algebra we obtain the following dynamics:

dnj

dt
¼ð1� njÞnj�gnj 1�fjð�zjÞ�vj

f 00j ð�zjÞ
2

� �
þmðnl�njÞ (4a)

d�zj
dt

¼ g vjf
0
j ð�zjÞ þ 1j

f 00j ð�zjÞ
2

� �
þm

nl

nj
ð�zl � �zjÞ: (4b)

It is important to note that system (4) is still not closed:

there are more variables than equations. The local vari-

ances (vj) and third moments (1j) are variables too, and

their dynamics depend on higher moments of the distribu-

tion. Still, we can use these general equations to provide

unclosed expressions for measures of local adaptation.

Characterization of the symmetric equilibrium
Using the summary variables presented in system (4), we

can further characterize the symmetric equilibria SM and SP
(Fig. 2d,c) under a selection–migration–mutation balance.

Because of symmetries, system (4) is dramatically simpli-

fied: the equilibrium densities, and also the variances are

the same in both patches (n�2 ¼ n�1 ¼ n�) and so are the

variances (v�2 ¼ v�1 ¼ v�); the mean traits and the third

moments are symmetrical (�z�2 ¼ 1 � �z�1 ¼ 1 � �z� and

1�2 ¼ �1�1 ¼ �1�). Even using these symmetry relations,

setting dnj=dt ¼ 0 and d�zj=dt ¼ 0 in system (4) does not

yield explicit solutions unless the fitness functions are speci-

fied. We therefore use quadratic fitness functions (see eqn

(1)), and obtain the following expressions for the local den-

sities n� and mean trait �z�:

n� ¼ 1� g v� þ ðm� g1�Þ2
4ðmþ gv�Þ2

 !
(5a)

�z� ¼ 1

2

m� g1�

ðmþ gv�Þ ; (5b)

and the differentiation among habitats at equilibrium is

D� ¼ 1 � 2�z�:

D� ¼ gð1� þ v�Þ
mþ gv�

: (6)

It is important to keep in mind that expressions (5)–(6)
are not closed: they depend on the local variances v� and
third moments 1�, which are themselves functions of the

model’s parameters m and g. In addition, the equations

for the dynamics of each moment of the distribution

depend on the two higher moments (the dynamics of �z
depends on v and ς, the dynamics of v will depend on ς
and the fourth moment, and so on and so forth). One

solution to cut this chain is to use a moment closure

approximation, that is, to make some approximations on

the shape of the distributions. This is commonly done in

quantitative genetics models, where the distributions of

breeding values are assumed to be Gaussian. However in

this study, we are dealing with asexual populations,

there is no reason to assume Gaussian distributions of

traits in each deme for all parameters. We therefore need

another kind of approximation. We are first going to

neglect the variance due to mutations, so as to approxi-

mate the distributions of traits as collections of spikes; we

will just need to find the localization and height of these

spikes. Later on, we will relax this assumption.
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Fig. 2 Typical distributions for the four

qualitative outcomes, and comparison

of the numerical solution of the whole

model ((2b), filled distributions), and

the analytical approximations (thick

black curves). The distributions in the

two habitats are superimposed on each

subfigure; dark grey and full lines

correspond to habitat 1, light grey and

dashed lines to habitat 2. In all figures,

Vm ¼ 10�4. In (b) and (c), m = 0.4 and

g = 2 (bistability, same parameters as in

Fig. 3; white cross in Fig. 4). In (d),

m = 0.75 and g = 1 (black cross in Fig. 4).
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Adaptive dynamics approach

In this section, we assume that evolution proceeds

gradually, because mutations are rare and of weak

effect. Rare mutations means that a mutation is fixed

or goes extinct before a new one appears in the popula-

tion; weak effect means that the traits of the mutants

are close to the resident’s traits, so that we can use

weak selection approximations – but we will relax this

assumption later on. Evolution therefore proceeds as a

series of competitive replacements. The local distribu-

tions are approximated as collections of spikes (instead

of smooth curves like Gaussians), and adaptive dynam-

ics (Geritz et al., 1998) is an optimization method

(Abrams, 2001) to find the equilibrium localization in

trait space of these spikes, which are also called evolu-

tionary stable strategies (ESS). This method also allows

us to determine whether selection at the scale of the

whole environment is, or not, disruptive.

Gradual evolution in monomorphic populations
Using eqn (2a), we can write the dynamics of rare

mutants with a trait zm ¼ zr þ dz, trying to invade a

population containing only individuals with trait zr (the

resident population), having reached its ecological equi-

librium, so that the density of the resident population

in habitat j is ~njðzrÞ:
dnjðzmÞ

dt
¼½ð1� ~njðzrÞÞ � g� ð1� fjðzmÞÞ�njðzmÞ
þmðnlðzmÞ � njðzmÞÞ:

(7)

These mutants can invade when their fitness gradient

(whose expression with general fitness functions is

given in eqn (B.1) in the Appendix) is positive.

Singular strategies. Singular strategies, that is, poten-

tial ESS, that is, localization of the spikes in the local

distributions, are values of zr at which the fitness gradi-

ent is equal to zero.

Intermediate strategy z�. As the two habitats are pres-

ent in equal frequencies, the intermediate trait z� ¼
ðh1 þ h2Þ=2 ¼ 1=2 is always a singular strategy (since

f1ð1=2Þ ¼ f2ð1=2Þ and f 01ð1=2Þ ¼ �f 02ð1=2Þ).

Other singular strategies. For some parameter values,

there are other roots of the selection gradient besides

z� ¼ 1=2; however, there is no general simple analyti-

cal expression for them, even when explicit, quadratic

fitness functions are used. When they exist, the other

roots, zA, correspond to the asymmetric equilibrium (A)

(see Fig. 2b); they are found numerically in the general

case. In the specific case, where the migration rate m is

low, and selection is strong enough (in particular

g > 1), and with quadratic fitness functions, it is possi-

ble to find approximations of zA (see Appendix B.1.3):
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Fig. 4 Qualitative evolutionary outcomes, depending on the

migration rate m and the strength of selection g, with quadratic

fitness functions. The crosses show the parameters used in Fig.

2: white cross for (b) and (c); black cross for (d); same

labelling of the different types of equilibria as in Fig. 2. The full

black boundary (population persistence) is derived from eqn (9b)

(when 2 m > g) and eqn (15b) (otherwise). The thick grey

boundary (convergence stability of z� ¼ 1=2 under

gradual evolution) is given by (10). The dashed black

boundary (invadability of z�) corresponds to g = 2m (from (11)

and (15a)).
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Fig. 3 Basin of attraction of the different equilibria, with

migration m = 0.4 and strength of selection g = 2 (quadratic fitness

functions). In the black area, pairs of individuals with traits z1 and

z2 cannot coexist. The white dot SM represents the intermediate

strategy z� ¼ 1=2, which is a repellor here; the grey dots are the

symmetric, polymorphic (SP), and asymmetric monomorphic (A)

equilibria. The arrows show the direction of evolution: the

symmetric equilibria SP are attained if for a given resident strategy

z1, there is a mutant strategy z2 such that the (z1, z2) point is in

the white area.
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zA � m2

ðg� 1Þ2 : (8)

The higher the migration rate m and the weaker the

strength of selection g, the closer zA is to the intermedi-

ate strategy 1/2. The accuracy of this approximation is

evaluated in Fig. 6a–b (dotted grey lines): the predic-

tion is accurate at low migration rate m, as expected.

