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Abstract. It now seems probable that a quantum computer breaking non-trivial instances of the RSA and discrete loga-
rithm problem will be built in the not-too-distant future. Despite this, for many applications such as electronic voting or
anonymous authentication where simple encryption and signature schemes are not sufficient, there are currently no prac-
tical protocols that one could use to defend against such quantum adversaries. One might think that such protection is not
yet needed, but this creates vulnerabilities against an adversary who collects data today and is then able to break all the
privacy and anonymity properties of current protocols using a quantum computer in the future.

In the absence of efficient lattice schemes for advanced protocols, in this work we begin the investigation of “hybrid”
schemes that try to maintain the efficiency of classical protocols, but with the forward-security of lattice-based ones. Our
main result is a proposal of one such protocol – a group signature scheme that combines the efficiency of today’s number
theoretic schemes, while using lattice encryption to guarantee privacy to its members even after quantum computers are
developed. As intermediate steps, we provide a new and more efficient protocol for proving the validity of a lattice-based
ciphertexts, and then extend this to a protocol that proves that a classical commitment and a lattice-based encryption contain
the same secret. We believe that these two protocols are also interesting in their own right. From these two primitives, our
group signature construction then follows a generic folklore approach, for which, to the best of our knowledge, we provide
the first formal security proof.
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1 Introduction
With quantum computing looming in the (possibly) near future, there has been a push over the last few years
towards constructing efficient primitives based on the hardness of lattice problems, which are believed to be
resilient against quantum algorithms. Unfortunately, except for encryption and digital signatures, lattice schemes
seem to be a lot less practical (especially space-wise) than their classical counterparts. And so if one wishes to
use quantum-secure protocols, his choices are either to keep using the current protocols until they are no longer
secure, or to migrate to the less-efficient lattice protocols.

We believe that the decision of whether to switch or not should actually depend on the primitive itself. For
example, if one were using a statistically-hiding commitment scheme to commit to sensitive data, then quantum
computing does not really pose any threat to the data. Once quantum computers are deployed, the commitment
will of course be invalid (since it will no longer be binding), but the message will still be hidden. On the other
hand, a number theoretic commitment scheme that is only computationally-hiding will not protect the message
contents against quantum computing. In short, we believe that in schemes where quantum computers do not pose
a threat to privacy, migrating to quantum-secure constructions is not as urgent.

Some more involved schemes are comprised of both types of primitives – ones that would leak private data
and others that information-theoretically hide it. In the absence of efficient lattice constructions for such schemes,
our proposal is to construct them using a “hybrid” approach between classical and lattice cryptography. The idea is
that in a “pre-quantum” world, they would be more efficient than pure lattice-based schemes. And once quantum
computers are built, all the private information contained in the ciphertexts or proofs that are generated while
using the schemes would still remain secret.

A good example of a scheme that would benefit from such a construction is a group signature. The “raison
d’être” of a group signature scheme is to hide the identity of a user who is signing a message in the name of
the group - and so it is imperative that the user’s identity remains hidden even after quantum computers come
about and the signature scheme can no longer be used. In a group signature scheme, while every group member
is able to anonymously sign, the master group authority still has a way to unmask a user (in case of disputes or
misbehavior, for example). A high level overview for how such a scheme is realized is for a group member to
produce a signature using a key he was given by the master authority, then encrypt his identity, and then produce a
zero-knowledge proof linking the ciphertext to the key used in the signature (i.e., his identity). A verifier is able to
ascertain that the signature and the zero-knowledge proof are valid, but does not learn anything about the identity
of the user. The master authority, however, can simply decrypt the ciphertext containing the user’s identity.



It would be preferable, therefore, if the encryptions of identities were lattice-based, whereas everything else
in the scheme would information-theoretically hide the identity of the user. In this way, assuming that lattice
encryption schemes are secure against quantum attacks, a signer’s identity would remain hidden.

The main result of this work is a realization of such “hybrid” schemes. The schemes themselves are comprised
of several components, which we believe are interesting in their own rights. The first is a zero-knowledge proof of
plaintext knowledge of lattice encryption schemes, and the second is a technique to “link” classical commitments
to lattice encryptions by proving in zero-knowledge that they contain the same message.

