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Florence Débarre* and

Thomas Lenormand
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Abstract
Understanding the conditions for the stable coexistence of different alleles or species is a central topic in

theoretical evolution and ecology. Different causes for stable polymorphism or species coexistence have already

been identified but they can be grouped into a limited number of general processes. This article is devoted to

the presentation and illustration of a new process, which we call �habitat boundary polymorphism�, and which

relies on two key ingredients: habitat heterogeneity and distance-limited dispersal. Under direct competition and

with fixed population densities, we show that this process allows for the equilibrium coexistence of more than

n types in a n-habitat environment. Distance-limited dispersal indeed creates local maladaptation at habitat

edges, which leaves room for the invasion of more generalist alleles or species. This mechanism provides a

generic yet neglected process for the maintenance of polymorphism or species coexistence.
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INTRODUCTION

For more than 40 years, the question of the maintenance of genetic

polymorphism or of species coexistence has been central in both

theoretical ecology and evolution. Formal models addressing these

two issues share strong mathematical similarities and processes

described in population genetics models are often successfully applied

in community ecology models and reciprocally. Given the large

literature devoted to this topic, it is difficult to survey in detail all

models which have been developed to address the issues of allele

polymorphism and species coexistence. Focusing only on determin-

istic effects, six main mechanisms, which are not mutually exclusive,

can be identified (Haldane & Jayakar 1963b; Karlin & McGregor 1972;

Amarasekare 2000). A stable polymorphism may be maintained: (1) by

recurrent mutations (Haldane 1927), or introduction of new species

(Vellend 2010), (2) by heterozygote advantage (Haldane 1926), (3) by

frequency dependence in favour of rare types [negative frequency

dependent selection (Lewontin 1958; Haldane & Jayakar 1963a)],

which might be caused by trophic interactions with parasites or

predators (Janzen 1970; Connell 1971); (4) by density-dependence,

when intertype competition is weaker than intratype competition

(Lotka-Volterra competition), (5) by a competition-colonization trade-

off (Tilman 1994) or other trade-off across sexes (Kidwell et al. 1977),

or life stages (Scudo 1967), (6) last, and perhaps most commonly, by

migration when different types are favoured in different habitats

(Haldane 1930; Wright 1931; Nagylaki 1975; Felsenstein 1976) [and

the concept was imported in ecology by Loreau & Mouquet (1999)].

Processes (1) to (5) correspond to local processes [although process

(5) is implicitly spatial]; and (6) to a spatial process. We focus here on

the latter situation.

Tightly associated to the question of polymorphism is the concept

of habitat. In theoretical models, different habitats are most often

characterized by different selective conditions. In absence of

frequency and density dependence on fitness, and with haploid

selection (which is equivalent to competition between two species in

an ecological setting), it is widely acknowledged that a maximum of

n alleles (species) may be deterministically maintained in n habitats

(Karlin & McGregor 1972; Strobeck 1979; Nagylaki & Lou 2001;

Nagylaki 2009) (and see (Armstrong & McGehee 1980), in the case

where resources are abiotic and densities fixed, as in the present

study), which is equivalent to Gause’s exclusion principle in ecology

(Hardin 1960). However, in a recent study, Lou & Nagylaki (2006)

found �unexpected, complex phenomena� when studying the evolution

of the frequencies of three alleles, in a spatially and temporally

continuous model. In particular, they indicate that an internal

equilibrium (i.e. an equilibrium with the three alleles at positive

frequencies) may sometimes occur with homogeneous and isotropic

migration. This possibility raises many new questions. The first is

whether such an internal equilibrium is stable. If it is, it would be

important to understand the processes, to identify which environ-

mental situations favour this equilibrium and finally to evaluate the

spatial distribution of the different alleles at equilibrium.

In this article, we address these questions. First, can more than n

alleles (or species) be maintained in n habitats in absence of processes

(1) to (5)? We will see that this is possible, and we illustrate this result

with n ¼ 2 habitats. Second, why is it so? We will see that with limited

dispersal, the very concept of habitat depends not only on patterns of

selection but also, crucially, on the distance to the boundary between

habitats, so that additional generalists may be stably maintained close to

habitat boundaries. We term this mechanism habitat-boundary

polymorphism. Third, we will determine how this process varies under

different but related models (one vs. two spatial dimensions, different

habitat transitions and different dispersal kernels). Finally, we will

discuss why this process has been overlooked for so long.