Stability of the intermediate strategy z� ¼ 1=2. It is

possible to investigate the stability of the singular strat-

egy z� ¼ 1=2 without specifying the fitness functions,

which generalizes the results of Mesz�ena et al. (1997).

First, the equilibrium density associated with the inter-

mediate strategy z� ¼ 1=2 is

n� ¼ 1� g 1� f1
1

2

� �� �
; (9a)

which, with quadratic fitness functions, reads

n� ¼ 1� g

4
: (9b)

This means that a population fixed for the strategy z�

goes extinct if g > 4; this is because the exponential

growth rate of the intermediate strategy z� becomes

negative when g > 4, see Fig. 1b.

Using standard adaptive dynamics techniques (Geritz

et al., 1998), we find that gradual evolution leads to the

intermediate strategy z� ¼ 1=2 when (Eshel, 1983):

u00ðf1Þðz�Þ < � 2g

m
þ 2~n01ðz�Þ

mf 01ðz�Þ
: (10)

This is the condition for convergence stability (CS).

Note that this condition is implicit, because it requires

the evaluation of the equilibrium density ~n1, which will

depend on the chosen fitness functions. Qualitatively,

however, we know that the second term of the right-

hand side of (10) is positive. If condition (10) is not ful-

filled, then z� is a repellor, and gradual evolution leads

the resident trait away from it; this is for instance the

case in Fig. 3. An explicit analytical expression exists

for (10), when quadratic fitness functions are used, but

it is too long to be written here, and is instead plotted

in Fig. 4 (thick grey line). Note also that this corre-

sponds to a local stability condition, derived assuming

mutations of weak effects.

A population with strategy z� resists invasion from

any other (close) mutant when

u00ðf1Þðz�Þ < � 2g

m
: (11)

First, note that, whichever the chosen fitness functions,

evolutionary stability implies convergence stability (if

condition (11) is fulfiled, then (10) is too); this means that

there are no ‘Garden of Eden’ strategies (Hofbauer & Sig-

mund, 1990), where an evolutionary stable strategy can-

not be reached by gradual evolution. Second, whether z�

is evolutionary stable or not, that is, whether global selec-

tion is stabilizing or disruptive, depends only on the con-

cavity of the trade-off curve at z� ¼ 1=2, relative to �2g/

m. Condition (11) means that the intermediate strategy z�

can only be evolutionary stable if the trade-off is concave

enough (i.e. weak, which corresponds to a convex fitness

set sensu Levins, 1962) at z�. In this case, the higher the

migration ratem, and the weaker the strength of selection

g, the more stable the intermediate strategy z� ¼ 1=2. A
convex (i.e. strong) trade-off, however, always leads to

disruptive selection, and turns z� into a branching point.

Condition (11) is plotted as a black dashed line in Fig. 4,

where quadratic fitness functions are used.

(a)

10–4 10–3 10–2 10–1 1

0.0

0.2

0.4

0.6

0.8

1.0

Mutational variance Vm
10–4 10–3 10–2 10–1 1

Mutational variance Vm

10–4 10–3 10–2 10–1 1
Mutational variance Vm

10–4 10–3 10–2 10–1 1
Mutational variance Vm

G
lo

ba
l d

en
si

ty

(b)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
tr

ai
t

(c)

0.00

0.05

0.10

0.15

0.20

M
ea

n 
va

ria
nc

e

(d)

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n 
as

ym
m

et
ry

Fig. 5 The effect of Vm (mutation rate

times variance of the mutation kernel;

note the log scale) on summary

variables. Full curves: analytical

approximation (see eqns (25) for (a),

(22) for (b), (23) for (c) and (29) for

(d)); dashed lines: numerical solution of

model (2b); dots: mean � sd of the

outcome of stochastic individual-based

simulations (at time t ¼ 10000). Initial

state of the population: asymmetric

(gray), symmetric (black). Parameters:

g = 3.5 (strong selection) and m = 1; for

the stochastic simulations: K = 1000

individuals at most in each deme, 25

replicates for each combination of

parameters.
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Adaptive dynamics analyses often stop at this point,

but it is possible to investigate further what happens

when selection is disruptive, that is, when condition

(11) is not satisfied.

Evolution in polymorphic populations
When selection is disruptive, the resident population

becomes polymorphic, and is now composed of individuals

with traits z0r and z00r . Because of symmetries in the

model, we have z00r ¼ 1 � z 0r, and the corresponding

densities are equal: ~njðz 0rÞ ¼ ~nlðz00r Þ, l 6¼ j. The invasion

dynamics of a rare mutant with trait zm ¼ z 0r þ dz read

(the equation is similar when the mutant is close to the

other resident strategy z00r ):

dnjðzmÞ
dt

¼ ½ð1� ð~njðz 0rÞ þ ~njðz 00r ÞÞÞ � g

� ð1� fjðzmÞÞ�njðzmÞ þmðnlðzmÞ � njðzmÞÞ;
(12)

and the corresponding selection gradient is given in the

Appendix, eqn (B.5).

Singular strategies. The ESS strategies z0r and

z00r ¼ 1 � z 0r at the polymorphic evolutionary equilib-

rium are strategies at which the selection gradient van-

ishes. With general fitness functions, the condition for

strategies z�� and z�þ ¼ 1 � z�� to be singular is given in

eqn (B.6) in the Appendix. With quadratic fitness func-

tions, this yields

z�� ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðm=gÞ2

q
2

; z�þ ¼ 1� z��: (13)

The lower the migration rate m and the higher the

strength of selection g, the closer these strategies are to

the local optima 0 and 1. The local relative abundances

in habitat 1 associated with these strategies are (switch

� and + for relative abundances in habitat 2):

a�� ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 2m

gþ 2m

s !
; a�þ ¼ 1� a��: (14)

Stability. When evolution proceeds gradually, that is,

when mutations are rare and of weak effect, the poly-

morphic equilibrium (13) can only be reached from an

initially monomorphic population if z� ¼ 1=2 is stable

by convergence, that is, if (10) holds and if the popula-

tion is viable (light grey area in Fig. 4). However, the

polymorphic equilibrium (13) is stable for a much lar-

ger range of parameters values. With quadratic fitness

functions, the polymorphic equilibrium SP is actually

stable, whenever:

g � 2m (15a)

and

m	 1 or m > 1 and g	 1þmþ 1

m� 1

� �
: (15b)
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Fig. 6 Evolutionary and demographic outcomes: comparing, for different values of the migration rate m, analytical approximations (full

lines and dotted grey line [low migration approximation]), the outcome of deterministic numerical evaluations of the whole model (dashed

lines), and the outcome of stochastic individual based simulations (dots: mean � sd at time t = 5000, 25 replicates for each point), when

the initial state of the population is asymmetric (gray) or symmetric (black). Parameters: g = 2, Vm ¼ 10�4; carrying capacity K = 200

individuals at most in each deme for the individual-based simulations. In the deterministic model, the population is at a symmetric

polymorphic equilibrium SP when m < 1, and switches to the monomorphic equilibrium SM when m > 1.
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Condition (15a) means that selection is disruptive; it

corresponds to condition (11) with quadratic functions,

and is plotted as a black dashed line in Fig. 4. Condition

(15b) corresponds to the condition for whole population

persistence, and delimits the black area in Fig. 4. Note

that condition (15b) always holds when g 	 4. Fig. 4

shows that, in addition to the light grey area, the equilib-

rium SP can also be reached for stronger selection g, in

the dark grey area, if mutations have large phenotypic

effects (i.e. are not infinitesimal). This means that the

polymorphic equilibrium can be reached for a wider

range of parameter values. This effect of the size of muta-

tions is illustrated in Fig. 3, for a specific combination of

m (migration rate) and g (strength of selection) parame-

ters. Fig. 3 shows the combinations of ðz1; z2Þ couples of
traits which can coexist: it corresponds to the superimpo-

sition of a pairwise invasion plot, PIP, and its reciprocal.