1.1 Improved Proofs of Plaintext Knowledge for Lattice Schemes
In a zero knowledge proof of plaintext knowledge, the encryptor wants to prove in zero knowledge that the cipher-
text is of the correct form and that he knows the message. Efficient constructions of these primitives are known
based on number-theoretic hardness assumptions such as discrete log, strong RSA, etc..

Ciphertexts in lattice-based encryption schemes generally have the form t = Ae mod q, where A is some
public matrix and e is the unique vector with small coefficients that satisfies the equation (in this general example,
we are lumping the message with e). A proof that t is a valid ciphertext (and also a proof of plaintext knowledge),
therefore involves proving that one knows short a short e such thatAe = t. It is currently known how to accomplish
this task in two ways. The first uses a “Stern-type” protocol [35] in which every run has soundness error 2/3 [24].
It does not seem possible to improve this protocol since some steps in it are inherently combinatorial and non-
algebraic.

A second possible approach is to use the Fiat-Shamir approach for lattices using rejection sampling introduced
in [25,27]. But while the latter leads to fairly efficient Fiat-Shamir signatures, there are some barriers to obtaining
a proof of knowledge. What one is able to extract from a prover are short vectors r′, z′ such thatAe′ = tc for some
integer c, which implies that Ae′c−1 = t. Unfortunately, this does not imply that e′c−1 is short unless c = ±1.
This is the main way in which lattice-based Fiat-Shamir proofs differ from traditional schemes like the discrete-
log based Schnorr protocol. In the latter, it is enough to extract any discrete log, whereas in lattice protocols, one
must extract a short vector. Thus, the obvious approach at Fiat-Shamir proofs of knowledge for lattices (i.e. using
challenge vectors from {0, 1}) also leads to protocols with soundness error 1/2.

Things do not improve for lattice-based proofs of knowledge even if one considers ideal lattices. Even ifA and
e are a matrix and a vector of polynomials in the ring Zq[X]/(Xn+1), and c is now a polynomial (as in the Ring-
LWE based Fiat-Shamir schemes in [26,27]), then one can again extract only a short e′ such that Ae′c−1 = t. In
this case, not only is c−1 not necessarily short, but it does not even necessarily exist (since the polynomial Xn+1
can factor into up to n terms.) At this point, we are not aware of any techniques that reduce the soundness error of
protocols that prove plaintext knowledge of lattice encryptions, except by (parallel) repetition.

In a recent work, Damgard et al. [18] gave an improved amortized proof of plaintext knowledge for LWE
encryptions. Their very nice protocol allows to prove knowledge of O(k) plaintexts (where k is the security pa-
rameter) in essentially the same time as just one plaintext. But it seems that the ideas behind the protocol do
not reduce the time requirement for proving just one plaintext, nor do they apply to Ring-LWE based encryption
schemes. In particular, Ring-LWE based schemes are able to encrypt O(n) plaintext bits into one (or two) poly-
nomial, which is often all that is needed. Yet, the techniques in [18] do not seem to be helpful here. The reason is
that the challenge matrix required in [18] needs to be of a particular form and cannot simply be a ring element in
Zq[X]/(Xn + 1).

In this paper, we first show that one can reduce the soundness error of lattice-based zero-knowledge proofs
of knowledge for ciphertext validity from 1/2 to 1/(2n), which in practice decreases the number of required
iterations of the protocol by a factor of approximately 10. Interestingly, our techniques only work for ideal lattices,
and we do not know how to adapt them to general ones. The key observation is that when working over the ring
Z[X]/(Xn + 1), the quantity 2/(Xi −Xj) for all 0 ≤ i 6= j < n is a polynomial with coefficients in {−1, 0, 1}
(this is proved in Section 3.1).

This immediately allows us to prove that, given A and t, we know a vector of short polynomials e such that
Ae = 2t. While this is not quite the same as proving that Ae = t, it is good enough for most applications, since
it still allows us to prove knowledge of the plaintext. This result immediately gives improvements in all schemes
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that require such a proof of knowledge for Ring-LWE based encryption schemes such as the ring-version of the
“dual” encryption scheme [20], the “two element” scheme of Lyubashevsky et al. [28], and NTRU [22,34].