Ecology Letters, (2011) doi: 10.1111/j.1461-0248.2010.01580.x

� 2011 Blackwell Publishing Ltd/CNRS



MODELS

The population

We model a haploid, asexually reproducing population of fixed

density, living in an environment containing two different habitats.

This fixed total density, N, is the same at each spatial location. Time is

continuous and our model is deterministic. We use the word type to

refer either (and equivalently) to an allele or to a species. The

mechanism which we model indeed applies in both situations and with

the same equations; the underlying hypotheses, however, differ. If

alleles are considered, our model is valid for haploid individuals, or for

diploid individuals and co-dominance at the selected locus. If species

are considered, we have to assume that all individuals of a given

species share the same phenotype (Vellend 2010) (i.e. there is no

intraspecific variation). We also have to assume that species only differ

by their adaptation to one or the other habitat; there are competitors

at the same trophic level and they have the same migration

parameters. We assume that the fitness of an individual depends on

both its type and on the habitat where it lives: ri(x) is the fitness of an

individual of type i living at location x. Its fitness therefore depends

on the habitat type at location x. We have :

riðxÞ ¼
qA

i if x in habitat A

qB
i if x in habitat B

�
ð1Þ

qA
i and qB

i being constant. At location x and at time t, the mean

fitness is

�rðx; tÞ ¼
X

i

riðxÞpiðx; tÞ ð2Þ

where pi(x,t) is the proportion of type-i individuals in the population

located at x, at time t. Selection happens locally, but the individuals

can change places, according to a migration kernel. A migration kernel

is the probability density function of the parent-offspring distance.

We assume that migration is not biased towards one direction (i.e.

migration is isotropic: the mean of the migration kernel is 0), and that

it is independent of the location (i.e. homogeneous). In particular, this

passive dispersal means that habitat boundaries are not perceptible to

the dispersing individuals (Fagan et al. 1999). Finally, in the absence of

migration, only one type, the fittest, is eventually fixed in each habitat.

We illustrate this model in different environmental setups. In all cases,

there are two adjacent habitats, A and B, in proportions q and 1 ) q

respectively. The quality of the two habitats does not change with

time; their edges are infinitesimally thin, so that the change of habitat

is a step function (Strayer et al. 2003).

Continuous space 1-D

The first setup we consider consists of two habitats along a single

spatial dimension (see Fig. 1a). The environmental boundaries are

periodic (of period 2S ); thus, this environment may be viewed as

being circular. Migration is modelled as a diffusive process and the

standard deviation of the migration kernel, r, fully characterizes

migration (Turchin 1998). We define pi(x,t) as the proportion of type-i

individuals in the population located at x, at time t. The model reads

@pi

@t
¼ riðxÞ

�rðx; tÞ � 1

� �
piðx; tÞ þ

r2

2

@2pi

@x2
ð3Þ

Note that diffusion is an approximation because only the mean and

variance of the migration kernel are considered: higher moments of

the distribution are neglected. Nagylaki (1975) used a slightly different

model, which is obtained by assuming a logistic regulation of total

number (Crow & Kimura 1970). Our results are robust to the choice

of density regulation [Fig. S1 is the equivalent of Fig. 3a with model

(3) without the �r denominator, like in Nagylaki (1975)]. This model is

solved numerically using the NDSolve function in Mathematica

(Wolfram Research, Inc. 2008).

Continuous space 2-D

The two dimensional (2-D) version of the spatially continuous model

is similar. The boundaries between the two habitats are periodic (of

period 2S in each direction). The environment may thus be viewed as

being toric. In two dimensions, there is more freedom to model the

shape of the transition between the two environments. We consider

either a circular habitat edge (Fig. 1c) or a flower-like boundary

(tortuous habitat edge, sensu Strayer et al. (2003), Fig. 1d). The

equation of the boundary (in polar coordinates) reads:

r ¼ R þ aS sinðbhÞ; ð4Þ
where R is the mean radius of the habitat, b the number of oscillations

(b must be odd) and a their amplitude (a ¼ 0 corresponding to a

circular habitat).