Monomorphic populations are on the highlighted

diagonal. If evolution proceeds gradually, from a mono-

morphic population, then it leads away from the inter-

mediate strategy SM to one of the two monomorphic

singular strategies (dots labelled A, localized at the other

roots of the selection gradient, and corresponding to the

asymmetric equilibrium approximated in eqn (8)). How-

ever, if mutations are large, or if the population is initially

polymorphic, then evolution leads to the dimorphic strat-

egies labelled SP in Fig. 3, whose values are given in sys-

tem (13): this is the symmetric bimodal equilibrium.

Hence, whether the outcome is an asymmetric (A) or

symmetric bimodal (SP) equilibrium depends on the ini-

tial state of the population, and on whether mutations

are constrained.

Summary variables
Going back to the whole model (2a), the assumptions

associated with adaptive dynamics amount to assuming

that the mutation rate l0 is very low, which is equiva-

lent to Vm ! 0 in eqn (2b). The equilibrium distribu-

tions of traits are approximated as one (SM and A

equilibria) or two (SP) spikes–and for the SP equilib-

rium system (14) gives us the relative heights of the

spikes. Note that this is not equivalent to neglecting

standing genetic variance altogether, since there is a

non null variance in the trait distribution at a bimodal

equilibrium SP. Since we know the distributions, we

can compute summary variables to bridge the gaps

with the moment-based approach. Table 1 summarizes

these variables; it is important to note that all expres-

sions are compatible with the results given in section

3.1.2, and also that this time these expressions are

closed, that is, do not depend on other variables. The

expressions in Table 1 will be described in more detail

in the next section, when deriving more general

expressions.

With adaptive dynamics methods, we analysed our

model assuming that mutations are rare. Now, what

happens with more frequent mutations?

Merging both methods

We will now add mutational variance to the equilib-

rium solutions derived under the adaptive dynamics

model. This can be done numerically by finding solu-

tions to model (2b) (see the filled curves in Fig. 2). The

aim of this section is to find analytical approximations

of these solutions. To this end, we will assume that

each local distribution of traits is composed of one or

two Gaussian distributions, each centred at the singular

strategies derived under adaptive dynamics (Mesz�ena
et al., 2005), and with a variance which we will

approximate as follows. We will assume that the vari-

ance around the singular strategies (the former spikes)

is the same as the genetic variance in a population at a

mutation–selection balance. We therefore first have to

derive this variance Vls (‘ls’ like mutation–selection).
We use a diffusion approximation for mutation (see

(2b)). Note also that from now on we focus on qua-

dratic fitness functions.

Mutation–selection equilibrium
In a single population, the equilibrium distribution of

traits p�ls at a mutation–selection equilibrium is found

by solving the following differential equation:

g½�z2 þ Vls�p�lsðzÞ þ
Vm

2

@2p�lsðzÞ
@z2

¼ 0: (16)

A Gaussian distribution of mean 0 and variance Vls is

a solution of (16), and we find:

Vls ¼
ffiffiffiffiffiffi
Vm

2g

s
(17)

(Kimura, 1965; B€urger et al., 1989). Equation (17) tells

us that the variance at mutation–selection equilibrium

in a single population under stabilizing selection, with a

quadratic fitness function, is the square root of the

mutational variance Vm scaled by the strength of selec-

tion g. Note that we obtain this formula because we

Table 1. Summary variables at the symmetric equilibria, for low

mutational variance, with quadratic fitness functions.

Equilibrium SM SP

Conditions

for viability

g 	 4 m	1 or m> 1 and g	 1þmþ 1
m�1

� �
Conditions for

stability

g 	 2m g > 2m

Mean trait

z� ¼ z�1 ¼ 1� z�2

1/2 m
g

Differentiation D� 0 1 � 2m
g

Local total density

n�
1 � g

4 1 � m þ m2

g

Local variance v� 0 mðg� 2mÞ
g2

Local third central

moment 1�
0 mðg� 2mÞ2

g3
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assume ‘incremental’ mutations, as in a continuum-

of-alleles model (see the third line of eqn (2a)), as

opposed to mutations which totally change the value of

an allele, as is assumed under the House of Cards

model (Turelli, 1984).

When the mean of the distribution p� is not at the

local optimum h, which will occur under a migration–
selection balance (i.e. when there is directional selec-

tion Brodie et al., 1995), then p� should be skewed, and

therefore not Gaussian. However as a first approxima-

tion, we will neglect this skew for the unimodal distri-

butions, and assume that the sub-distributions around

the ESS spikes are Gaussian. Note that this does not

mean that we generally neglect the skew of the distri-

butions.

Mutation–migration–selection equilibrium

When the population is unimodal. At the symmetric

unimodal equilibrium SM, we assume that the distribu-

tion of traits is the same in both habitats: a Gaussian

distribution centered around z� ¼ 1=2, with variance Vls:

p�1ðzÞ
 p�2ðzÞ

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pVls

p exp
�ðz � 1=2Þ2

2Vls

" #
: (18)

This distribution is compared to the actual distribution

obtained with the diffusion approximation in Fig. 2d:

the black thick curves are our analytical approximation,

while the filled curves are the deterministic numerical

solutions of model (2b). Taking this mutational variance

into account, the local density now reads:

n� ¼ 1� g
1

4
þ Vls

� �
¼ 1� g

4
�

ffiffiffiffiffiffiffiffi
gVm

2

r
: (19)

So the condition for whole population persistence, at

the symmetric unimodal equilibrium (i.e. when

g < 2m) is now:

g < 4 and Vm < V ðUÞ
c ; V ðUÞ

c ¼ ðg� 4Þ2
8g

: (20)

The critical variance V
ðUÞ
c only depends on g, because

the mean of the distribution of traits at the symmetric

unimodal equilibrium, z� ¼ 1=2, is independent of the

migration rate m. By making intermediate values unvi-

able (see Fig. 1b), stronger local selection (higher g)

compromizes global persistence.

At the asymmetric equilibrium A, the distributions of

traits are assumed to be the same in both habitats, that is,

Gaussians of mean z�A and of variance Vls (given in eqn

(17)). The value of z�A is obtained using the approxima-

tion presented in eqn (8), or by numerically finding

roots of the selection gradient; the height of the distri-

butions is then found by solving for dnðz�AÞ=dt ¼ 0 (eqn

(14), with one trait only). The result is compared to the

full model in Fig. 2b.