1.2 Linking Lattice and Classical Commitments
A main step in constructing our “hybrid” schemes is to prove that two primitives, one based on classical cryptogra-
phy and the other on lattices, are committing to the same message (and that the prover knows the message). In our
application, we will use the perfectly hiding Pedersen commitment as the classical, and a Ring-LWE encryption
scheme as the lattice-based primitive.

While Pedersen commitments and lattice-based encryption schemes work over rather different rings, we
show that we can still perform operations “in parallel” on the two commitments. For example, if the message is
µ0, µ1, . . . , µn−1, then it is encrypted in Ring-LWE schemes as the polynomial µ = µ0+µ1X+ . . .+µn−1X

n−1,
and each µi is encrypted individually using a Pedersen commitment. We will then want to prove that a Ring-LWE
encryption of µ encrypts the same thing as n Pedersen commitments of µi. Even though the two computations are
performed over different rings, we show that by mimicking polynomial multiplications over a polynomial ring by
appropriate additions and multiplications of coefficients in exponents, we can use our previously mentioned proof
of plaintext knowledge to both prove knowledge of µ and show that the Pedersen commitments are committing
to the coefficients µi. One of the reasons that we are able to provide such a proof is that the terms dealing with µ
(and µi) in the proof of knowledge are worked on “over the integers” – that is, modular reduction never needs to
be performed on these terms. We describe this protocol in detail in Section 4.

1.3 Applications to Group Signatures and Credentials
Group signatures [12] are schemes that allow members of a group to sign messages on behalf of the group without
revealing their identity. In case of a dispute, the group manager can lift the signer’s anonymity and reveal his
identity. Currently known group signatures based on lattice assumptions should mainly be seen as proofs of con-
cepts, rather than practically useful schemes. The schemes by Gordon et al. [21] and Camenisch et al. [10] have
signature size linear in the number of group members. The scheme due to Laguillaumie et al. [23] performs much
better asymptotically with signature sizes logarithmic in the number of group members, but, as the authors admit,
instantiating it with practical parameters would lead to very large keys and signature sizes. This is in contrast
to classical number-theory based solutions, where both the key and the signature size are constant for arbitrarily
many group members.

As previously mentioned, quantum computers may have very different impacts for security and privacy: For
controversial topics, privacy might be a long term concern, and a user might only be willing to use a scheme
if he is convinced that his identity will remain secret, say, fifty years from now. The implications of signature
forgeries being broken may be less significant, because one can simply stop accepting classical signatures as soon
as quantum computers become practical.

Following this observation, we propose a “hybrid” group signature scheme, where unforgeability holds under
classical assumptions, whereas privacy is proved under lattice-based ones. This allows us to combine the flexible
tools that are available in the classical framework with the strong privacy guarantees of lattice problems. As a
result, we obtain a group signature scheme that is private under quantum-resistant assumptions, where the key and
the signature size are only logarithmic in the number of group members. For practical choices of parameters and
realistic numbers of group members, the sizes will even be independent of the number of users. Furthermore, by
basing our scheme on ring-LWE and not standard LWE, we partially solve an open problem stated in [23].

Our construction follows a generic approach that we believe is folklore, as it underlies several direct construc-
tions in the literature [2,8] and a variant was described explicitly by Chase and Lysyanskaya [11]. When joining
the group, a user obtains a certificate from the group manager that is a signature on his identity under the group
manager’s public key. To sign a message, the user now encrypts his identity under the manager’s public encryption
key, and then issues a signature proof of knowledge that he possesses a valid signature on the plaintext contained
in this encryption. Our construction follows this general paradigm, but with some modifications to better fit the
specifics of our proof of plaintext knowledge for lattice encryption. To the best of our knowledge, however, the
construction was never proved secure, so our proof can be seen as a contribution of independent interest.
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2 Preliminaries
2.1 Notation
We denote algorithms by sans-serif letters such as A,B.

If S is a set, we write s ←$ S to denote that s was drawn uniformly at random from S. Similarly, we write
a ←$ A if a was computed by a randomized algorithm A, and d ←$ D for a probability distribution D, if d was
drawn according to D.

We write Pr[E : Ω] to denote the probability of event E over the probability space Ω. For instance, Pr[x = y :
x, y ←$ D] denotes the probability that x = y if x, y were drawn according to a distribution D.