We use the same reaction-diffusion model as in a 1-D environment,

but in two-dimensions (x and y stand for the two-spatial dimensions

and t for time):

@pi

@t
¼ riðx; yÞ

�rðx; y; tÞ � 1

� �
piðx; y; tÞ þ

r2

2

@2pi

@x2
þ r2

2

@2pi

@y2
ð5Þ

This model is solved numerically using the NDSolve function in

Mathematica (Wolfram Research, Inc. 2008).

Stepping stone

In order to build a spatially discrete version of the model, we use a

stepping stone model made of a linear set of k patches. Each patch

consists of one habitat only (see Fig. 1b); q k contiguous patches

consist of habitat A and (1 ) q)k of habitat B. We model dispersal

(a)

(b)

(c) (d)

Figure 1 Different environment configurations. (a) 1-D continuous environment.

(b) 1-D stepping stone. (c) 2-D continuous environment, circular [a ¼ b ¼ 0,

R ¼ S
ffiffiffiffiffiffiffiffi
2=p

p
, see eqn (4)]. (d) 2-D continuous environment with more edges (a ¼

0.2, b ¼ 15, R ¼ S
ffiffiffiffiffiffiffiffi
2=p

p
).
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with a discrete kernel. We use a binomial kernel (B ) to model

distance-limited dispersal, a uniform kernel (U ) to model non-

distance limited dispersal and mixtures of both for intermediate cases.

More specifically, we design two kernels, K1 and K2, which are

intermediates between the binomial (B ) and the uniform (U ) kernels:

K1 ¼ 0:65B þ 0:35U ð6aÞ

K2 ¼ 0:35B þ 0:65U ð6bÞ

The kernels B, K1, K2 and U have the same variance but have

increasing kurtosis. With the stepping-stone model, a sufficient

number of patches is required to obtain a clinal pattern. If the number

of patches is too low, the model behaves like a two-patch model. This

model is solved using the deSolve function in R (R Development Core

Team 2010; Soetaert et al. 2010).

Two-patch model

Finally, we compare our results to the results obtained with the

classical two-patch model, where one patch consists of habitat A (and

represents a fraction q of the total available space) and the other of

habitat B (in proportion 1 ) q). Individuals migrate from one patch to

another and the migration rate is l. Let p
j

i be the frequency of

individuals of type i in habitat j; the dynamics read (see appendix C in

Débarre & Gandon (2010) for the derivation of the model):

dpA
i

dt
¼ qA

i

�qA
� 1

� �
pA

i þ lð1� qÞðpB
i � pA

i Þ ð7aÞ

dpB
i

dt
¼ qB

i

�qB
� 1

� �
pB

i þ lqðpA
i � pB

i Þ ð7bÞ

where

�q j ¼
X

j

q j p
j

i ð8Þ

Note that this model can also apply to a metapopulation where a

fraction q of patches consist of habitat A and the remaining 1 ) q of

habitat B, with island migration (i.e. any patch can be reached with the

same probability).

RESULTS

Habitat boundary polymorphism: the basic mechanism

The basic mechanism of habitat boundary polymorphism occurs in all

the models we tested provided two basic conditions are met. The first

is that dispersal is spatially limited, meaning that it vanishes at

sufficiently long distance. The second is that ecological conditions are

coarse-grained (Levins 1968), meaning that they vary at a larger spatial

scale than the typical dispersal distance. These two conditions are

obviously not very restrictive. To understand what is going on, it is

sufficient to focus on the simplest model, the 1-D continuous

environment (Fig. 1a).

When only two types, each adapted to one habitat, compete in a

1-D continuous environment containing two habitats, the outcome is

either the maintenance of one type or the coexistence of the two types

(Nagylaki 1975). When the two types coexist (which happens provided

migration is below a threshold), their frequencies vary gradually and

form a clinal pattern (see Fig. 2a). In particular, this means that the

degree of maladaptation and polymorphism are high around

the boundary between the two habitats. If we now focus on the

competition between three types, we see that a third type may

be maintained at a stable equilibrium on top of these two previous

types (see Fig. 2b), a phenomenon that has remained largely

overlooked. This third type is necessarily more generalist, in the

sense that it is an inferior competitor to each specialist type in its own

habitat (see conditions 9a and 9b, type 3 being the generalist), but that

it presents a better average fitness than each of them (condition 9c).