When the population is bimodal. At the symmetric

bimodal equilibrium SP, we now assume that the local

distributions are weighted sums of Gaussian distributions,

centred around the peaks found under adaptive

dynamics (z�� and z�þ ¼ 1 � z��, see eqn (13)), and with

variance Vls (given in (17)). The weights are the rela-

tive abundances of individuals with each strategy, that

is, the height of the spikes a�� and a�þ given in eqn (14).

We then have the following distribution of traits in

habitat 1:

p�1ðzÞ

 

a��ffiffiffiffiffiffiffiffiffiffiffiffi
2pVls

p exp

"
�ðz � z��Þ2

2Vls

#

þ a�þffiffiffiffiffiffiffiffiffiffiffiffi
2pVls

p exp
�ðz � z�þÞ2

2Vls

" #!
:

(21)

The trait distribution in the other habitat is

obtained by exchanging the a�� and a�þ weights. This

approximation is compared to the numerical solution

of the full model in Fig. 2c. Note that the solution

presented in eqn (21) is approximate, and is meant

to be accurate only with low Vm (even though it can

be seen in Fig. 5 that the approximation is still sur-

prisingly precise for higher Vm).

Using eqn (21), we can recalculate the summary vari-

ables of the distribution. The mean of this distribution is

�z�1 ¼ 1� �z�2 ¼
Z þ1

�1
zp�1ðzÞdz ¼

m

g
: (22)

This is the same mean trait as found with adaptive

dynamics (see Table 1). Ticks for the mean traits �z�1 and

�z�2 are shown on the top of distributions plotted in

Fig. 2c, and the accuracy of the result is evaluated in

Fig. 5b (full line). However, adding mutational variance

increases the equilibrium local genetic variance:

v�1 ¼ v�2 ¼ Vls þ a��a
�
þðz��z�þÞ2

¼
ffiffiffiffiffiffi
Vm

2g

s
þmðg� 2mÞ

g2
:

(23)

With our approximation, we find that the equilib-

rium local variances at the symmetric bimodal equilib-

rium SP are the variances at the mutation–selection
equilibrium Vls plus the variance at the migration–
selection equilibrium assuming rare mutations (the sec-

ond term of eqn (23) is also in Table 1). In particular,

eqn (23) tells us that the equilibrium local variances

are highest for intermediate migration rates (m = g/4),

as can be seen on Fig. 6c.

The third central moment 1� remains (see Table 1):

1�1 ¼ �1�2 ¼ mðg� 2mÞ2
g3

: (24)

The third central moment 1� is highest for a smaller

value of the migration rate m (the maximum is reached
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for m = g/6), as can be seen on Fig. 6d. The local densi-

ties read as follows:

n�1 ¼ n�2 ¼ 1�mþm2

g
�

ffiffiffiffiffiffiffiffi
gVm

2

r
; (25)

so that, in particular, the condition for global persis-

tence becomes as follows:

Vm < V ðBÞ
c ; V ðBÞ

c ¼ 2ðg� gmþm2Þ2
g3

(26a)

and

m	 1 or m > 1 and g	 1þmþ 1

m� 1

� �
: (26b)

The critical variance V
ðBÞ
c decreases with both g and m.

Stronger selection g makes intermediate phenotypes less

viable. Lower migration rates m favour more specialized

types, closer to the local optima in each habitat, and

therefore favour population persistence.

Checking the accuracy of the approximations

The accuracy of our approximations when mutations

are not infinitesimal (i.e. the results derived in the pre-

vious section) is evaluated in Figs 5 and 6. Our analyti-

cal predictions for the summary variables (population

densities n�, mean traits (distance to local optimum) �z�,
variances v�, and absolute value of the third moments

1�; full curves) are compared to the results obtained by

integrating numerically model (2b) (dashed curves,

behind the full curves when the analytical approxima-

tion matches the full model, and therefore sometimes

not visible). The fit is very good when Vm is small

enough, as expected, because our analytical approxima-

tions were derived assuming relatively small mutational

effects (nonzero, but still small Vm). For very high Vm,

that is, very frequent mutations and/or mutations of

large effect, our approximations remain surprisingly

rather accurate (see Fig. 5 and compare our approxima-

tions [full lines] to solutions of the deterministic model

[dashed lines]); note however that, compared to deter-

ministic solutions, our approximations slightly overesti-

mate the genetic variance (Fig. 5c), overlook the effect

of high Vm on the asymmetry of the distributions of

traits (Fig. 5d), and as a consequence, underestimate the

equilibrium population size for very high Vm (Fig. 5a).

We also check the robustness of these predictions

when stochasticity is taken into account; the dots in

Figs 5 and 6 are the average summary variables

obtained after running individual-based stochastic sim-

ulations. In the stochastic simulations, the population

sometimes ends up at a symmetric bimodal equilibrium,

starting from an asymmetric initial state (grey dots),

while it may remain trapped at an asymmetric equilib-

rium in the deterministic version of the model; this

illustrates the fact that the asymmetric equilibria are

only locally stable, while the symmetric equilibria are

globally stable. Adding stochasticity in the simulations

did not substantially influence neither the final population

densities nor the mean traits (the simulation dots are

on the deterministic curves in subfigures (a) and (b) of

Figs 5 and 6), but because of drift, the variances and

asymmetry were lower in the stochastic individual-

based simulations than predicted with a deterministic

model (subfigures (c) and (d) of Figs 5 and 6) (B€urger
et al., 1989; B€urger & Lande, 1994).

Discussion

In this article, we study the interplay of demographical

and evolutionary dynamics in a spatially heterogeneous

environment with two habitats in equal frequencies.

Four qualitatively different types of outcomes are possi-

ble (summarized in Fig. 2): whole population extinction

(labelled 0); adaptation to one habitat only (A), leaving

the other almost empty; adaptation to both habitats,

with specialized (SP) or generalist (SM) phenotypes.

Which of these equilibria is reached depends on the

migration rate, m, and the strength of selection g, but

also on the rate and variance of mutations Vm. Quanti-

tatively, we derive analytical approximations for the

distributions of phenotypes under a migration–selection–
mutation balance; this allows us, in particular, to derive

analytical expressions of local densities, and mean, vari-

ance and asymmetry of the distributions of phenotypes

in each habitat.

Conditions for population persistence

The conditions for global population persistence are the

conditions for not reaching the (0) outcome of global

population extinction (see conditions in eqn (20) when

g < 2m and (26) otherwise). We show that whole popu-

lation extinction is possible when selection is strong

and when migration and/or mutation rates are high.

Migration load
High migration rates favour a generalist strategy

z� ¼ ðh1 þ h2Þ=2 ¼ 1=2, which is intermediate between

the two local optimum traits, and therefore adapted to

global, averaged conditions. If the intensity of selection,

g, is very high – high meaning g > 4 with quadratic

fitness functions – the generalist strategy may not be

viable in either habitat: it has a negative exponential

growth rate in both habitats (see Fig. 1b, dashed curve),

which results in global population extinction (see the

dark grey area, labelled 0, in Fig. 4). Note that this out-

come is possible because our fitness functions allow for

negative exponential growth rates, a situation often

neglected in other models (e.g. Mesz�ena et al. (1997),

where the exponential growth rate riðxÞ � 0 when

Ntot
i ¼ 0, with their notations; and while Ronce &

Kirkpatrick (2001) did allow for negative exponential

growth rates, they analysed their model assuming a
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10 F. DÉBARRE ET AL.



fixed variance of the distribution of traits). High migra-

tion rates and strong selection make the environment

globally unsuitable, while individuals could survive

under lower migration rates.