If v is a vector, we denote by v�l an anti-cyclic shift of a vector v by l positions, corresponding to a multiplica-
tion by X l in Rq = Zq[X]/(Xn + 1). That is, v�l = (v0, . . . , vn−1)�l = (−vn−l, . . . ,−vn−1, v0, . . . , vn−l−1).
Furthermore, we identify the vectors (a0, . . . , an−1) with the polynomial a0 + a1X + · · ·+ an−1X

n−1.
Throughout the paper, λ denotes the main security parameter and ε denotes the empty string.

2.2 Commitment Schemes and Pedersen Commitments
Informally, a commitment scheme is a tuple (CSetup,Commit,COpen), where CSetup generates commitment
parameters, which are then used to commit to a message m using Commit. A commitment cmt can then be
verified using COpen. Informally, a commitment scheme needs to be binding and hiding. The former means that
no cmt can be opened to two different messages, while the latter guarantees that cmt does not leak any information
about the contained m . A formal definition can be found in Appendix A.1.

We next recap an efficient commitment scheme that was introduced by Pedersen [30]. Let therefore {G(λ)}λ∈N
be a family of prime order groups such that the discrete logarithm problem is hard in G(λ) for security parameter
λ. Let q̃ = q̃(λ) be the order of G(λ).

To avoid confusion in the following, all elements with order q̃ are denoted with a tilde in the following.

CSetup. This algorithm chooses g̃, h̃←$ G(λ) and outputs cpars = (g̃, h̃).
Commit. To commit to a message m ∈ M = Zq̃, this algorithm first chooses r ←$ Zq̃. It then outputs the pair

(c̃mt , o) = (m g̃ + rh̃, r).
COpen. Given a commitment c̃mt , an opening o, a public key cpars and a message m , this algorithm outputs

accept if and only if c̃mt
?
= m g̃ + oh̃.

Theorem 2.1. Under the discrete logarithm assumption for G, the given commitment scheme is perfectly hiding
and computationally binding.

2.3 Semantically Secure Encryption and NTRU
A semantically secure (or IND-CPA secure) encryption scheme is a tuple (EncKG,Enc,Dec) of algorithms, where
EncKG generates public/private key pair, Enc can be used to encrypt a message m under the public key, and the
message can be recovered from the ciphertext by Dec using the secret key. Informally, while Dec(Enc(m)) = m
should always hold, only knowing the ciphertext and the public key should not leak any information about the
contained message. A formal definition is given in Appendix A.2.

In our protocols we will be showing improved zero knowledge proofs of plaintext knowledge for lattice-based
encryption schemes, as well as showing how to link messages being encrypted by these schemes to Pedersen
commitments. Our improved proof of knowledge protocol will work for any Ring-LWE based scheme where
the basic encryption operation consists of taking public key polynomial(s) ai and computing the ciphertext(s)
bi = ais + ei where s and ei are polynomials with small norms. Examples of such schemes include the ring-
version of the “dual” encryption scheme [20], the “two element” scheme of Lyubashevsky et al. [28], and the
NTRU encryption scheme [22,34].

For simplicity, in this paper we will only be working over the rings R = Z[X]/〈Xn + 1〉 and Rq = R/qR,
for some prime q. Also for simplicity, we will use NTRU as our encryption scheme because its ciphertext has only
one element and is therefore simpler to describe in protocols. The NTRU scheme was first proposed by Hoffstein
et al. [22], and we will be using a modification of it due to Stehlé and Steinfeld [34].
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Definition 2.2. The discrete Normal distribution on Zm centered at v with standard deviation σ is defined by the

density function Dm
v,σ(x) = ρmv,σ(x)/ρσ(Zm), where ρmv,σ(x) =

(
1√
2πσ

)m
e−
‖x−v‖2

2σ2 is the continuous normal dis-
tribution on Rm and ρσ(Zm) =

∑
z∈Zm ρ

m
0,σ(z) is the scaling factor required to obtain a probability distribution.

In abuse of notation we will sometimes write u←$ Dv,σ instead of u←$ Dn
v,σ for a polynomial u ∈ Rq if there is

no risk of confusion.
In the following, let p be a prime less than q and σ, α ∈ R.

Message space. The message space is given byM = {y ∈ R : ‖y‖∞ < p}
KeyGen. Sample f ′, g from DZn,σ, set f = pf ′ + 1, and resample, if f mod q or g mod q are not invertible.