qA
3 < maxðqA

1 ; q
A
2 Þ ð9aÞ

qB
3 < maxðqB

1 ; q
B
2 Þ ð9bÞ

Z
r3ðxÞdx > max

Z
r1ðxÞdx;

Z
r2ðxÞdx

� �
ð9cÞ

As one might expect, the generalist type is maintained close to the

habitat boundary, where maladaptation is high when only two

specialists are present. This phenomenon is intuitively understood by

the fact that, with distance-limited dispersal, types present close to the

habitat boundary are the ones which are the most likely to switch

between habitats in the next generations, which gives generalist types

an advantage in this area. Figure 3(a) shows the parameter range

(a)

(b)

(c)

Figure 2 Equilibrium frequencies, for the competition between two (a), three (b)

and four (c) types, in the 1-D continuous environment. Long dashed line: species 2,

specialist in habitat B; Dotted line: species 1, specialist in habitat A; Full line: species

3, generalist; Dot-dashed line: species 4, other generalist. Parameters: (a, b, c):

qA
1 ¼ 1, qB

1 ¼ 0, qA
2 ¼ 0, qB

2 ¼ 1, q ¼ 1/2, r ¼ 0.025; (b): qA
3 ¼ qB

3 ¼ 0:95,

(c): qA
3 ¼ 0:975, qB

3 ¼ 0:925, qA
4 ¼ 0:925, qB

4 ¼; 0:975.
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where the three types coexist in this model. In particular, we see that

the three types coexist for intermediate migration rates (dark grey area)

and that the parameter range where this three-type coexistence exists

gets larger when the fitness of the generalist increases (provided it

remains below 1, otherwise the generalist obviously always outcom-

petes the two specialists). Note that we chose to illustrate this result

with a symmetrical environment (q ¼ 1/2) but that the result still

holds in asymmetrical environments (see Fig. S3 where q ¼ 0.3).

Robustness of the process

First, we inquired whether this habitat boundary polymorphism is a

unique feature of spatially continuous models. As a check, we

investigated the conditions for the coexistence of three types in a

stepping-stone environment containing two habitats. We find similar

results. Figure 4(a) shows for instance that the three types can coexist

in a 1-D discrete environment containing only two different habitats,

with a binomial dispersal kernel. This process is therefore not due to

the continuity of the environment. We also checked that the results

were not artifacts due to symmetry in fitnesses (Fig. S2), nor to

symmetry in the environmental configuration (Fig. S3), and finally to

the assumption of equal migration kernels among types (Fig. S4).

Second, we checked that this process was not specific to a 1-D

situation. To do so, we investigated the conditions for three-allele

coexistence in 2-D environments. In a first 2-D model, we considered

a circular habitat edge (Fig. 1c). In a second one, we considered a

more tortuous habitat edge (Fig. 1d). Three-type coexistence occurs in

these 2-D models. Figures 3(c,d) illustrate the parameter range where

the two specialists and the generalist coexist. As this coexistence is due

to maladaptation of the specialists near the habitat edges, we expect

that more edges (given the same proportion of both habitats) widen

the parameter space where the three types coexist. With a more

tortuous habitat edge, and everything else being equal, the parameter

range of three-type coexistence is larger (compare Figs 3d with 3c).

Third, we investigated how this process varies with different

dispersal kernels. As the advantage of the generalist type near the

habitat boundary crucially depends on the fact that dispersal is

distance-limited, we predicted that three-type coexistence should be

more difficult with a dispersion kernel having a higher kurtosis.

Indeed, a higher kurtosis for the same variance of the kernel means

that a higher fraction of individuals do not move but that the moving

individuals disperse at larger distance. At the extreme, if our reasoning

is correct, a three-type polymorphism cannot occur with a uniform

kernel U, where migrating individuals have the same chance to

disperse to any location of the environment. This intuition is backed

up by the fact that with such a kernel, the model becomes

mathematically equivalent to a two-patch model, where a maximum

of two types can coexist (see Figs 3b and 4d). As a check, we

investigated the impact of having a more kurtosic kernel for a given

variance. To do so, and because diffusion methods are not appropriate

in this case, we used the stepping stone model with four kernels of

increasing kurtosis (B, K1, K2, U, see Models). It is interesting to note

that these four kernels would yield the same results under the

diffusion approximation because in this case, only the mean and

variance of the kernels are taken into account. Our results fully

confirm the prediction and the interpretation: as expected, it is harder

to obtain coexistence between the three types when the kurtosis of the

kernel increases (Fig. 4). This contrasts with the results of Snyder &

(a) (b)