Mutation load
Large mutation rates may also lead to extinction, but

for a different reason. More frequent mutations, or

mutations of larger effect (i.e. greater Vm) inflate the

variance of the phenotypic distribution. This creates a

mutation load where many genotypes are far from

their local optimum, which decreases the mean fitness

of the population. Beyond a critical value of Vm (V
ðUÞ
c

when g < 2m, eqn (20) and V
ðBÞ
c otherwise, (26a)), the

drop in fitness is so large that the population cannot

persist. Again, this phenomenon occurs because, in

our model, high maladaptation may result in negative

exponential growth rates. Fig. 5a illustrates the effect

of more frequent mutations and/or mutations of larger

effect (both resulting in a higher Vm) on population

persistence.

This effect of Vm is akin to the effect of high mutation

rates on the viability of some microbes. Our results

may thus be relevant in the context of lethal mutagen-

esis, a promising new antiviral therapy in which viruses

are driven to extinction by chemically increasing their

genomic mutation rate (Freistadt et al., 2004; Bull et al.,

2007; Martin & Gandon, 2010). Previous attempts to

model this phenomenon always considered the infected

host to be a homogeneous environment. While Stein-

meyer & Wilke (2009) explicitly took into account

some within-host heterogeneity, by allowing the rate of

lethal mutations to vary between compartments, they

focused on viral population dynamics and did not

include the possibility for the virus to adapt to intrinsic

differences between compartments. There is, however,

some evidence that the individual host is a structured

environment, where subpopulations of virus may dif-

ferentiate in different tissues (Sanju�an et al., 2004). This

differentiation may be driven by the balance between

heterogeneous selective pressures, migration and muta-

tion. Our model accounts for the interplay between

these three different forces (but note that we assume

that the compartments are present in equal frequencies,

with symmetrical migration rates between them), and

the critical values of Vm we derive may help to examine

the influence the effects of various parameters on the

feasibility of lethal mutagenesis.

Conditions for niche expansion

Niche expansion occurs when a population initially

adapted to only one habitat expands its range and colo-

nizes both habitats; with our notations, it occurs when

the final state is a symmetric (SM or SP) equilibrium.

Our analysis shows that niche expansion depends on

whether mutations are constrained or not. If mutations

are constrained, that is, if the variance of the mutation

kernel is small or mutations are infrequent (infinitesi-

mally small Vm), niche expansion only occurs when the

strength of selection is weak and when the migration

rate is high, that is, right of the full grey curve in Fig.

4; otherwise, the population remains at an asymmetric

equilibrium A, and cannot efficiently colonize the other

habitat. However, if the mutations are not constrained,

that is, if arbitrarily large mutational steps are possible,

niche expansion always ultimately occurs, provided the

population is viable.

Classically, dispersal is viewed as a force that can have

diverse effects on niche expansion. On the one hand, dis-

persal contributes to gene flow, and could potentially

prevent niche expansion due to gene swamping, yielding

what Ronce & Kirkpatrick (2001) coined a migrational

meltdown. On the other hand, dispersal brings new indi-

viduals in the unoccupied patch, and therefore allows for

colonization and subsequent evolution (Gomulkiewicz

et al., 1999). In addition, dispersal contributes to the

increase in local genetic variances, and therefore leads to

more available variance for adaptation. Effects of dis-

persal on niche expansion in source-sink models vary

widely with both the details of the life cycle and the

genetic architecture of traits involved in local adaptation

(see Holt & Barfield, 2011, for a recent review). In our

asexual / one locus model, where the two habitats are

present in equal frequencies, we see that niche expan-

sion is only ultimately prevented when (i) selection (g) is

strong and migration (m) is high, so that the global popu-

lation is not viable (0 zone in Fig. 4), and (ii) migration is

weak and mutations are rare and of small effect only.

Otherwise (when the global population is viable and

mutations are not infinitesimally small or rare), migra-

tion has mainly a positive demographic effect for niche

expansion. Yet, it has a negative impact on the pattern of

local adaptation.

Local adaptation

A classical way to measure adaptation in heterogeneous

environments is to do transplant experiments. Local

adaptation is often defined as the average mean ‘local’

fitness minus the average mean fitness ‘foreign’

(Kawecki & Ebert, 2004; Nuismer & Gandon, 2008;

Blanquart et al., 2012):

LA ¼ �wlocal � �wforeign: (27)

In our model, with quadratic fitness functions, the

level of local adaptation at the symmetric equilibrium

defined as in eqn (27) is given by the product of the

intensity of selection g and the equilibrium divergence

in local mean traits D� ¼ 1 � 2�z�:

LA ¼ gD� ¼ 0 when g	 2m

1 � 2m
g

when g > 2m

	
: (28)
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The simplicity of eqn (28) should remind the reader

that this result is valid under specific assumptions; in

particular, the two habitats are assumed to be present

in equal frequencies, and fitness functions are assumed

to be quadratic, or at least wide enough (i.e. weak

enough trade-off) for Taylor expansions like in eqn (3)

to be valid approximations. Although these assumptions

are common, partly because they make models analyti-

cally tractable and therefore help to gain some analyti-

cal insights (see e.g. Hendry et al., 2001; Ronce &

Kirkpatrick, 2001, and this article), they correspond to

limiting cases. Switching from perfectly symmetrical

(c = 1/2) to nonsymmetrical (c 6¼ 1/2) environments

may quantitatively, but also sometimes qualitatively

affect the evolutionary outcomes.

After these words of caution, eqn (28) gives some

insights on the factors moulding the level of local adap-

tation. We recover the direct effect of migration, which

decreases local adaptation by selecting for more gener-

alist strategies, that are therefore less specialized and

less locally adapted.

Because of the symmetry of the environment, eqn

(28) hides the fact that migration and mutation also

affect higher moments of the local distributions of traits

in each habitat, and in particular their variances (2nd

moments) and asymmetries (3rd moments, proportional

to the skew): these effects are illustrated on panels (c)

and (d) of Figs 5 and 6. Importantly, our analysis

emphasizes that the equilibrium value of each moment

of the local distributions of traits depends on higher

moments; for instance, the mean traits at equilibrium,

�z�, depend in particular on the asymmetry 1� of the local

distribution of traits (see eqn (5b)). This asymmetry 1� is

not a parameter – and neither is the local variance v� –
both affect and are affected by the value of �z�.
Our approximations suggest, and numerical simula-

tions confirm that mutation, which in this model is

assumed to be unbiased (the mean of the mutation ker-

nel is zero) has almost no effect on the mean traits �z�

(see Fig. 5b). This confirms that although migration

and mutation may have similar demographic conse-

quences — which are the migrational and mutational

loads, resulting in a drop in population densities (panels

(a) in Figs 5 and 6) — these two evolutionary forces

have different effects on the evolutionary outcome, that

is, on the local mean traits �z�: while gene flow limits

local adaptation, mutations do not influence the values

of the local mean traits (see eqns (22) and (28)).

Links with previous quantitative genetics models

Equations (4) and (6) may have a taste of d�ej�a vu for

readers familiar with quantitative genetics models. To

see this, compare for instance the moment-based eqns

(4) to system (2) in Ronce & Kirkpatrick (2001), or

solution (6) to eqn (7) in Hendry et al. (2001). Coinci-

dence? We think not. The effects of selection, migration

and mutation on the distributions of phenotypes which

are described in eqn (2) are the same in sexual models.