β2 = 3 β2 = 33

(c) (d)

β2 = 60 β2 = 90

Figure 4 Stepping stone model for various kernel shapes: (a) Binomial kernel B,

(b) Intermediate K1, (c) Intermediate K2, (d) Uniform kernel U. All kernels have the

same variance (r2 ¼ 0.0068) but have different kurtosis (b2). In each subfigure,

from top to bottom: kernel shape, perceived habitat, equilibrium frequencies of the

three types. Parameters: qA
1 ¼ 1, qB

1 ¼; 0, qA
2 ¼ 0, qB

2 ¼ 1, qA
3 ;¼ qB

3 ¼ 0:95,

q ¼ 1/2, r ¼ 0.025, k ¼ 149 patches.

2-D, disk

1-D Two-patch

2-D, flower

(a) (b)

(c) (d)

Figure 3 Coexistence areas at equilibrium, for various environments, as a function

of the generalist’s fitness (¼ qA
3 ¼ qB

3 ), and the migration range r (a, c, d) or

migration rate l (b) (note the log scale). Dark grey: the three types coexist

(SA + SB + G), Light grey: the two specialists coexist (SA + SB), White: only the

generalist (G). The parameters of the specialist types are the same as in Fig. 2:

qA
1 ¼ 1,qB

1 ¼ 0, qA
2 ¼ 0, qB

2 ¼ 1; q ¼ 1/2. The equation of the boundary in (b)

is l ¼ 1/(2q3)1))1. Subfigures (a, c and d) are obtained by numerical resolution of

eqn (3) (subfigure a) and eqn (5) (subfigure c and d); a type is assumed to have

disappeared when its global frequency is below 1%. Subfigure (b) is obtained

analytically [stability study of model (7)], and confirmed by numerical resolutions.).
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Chesson (2003), who found that moments higher than the variance of

the dispersal kernel do not influence the conditions for species

coexistence.

Fourth, it is important to note that no hypothesis of weak selection

has been made to derive the model’s equation (this assumption is

commonly made in population genetics models). As a consequence,

the process we describe is not an artifact of this type of

approximation.

Finally, we tried to determine whether more than three types may be

maintained by this process. To do so, we tried different combinations

of fitness parameters, and found that up to four types could coexist in

a 1-D environment, discrete or continuous. Figure 2c illustrates such a

situation with an example. Four-type stable polymorphism can occur

when there are two generalists close to the habitat boundary; one

generalist a little more specialist to habitat A and the other a little

more specialist to habitat B. Still, we also found that the parameter

range allowing for a four-type polymorphism was very narrow. Thus,

how many alleles can coexist in a spatially explicit environment with

n habitats and distance-limited migration remains an open question;

we can conjecture that more types can coexist, but that it occurs in a

vanishingly small parameter range (and therefore, matters little in

terms of biology). In any case, this question is unlikely to be solved

using numerical solutions.

DISCUSSION

Habitat boundary polymorphism

The migration-selection balance is a very powerful mechanism to

maintain genetic polymorphism (Wright 1931). Similarly in an

ecological context, the migration-competition balance (Loreau &

Mouquet 1999) can substantially increase diversity around habitat

boundaries. In both cases, these processes have been recognized for a

long time; however, they are systematically envisioned with a limit at

equilibrium of n types in n habitats. In this article, we show that with

spatially limited dispersal, generalist types may additionally be

maintained at equilibrium at habitat boundaries. Our model is as

simple as possible: it is deterministic, the population is haploid,

the habitats are saturated and only direct competition is considered.

In the absence of migration, only one type gets fixed in each habitat.

The individuals compete locally; the best competitor is the one which

produces most offspring. In our model, where migration is distance

limited, coexistence arises due to maladaptation of the specialist types

near the habitat boundaries. This maladaptation allows more genera-

list types to invade near the habitat boundaries. We term this process

�habitat boundary polymorphism�. As it works under generic assump-

tions, it is thus likely to occur in a very large array of ecological

conditions.

When intra- and interspecific competitions have the same intensity,

as is the case in our model, never more than two species can coexist in

a two-patch model (Karlin & McGregor 1972), and see Fig. 3(b).

As this principle generalizes to n species in n habitats when the

number of subpopulations equals the number of habitats (Strobeck

1979; Nagylaki 2009), this result is often taken for granted even in

more complex situations. Consequently, most studies do not even

investigate the conditions for coexistence of more than n alleles in an

n habitat environment [but see (Lou & Nagylaki 2006)], or focus on

island migration only, which explains why the habitat boundary

polymorphism had not been highlighted previously.

Habitat boundaries: diversity hotspots

Even considering the coexistence of two types, it is well established

that intermediate distance-limited dispersal promotes polymorphism

near habitat boundaries [(Nagylaki 1975), and see Fig. 2a].

The process which we present here further increases this effect

since additional types may be maintained at these boundaries. Thus,

our results reinforce the view that habitat edges are expected to be

important either in terms of genetic variation within species or in

terms of diversity. Note that we do not mean that high habitat

fragmentation favours diversity: the habitats have indeed to be wide

enough for specialist types to maintain (increasing the grain of the

environment is equivalent to decreasing the range of dispersal in our

model). We show in fact that there is a non-monotonic effect of

increased fragmentation on species diversity, which can account for

the diversity of trends observed in empirical studies on the effects of

habitat fragmentation per se (Fahrig 2003). Due to scaling effects,

indeed, the vertical axes in Fig. 3 can be replaced by the grain of

the environment, low (resp. high) migration being equivalent to

coarse (resp. fine) grain. With this interpretation, we see that an

intermediate grain maximizes diversity, and this result gives a

theoretical backup to the �intermediate heterogeneity hypothesis�,
whereby biodiversity is most favoured under intermediate heteroge-

neities (Tscharntke et al. 2005; Fahrig et al. 2010). Importantly, this

finding does not undermine the idea that other mechanisms may

promote diversity on habitat edges. In particular, habitat edges may

extend spatially and define additional ecotone habitats (contrary to

our model where edges do not have any thickness: the two habitats

are adjacent, there is no intermediate habitat in-between). Ecotones

may favour distinct ecotone-specialist types. What our model stresses

though is that it is not necessary to consider a specific ecotone

habitat (with a spatial extent) to maintain additional types: the

process that we present here already generates polymorphism

beyond the n habitats-n types baseline. This idea is related to

�landscape complementation� (Dunning et al. 1992), whereby a

species requires different habitat types throughout its life-cycle

(as demonstrated e.g. for leopard frogs, see Pope et al. 2000).

Whether patterns of increased diversity near edges arise due to the

presence of ecotone habitats or to habitat boundary polymorphism

remains to be clarified, the latter being more likely with sharp

ecological transitions between habitats.

Mechanisms for the maintenance of polymorphism

There are many mechanisms which may promote stable polymor-

phisms (see Introduction). Our result adds one mechanism to this

list. Distance-limited dispersal can generate maladaptation close to

habitat boundaries (but not elsewhere), opening a new niche for

generalist types to invade. Such a phenomenon has never been

described before and is fundamentally different from the usual

migration-selection balance, which was originally described with an

island model (Haldane 1930; Wright 1931). In the usual n-types

n-habitat island model, increased dispersal can only result in having

fewer types maintained at equilibrium: with zero dispersal indeed, the

n types are all fixed in their habitats; increasing dispersal can only

reduce the number of types maintained at equilibrium below n, or in

the best case maintain it at n. On the contrary, we find that

intermediate dispersal can actually promote the maintenance of more

than n types.
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Implications for field studies

In real situations, it is difficult to determine which mechanisms are

responsible for the maintenance of polymorphism. The first difficulty

is to show that the observed polymorphism is stable. In fact, the most

important mechanism promoting polymorphism or diversity beyond

the n types-n habitats baseline is certainly non-equilibrium dynamics.