With sexual reproduction however, reproduction also

affects the distributions of phenotypes. Deriving expres-

sions for traits coded by multiple loci, and with sexual

reproduction (i.e. taking into account the effect of

recombination), is much more challenging in the gen-

eral case; usually, some additional simplifying assump-

tions are made.

Linkage equilibrium
For instance, some quantitative genetics models (see for

instance the derivation in Barton, 1999, continuum of

alleles model) assume that all loci coding for the trait

are at linkage equilibrium (i.e. are statistically indepen-

dent), and that there are no epistatic interactions for

the value of the trait (i.e. the effects of all loci are addi-

tive). At each locus, the distributions of alleles follow

eqn (2a); the trait value of an individual is obtained by

summing the allelic values at all loci. Under such

assumptions, Barton (1999)’s eqn (2) for the change in

the mean phenotypic value is equivalent to our eqn 4

(b). Although the biology is different (clonal vs. sexual

reproduction), with the continuum-of-alleles derivation

and the assumption of linkage equilibrium, the equa-

tions used to model sexual reproduction are the same

as the ones used to model clonal reproduction.

Gaussian distributions and fixed variances
Many quantitative genetics models further make the

simplifying assumptions that the distributions of pheno-

types are Gaussian (therefore, symmetric, so that the

third moments ς are zero), but even that the genetic

variance is constant (so that v is not a variable anymore

but becomes a parameter). In our asexual model, such

assumptions are obviously problematic – but they can

also be problematic with sexual reproduction (as under-

lined for instance by Tufto, 2000; Lopez et al., 2008;

Yeaman & Guillaume, 2009; Huisman & Tufto, 2012). In

particular, assuming fixed variances (as in Kirkpatrick

& Barton, 1997; Ronce & Kirkpatrick, 2001) may artifi-

cially constrain the potential for adaptation, while

adaptation will be easier with nonfixed variances, as

noted for instance by Barton (1999, 2001) for models

of evolution on gradually changing environments

(models of clines). In addition, local distributions of

phenotypes are also likely not to be Gaussian under a

migration–selection balance, even with sexual repro-

duction (Yeaman & Guillaume, 2009; Huisman & Tufto,

2012). Using genetically explicit simulations, Yeaman &

Guillaume (2009) showed that neglecting the asymme-

try (skew) of the distributions led to an underestima-

tion of the equilibrium divergence (D� ¼ j�z�2 � �z�1j)
among habitats. Their conclusion is confirmed by our

formula (6). Also, like Yeaman & Guillaume (2009), we

find that the skew is highest at intermediate migration

rates (see eqn (24) and Fig. 6d).
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Additive loci of equal effect
Other models assume that the quantitative trait is

coded by a large number of loci, each with two alleles

(+/�), all loci contributing additively to the phenotype

(no epistasis or dominance effects), and of fixed, and

often also equal effects. Under this diallelic architecture,

less skew is generated than under a continuum-of-

alleles model (Yeaman & Guillaume, 2009). Recently,

however, Yeaman & Whitlock (2011) examined the

evolution of the genetic architecture of adaptation in

heterogeneous environments. In their simulations, the

effect sizes of each locus could evolve, and they found

that adaptation under a migration–selection balance

resulted in concentrated architectures with a few linked

loci of large effect (instead of many loci of small effect),

a situation – ploidy aside – close to the one-locus with

continuum-of-alleles architecture used in this article.

Finally, taking into account linkage disequilibrium,

spatially heterogeneous selection, and explicit popula-

tion dynamics in a single analytical model is particu-

larly challenging but constitutes an interesting

perspective to this study.

Other limits and perspectives

As we wanted to link our model to previous studies,

in particular those by Mesz�ena et al. (1997) and Ronce

& Kirkpatrick (2001), and because this made our

model analytically tractable, we focused on a specific

scenario, where environmental heterogeneity is

represented by two habitats in equal frequencies.

Assumptions of symmetry are common in models. As

mentioned earlier, our predictions on local adaptation

are likely to change with asymmetric environments. In

particular, asymmetry allows for gene swamping (Nag-

ylaki, 1975; Lenormand, 2002), making niche expan-

sion more difficult (see Holt & Barfield, 2011, for a

recent review). In addition, although we derived as

many results as we could with general fitness func-

tions, our illustrations are done with quadratic fitness

functions like in Ronce & Kirkpatrick (2001); such

functions correspond to weak trade-offs in fitness in

both habitats (i.e. convex fitness sets). Our figures

would differ if stronger trade-offs were used, because

such trade-offs make the bimodal equilibrium SP less

easily attainable by gradual evolution (see e.g. Levins,

1962; Kisdi, 2001; Ravign�e et al., 2009, in non-demo-

graphical models).

As Ronce & Kirkpatrick (2001) and Mesz�ena et al.

(1997), we focused on a continuous time model, where

density regulation and migration are decoupled. In

discrete time models, the order of events in the life-cycle

matters, by making selection more or less frequency-

dependent, and may critically affect evolutionary out-

comes (Via & Lande, 1985; Ravign�e et al., 2004; D�ebarre
& Gandon, 2011).

Conclusion

To conclude, this study is an attempt to bridge some

gaps between different theoretical approaches. We bor-

rowed and combined tools from different frameworks:

formulations with partial differential equations for

clonal inheritance (Doebeli, 2011; Sasaki & Dieckmann,

2011) (equation (2a)) and diffusion approximations

(Kimura, 1964) (eqn (2b)); quantitative genetics (Lynch

& Walsh, 1998) and moment-based approaches

(B€urger, 1991, 2000) adaptive dynamics (Geritz et al.,

1998) for our derivations with rare mutations; and we

finally combined them all. This generalist approach

allowed us to reach a better understanding of the

demography and evolution of populations in

heterogeneous environments.
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Appendix A: General model, with
demography

A.1. Continuum of alleles model

In this section, we first derive a more complete model,

and then show how to reduce the number of parame-

ters, by rescaling the different variables, which will

yield model (2a). All parameters and variables before

scaling are written in capital letters.

A.1.1. The environment
We consider an environment containing two habitat

types, present in equal frequencies. Both habitats can

host the same maximal density of individuals – they

have the same carrying capacities, and they are linked

by dispersal, which occurs at rate M. To each habitat

corresponds an optimum trait value Hj, and selection is

locally stabilizing towards this optimum.

A.1.2. Local dynamics
We derive our model under the assumption of clonal

reproduction. We consider continuously growing popu-

lations with overlapping generations. The fitness of an

individual depends on its adaptation to local conditions,

governed by a quantitative trait Z, and on the intensity

of competition with the other inhabitants of its patch.

This competition is frequency-independent: it only

depends on the local density, but not on the phenotype

of the individuals that are present – hence, locally

adapted populations grow logistically (with an expo-

nential growth parameter R and a carrying capacity K).

We assume that maladapted individuals suffer from an

increased mortality, scaled by a parameter G; this addi-

tional mortality is greater when the individual’s pheno-

type Z is away from the local optimum Hj. We first use

general functions FiðZÞ to describe this additional mor-

tality due to maladaptation, and then illustrate our

results with specific functions.