For instance, in a genetic context, allele replacement takes time and

the flow of newly arising alleles can be high enough to sustain much

more polymorphism than what would be expected under equilibrium

conditions [for a detailed field situation where the dynamic of such

allele replacements is documented see Labbe et al. (2009)]. In addition,

there is often a striking parallel between models involving environ-

mental selection and selection against hybrids (Bazykin 1969).

In particular, the clinal patterns expected under both types of

selection are often indistinguishable (Kruuk et al. 1999). The pattern

which we describe herein with a generalist type maintained at the

habitat boundary probably echoes of an analogue situation in a hybrid

zone where a compatible (�generalist�) type may coexist with

incompatible types, which forms a buffer zone around the boundary

between the two types. Interestingly, such a phenomenon is

documented in contact zones between chromosomal races in mice

(Searle et al. 1993; Britton-Davidian et al. 2000).

Regarding species coexistence, it is often hard to distinguish

between the effects of the diversity and amounts of habitats in the

landscape [also referred to as compositional heterogeneity (Fahrig &

Nuttle 2005; Fahrig et al., 2010) or habitat variability (Duelli 1997)] and

of changes in the amount of habitat edges (configurational hetero-

geneity or habitat heterogeneity), both being often confounded in

studies on fragmentation (Fahrig 2003). Our study however shows the

importance of disentangling the two, as they differently affect species

coexistence, and should stimulate empirical work aiming at discrim-

inating between habitat amounts and edge effects in patterns of

diversity.

Environmental grain and perceived habitat

However, our study has also a more fundamental consequence on

the notion of habitat or niche. In models where dispersal is not

distance dependent (e.g. in island models), the number of habitats

can be clearly and quite conveniently defined as the number of

distinct selective conditions. This number may be lower than the

actual number of subpopulations. For instance, in an island model

with n populations, a fraction p of them may share the same selective

conditions. However, when dispersal is distance limited, the number

of habitats is less clearly related to the number of distinct selective

conditions. Everything depends on the scale of dispersal relative to

the scale of environmental heterogeneity. This fact is also a well

known issue, most often described in terms of �environmental grain�
(Levins 1968). At one extreme, fine grain refers to the case where

dispersal occurs at much larger distance than environmental

heterogeneity, whereas coarse grain refers to the opposite extreme.

This finding is a useful idea, but it can also be misleading, as our

study shows. With two selective conditions, fine grain is usually

synonymous with having one averaged selective condition (and only

one generalist allele maintained at equilibrium) while coarse grain is

usually synonymous with having two distinct selective conditions

(and two specialist allele maintained at equilibrium). Thus, in the

fine-coarse grain continuum, one is tempted to conclude that with

two selective conditions, the number of alleles maintained at

equilibrium will always be either one or two. In fact, as we show,

there is an intermediate grain where more than two alleles may be

maintained. This result can easily be understood in terms of

�perceived habitat� in a given location (plotted in Fig. 4). Here,

�perceived� means that, because of future or past dispersal, the

selection of an individual experiment is in fact spatially averaged

around the individual’s current position. This �perceived habitat�
smoothly changes when approaching an environmental transition.

Thus, even if there are only two selective conditions (two habitats)

changing abruptly at a given location, perceived selection changes

smoothly and defines a continuum of perceived habitats where

additional alleles may persist at equilibrium.

Overall, because our results both challenge and improve concepts

of environmental grain and habitats, they have a fundamental

importance for ecology and ecological genetics.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Figure S1 Equivalent of Fig. 3(a), with Nagylaki (1975) equation [i.e.

eqn (3) without the �r denominator].

Figure S2 Equivalent of Fig. 3(a), changing the parameters of the

second specialist type: qA
2 ¼ 0:1, qB

2 ¼ 0:9. The new intermediate

grey area correspond to the coexistence of the specialist type 1 and of

the generalist. There is no three-type coexistence when q3 > qB
2

because the generalist becomes better adapted to the second

environment than the second specialist (right of the dashed line).

Figure S3 Equivalent of Fig. 3(a), in an asymmetrical environment

where q ¼ 0.3. The intermediate grey area correspond to the

coexistence of the specialist of the most frequent habitat (2) and of

the generalist.

Figure S4 Equivalent of Fig. 2(b), when the migration parameters

differ among types. The thicker grey line shows the total population

density. New parameters: r1 ¼ 0.0075, r2 ¼ 0.05, r3 ¼ 0.01.
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