The fitness functions take values between 0 and 1 for

the phenotypic values of interest, and are twice differ-

entiable. We further assume that they are symmetric,

and are such that

F2ðjH2 � xjÞ ¼ F1ðjH1 � xjÞ; (A.1)

and we can define a trade-off function, U, linking fit-

nesses in the two habitats:

F2ðXÞ ¼ UðF1ðXÞÞ: (A.2)

Due to symmetry, we have

U 0ðF1ðZGÞÞ ¼ �1; (A.3)

where ZG is the phenotype intermediate between the

two optima:

ZG ¼ H1 þH2

2
: (A.4)

We ignore environmental effects in this study, by

assuming that all individuals with the same genotype

express the same phenotype.

Finally, mutations occur at rate M0 and add an incre-

ment Y to the allelic effect Z; the distribution of these

mutational effects is M(Y), and is assumed to be sym-

metric: there is no preferential direction of the muta-

tions.

Let NjðZÞ be the density of individuals with trait Z in

habitat j, at time T; with our assumptions, its dynamics

read as follows:

dNjðZÞ
dT

¼ R 1�
Rþ1
�1 NjðYÞdY

K

 !
� Gð1� FjðZÞÞ

" #
NjðZÞ

þMðNlðZÞ � NjðZÞÞ

þM0

 Z þ1

�1
MðYÞNjðZ � YÞdY � NjðZÞ

!
:

(A.5)

A.1.3. Rescaling
With appropriate changes of variables, it is possible

to reduce the number of parameters in eqn (A.5). We
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first scale time relative to the maximum growth rate, and

the local densities relative to the carrying capacity:

t ¼ RT ; njðZÞ ¼ NjðZÞ
K

; (A.6)

and we define the compound parameters

m ¼ M

R
; l0 ¼ M0

R
: (A.7)

We can then rewrite eqn (A.5):

dnjðZÞ
dt

¼ 1�
Z þ1

�1
njðYÞdY

� �
� G

R
ð1� FjðZÞÞ

� �
njðZÞ

þmðnlðZÞ � njðZÞÞ

þ l0

Z
lðYÞnjðZ � YÞdY � njðZÞ

� �
:

(A.8)

The value of the trait Z depends on the chosen units;

we can measure the traits relative to the local optima

z ¼ Z �H1

H2 �H1

; (A.9)

and define the new scaled optima

hj ¼ 0 if j ¼ 1

1 if j ¼ 2

	
; (A.10)

and the new fitness functions, so that for all traits z,

G

R
1� Fj H1 þ zðH2 �H1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z

0
@

1
A

0
@

1
A ¼ g� ð1� fjðzÞÞ

– which, with quadratic fitness function, gives

g ¼ GðH1 �H2Þ2
R

; (A.11)

we can then rewrite eqn (A.5):

dnjðzÞ
dt

¼ 1�
Z þ1

�1
njðyÞdy

� �
� gð1� fjðzÞÞ

� �
njðzÞ

þmðnlðzÞ � njðzÞÞ

þ l0

Z þ1

�1
lðyÞnjðz � yÞdy� nj

� �
;

(A.12)

which is eqn (2a) in the main text. We still have the

same symmetries for the fitness functions:

f2ð1� zÞ ¼ f1ðzÞ; (A.13)

and we also can define a trade-off function, u, linking

fitnesses in the two habitats:

f2ðxÞ ¼ uðf1ðxÞÞ; (A.14)

such that

u0ðf1ð1=2ÞÞ ¼ �1: (A.15)

A.2. Summarizing the distribution

Equation (A.12) shows how the densities of each

type z change under the action of selection and dis-

persal, but cannot be used as such to obtain analyti-

cal predictions. As classically done in quantitative

genetics studies, we will derive summary variables:

the total density in each habitat, nj, the mean trait

value in each habitat, �zj, and the genetic variance in

each habitat vj (which is equivalent to the phenotypic

variance as there is no environmental variation in

our model).

A.2.1. Definitions
The total density in habitat j is

nj ¼
Z þ1

�1
njðzÞdz: (A.16)

The proportion of individuals with trait z in habitat j is

pj ¼ njðzÞ=nj: (A.17)

The mean trait in habitat j is

�zj ¼ 1

nj

Z þ1

�1
znjðzÞdz: (A.18)

The genetic variance in habitat j is

vj ¼ 1

nj

Z þ1

�1
ðz � �zjÞ2njðzÞdz: (A.19)

We will also use the following relations between cen-

tral moments, moments and cumulants:Z þ1

�1
z2pjðzÞdz ¼ vj þ �z2j ; (A.20a)Z þ1

�1
z3pjðzÞdz ¼ 1j þ 3�zjvj þ �z3j ; (A.20b)Z þ1

�1
z4pjðzÞdz ¼ jj þ 3v2j þ 4�zj1j þ 6�zjvj þ �z4j ; (A.20c)

where 1j and jj are the third central moment and the

fourth cumulant, respectively, of the distribution in

habitat j.

A.2.2. One additional assumption
We will assume that the local distributions are such

that traits are close to the local mean trait values �zj, so
that we can Taylor-expand the functions fj:

fjðzÞ ¼ fjð�zjÞ þ ðz � �zjÞf 0j ð�zjÞ þ ðz � �zjÞ2
f 00j ð�zjÞ
2

: (A.21)

Using the above expansion (A.21), we can rewrite

the local mean fitness as functions of the fitnesses of

the mean traits:
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�fj ¼
Z þ1

�1
fjðzÞpjðzÞdz

�fj ¼ fjð�zÞ þ vj
f 00j ð�zjÞ
2

:

(A.22)

A.2.3. Total density in habitat j
With definition (A.16), the dynamics of the total den-

sity in habitat j is the following:

dnj

dt
¼ ð1� njÞnj � gnjð1� �fjÞ þmðnl � njÞ: (A.23)

Equation (A.23) is exact; now, we use the Taylor expan-

sion presented in eqn (A.21), andwe obtain the following:

dnj

dt
¼ ð1� njÞnj � gnj 1� fjð�zjÞ � vj

f 00j ð�zjÞ
2

� �
þmðnl � njÞ:

(A.24)

A.2.4. Mean trait in habitat j
We first have to write the dynamics of the proportion

of individuals with phenotype z in habitat j, pjðzÞ:

pjðzÞ ¼ njðzÞ
nj

:

Its dynamics read

dpjðzÞ
dt

¼ 1

nj

dnjðzÞ
dt

� pjðzÞ 1
nj

dnj

dt
(A.25)

¼ g½fjðzÞ � �fj�pjðzÞ

þm
nlðplðzÞ � pjðzÞÞ

nj

þ l0

Zþ1

�1
lðyÞpjðz � yÞdy� pjðzÞ

0
@

1
A;

(A.26)

which is exact (and the first term, corresponding to

selection, is classic); now using the Taylor expansion

from eqn (A.21), we obtain the following:

dpjðzÞ
dt

¼ g fjðzÞ � fjð�zjÞ � vj
f 00j ð�zjÞ
2

� �
pjðzÞ

þm
nlðplðzÞ � pjðzÞÞ

nj

þ l0

Zþ1

�1
lðyÞpjðz � yÞdy� pjðzÞ

0
@

1
A; (A.27)

and using a diffusion approximation for mutations

(Kimura, 1964; Rice, 2004), we obtain the following:

dpjðzÞ
dt

¼ g fjðzÞ � fjð�zjÞ � vj
f 00j ð�zjÞ
2

� �
pjðzÞ

þm
nlðplðzÞ � pjðzÞÞ

nj

þ Vm

2

@2pj

@z2
:

(A.28)

Now, using (A.27) we can focus on the dynamics

of �zj:

d�zj
dt

¼
Z þ1

�1
z
dpjðzÞ
dt

dz

¼ g

Z þ1

�1
zpjðzÞ½fjðzÞ � �fj�dz

þ m

nj

Z þ1

�1
zðplðzÞ � plðzÞÞnldz

¼ g covjðfj; zÞ þ m

nj

Z þ1

�1
zðplðzÞ � pjðzÞÞnldz;

(the first term, corresponding to local selection, is the

Price equation Price, 1970); now using the Taylor

expansion from eqn (A.21), we have, after reorganizing

terms, and using relations between moments,

d�zj
dt

¼g vjf
0
j ð�zjÞ þ 1j

f 00j ð�zjÞ
2

� �
þm

nl

nj
ð�zl � �zjÞ:

(A.29)

Note that mutations do not appear in this expression,

because they do not change the mean trait, as they are

isotropic.

A.2.5. Genetic variance in habitat j
Let us now derive the dynamics of the genetic variance vj:

dvj

dt
¼
Z þ1

�1
z2

dpjðzÞ
dt

dz � 2�zj
d�zj
dt

: (A.30)

After rearrangement we obtain the following equation:

dvj

dt
¼ g f 0j ð�zjÞ1j þ

f 00j ð�zjÞ
2

ðjj þ 2v2j Þ
� �

þm
nk

nj
ððvk � vjÞ

þ ð�zk � �zjÞ2Þ þ Vm;

(A.31)

where Vm is the mutational variance (the increase per

time unit in trait variance due to mutation), that is the

probability of mutation times the variance of the distri-

bution of mutational effects l(z).
We derived eqns (A.23)–(A.31) assuming that the

individuals in the population reproduce clonally, and

that the adaptation trait was controlled by a single

polyallelic locus. We obtain the same equations as

other authors who assumed sexual reproduction:

compare our eqns (A.29) eqns (A.29) and (A.31) to

eqns (2) and (3) in Barton (1999), or our eqns

(A.29) and (A.31) to system (2) in Ronce & Krikpa-

trick (2001). Note that if the phenotype is determined

by multiple loci instead of only one, we have to take

into account the effective number of loci, m (see Bar-

ton, 1999), in the dynamics of the variance, and to

assume linkage equilibrium (so that all loci are inde-

pendent) – but the equations for the total density

and for the mean trait remain the same (Barton,

1999).
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Appendix B: Adaptive dynamics analysis
of the demographic model

This section summarizes the results found by doing an

adaptive dynamics analysis. The calculations are done with

Mathematica, and the file is available on Dryad doi: 10.

5061/dryad.cv507.

B.1 Invasion fitness and selection gradient

We consider a resident population with trait zr at equi-

librium; its densities ~n1ðzrÞ and ~n2ðzrÞ are such that

ð1� ~n1ðzrÞÞ~n1ðzrÞ � gð1� f1ðzrÞÞ~n1ðzrÞ þmð~n2ðzrÞ
� ~n1ðzrÞÞ ¼ 0

ð1� ~n2ðzrÞÞ~n2ðzrÞ � gð1� uðf1ðzrÞÞÞ~n2ðzrÞ þmð~n1ðzrÞ
� ~n2ðzrÞÞ ¼ 0:

The dynamics of a rare mutant with trait zm read:

dn1ðzmÞ
dt

¼ ð1� ~n1ðzrÞÞn1ðzmÞ � gð1� f1ðzmÞÞn1ðzmÞ
þmðn2ðzmÞ � n1ðzmÞÞ

dn2ðzmÞ
dt

¼ ð1� ~n2ðzrÞÞn2ðzmÞ � gð1� uðf1ðzmÞÞÞn2ðzmÞ
þmðn1ðzmÞ � n2ðzmÞÞ:

The selection gradient @kMðzÞ reads as follows:

@kMðzÞ¼1

2
gf 01ðzÞ

� ðD~nþgðuðf1ðzÞÞ� f1ðzÞÞÞðu0ðf1ðzÞÞ�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2þðD~nþgðuðf1ðzÞÞ� f1ðzÞÞÞ2

q þu0ðf1ðzÞÞþ1

0
B@

1
CA;

(B.1)

with D~n ¼ ~n1ðzÞ � ~n2ðzÞ:
We can see that this selection gradient vanishes at

the intermediate strategy z� ¼ zG ¼ 1=2, because

D~n ¼ 0 and u0ðf1Þðz�Þ ¼ �1.

B.1.1. Convergence stability of the intermediate strategy
The intermediate strategy z� can be reached by gradual

evolution, when

g

2m
½f 01ðz�Þ2ð2gþmu00½f1ðz�Þ�Þ � 2~n01ðz�Þ½f 01ðz�Þ�\0: (B.2)

B.1.2. Invadability of the intermediate strategy
The intermediate strategy z� cannot be invaded by any

other strategy, when

u00ðf1ðz�ÞÞ\� 2g

m
: (B.3)

B.1.3. Other singular strategies
It is not possible, in the general case, to find analyti-

cal solutions of ok(z) = 0 (eqn (B.1)). However, with

quadratic fitness functions, when the migration rate

m is low enough, and the strength of selection g

high enough, the local densities of the resident pop-

ulation can be approximated as ~n1ðzrÞ � 1 and

~n2ðzrÞ � 0, with zr close to 0. The selection gradient

becomes

Neglecting dispersal terms m of order 3 and higher,

and under the condition g > 1, we find an approximate

solution zA of ok(z) = 0, which reads as follows:

zA � m2

ðg� 1Þ2 :

This solution corresponds to the adaptation to habitat 1,

and there is a miror solution zA;2 ¼ 1 � zA for adapta-

tion to habitat 2 only.

B.2 Characterization of the polymorphic equilibrium

Using the symmetries described in the main text, the

selection gradient dkP reads

dkPðzr0 Þ¼ g

2

gðuðf1ðzr0 ÞÞ� f1ðzr0 ÞÞðu0ðf1ðzr0 ÞÞ�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2þg2ðuðf1ðzr0 ÞÞ� f1ðzr0 ÞÞ2

q þu0ðf1ðzr0 ÞÞþ1

0
B@

1
CAf 01ðzr0 Þ:

(B.5)

The strategies z�� and z�þ ¼ 1 � z�� are singular if

f 01ðz��Þ � f 01ð1� z��Þ
þ gðf1ðz��Þ � f1ð1� z��ÞÞðf 01ðz��Þ þ f 01ð1� z��ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ g2ðf1ðz��Þ � f1ð1� z��ÞÞ2
q

¼ 0: (B.6)

Data deposited at Dryad: doi:10.5061/dryad.cv507
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@kMðzÞ ¼
g 1� 3gþ 3g2 � g3 þ 4m2 � 4gm2 þ ðg� 1Þ2 þ 4m2

� �3=2þ8gm2z � 2 ðg� 1Þ2 þ 4m2
� �3=2

z
� �

ðg� 1Þ2 þ 4m2
� �3=2 : (B.4)
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