Output the public key h = pg/f and the secret key f . Note here that h is invertible.
Encrypt. To encrypt a message m ∈M, set s, e←$ Dα and return the ciphertext c = hs+ pe+m ∈ Rq.
Decrypt. To decrypt c with secret key f , compute c′ = fc ∈ Rq and output m′ = c′ mod p.

If the value of σ is large enough (approximately Õ(n√q)), then g/f is uniformly random in Rq [34], and the
security of the above scheme is based on the Ring-LWE problem. For smaller values of σ, however, the scheme
is more efficient and can be based on the assumption that h = g/f is indistinguishable from uniform. This type
of assumption, while not based on any worst-case lattice problem, has been around since the introduction of the
original NTRU scheme over fifteen years ago. Our protocol works for either instantiation.

To obtain group signatures, we will need our encryption scheme to additionally be a commitment scheme.
In other words, there should not be more than one way to obtain the same ciphertext. For the NTRU encryption
scheme, this will require that we work over a modulus q such that the polynomialXn+1 splits into two irreducible
polynomials of degree n/2.

Lemma 2.3. Suppose that q = 3 mod 8 and let #S,#E, and #M be the domain sizes of the parameters
s, e, and m in the ciphertext c = hs + pe + m. Additionally suppose that for all m ∈ M, ‖m‖∞ < p/2.
Then the probability that for a random h, there exists a ciphertext that can be obtained in two ways is at most
(2#M+1)·(2#S+1)·(2#E+1)

qn/2
.

The proof can be found in Appendix C.1. Note that the above lemma applies to NTRU public keys h that are
uniformly random. If h = pg/f is not random, then the ability to come up with two plaintexts for the same
ciphertext would constitute a distinguisher for the assumed pseudorandomness of h.

2.4 Rejection Sampling
For a protocol to be zero-knowledge, the prover’s responses must not depend on its secret inputs, as otherwise they
could not be simulated. However, in our protocols, the prover’s response will be from a discrete normal distribution
which is shifted depending on the secret key. To correct for this, we employ rejection sampling [26,27], where a
potential response is only output with a certain probability, and otherwise the protocol is aborted.

Informally, the following theorem states that for sufficiently large σ the rejection sampling procedure outputs
results that are independent of the secret. The technique only requires a constant number of iterations before a
value is output, and furthermore the output is also statistically close for every secret v with norm at most T . For
concrete parameters we refer to the original work of Lyubashevsky [27, Theorem 4.6].

Theorem 2.4. Let V be a subset of Z` in which all elements have norms less than T , and let h be a probability
distribution over V . Then, for any constant M , there exists a σ = Θ̃(T ) such that the output distributions of the
following algorithms A,F are statistically close:

A : v ←$ h; z ←$ D`
v,σ; output (z, v) with probability min

(
D`
σ(z)/(MD`

v,σ(z)), 1
)

F : v ←$ h; z ←$ D`
0,σ; output (z, v) with probability 1/M

Moreover, the probability that A outputs something is exponentially close to that of F, i.e., 1/M .
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2.5 Zero-Knowledge Proofs and Σ-Protocols
On a high level, a zero-knowledge proof of knowledge (ZKPoK) is a two party protocol between a prover and a
verifier, which allows the former to convince the latter that it knows some secret piece of information, without
revealing anything about the secret apart from what the claim itself already reveals. For a formal definition we
refer to Bellare and Goldreich [3].

The ZKPoKs constructed in this paper will be instantiations of the following definition, which is a straightfor-
ward generalization of the standard notion of Σ-protocols [13,15]:

Definition 2.5. Let (P,V) be a two-party protocol, where V is PPT, and let R,R′ be a binary relation such that
R ⊆ R′. Then (P,V) is called a Σ′-protocol for R,R′ with challenge set C, public input y and private input w,
if and only if it satisfies the following conditions:

– Three-move form: The protocol is of the following form: The prover P computes a commitment t and sends
it to V. The verifier V then draws a challenge c ←$ C and sends it to P. The prover sends a response s to the
verifier. Depending on the protocol transcript (t, c, s), the verifier finally accepts or rejects the proof.
The protocol transcript (t, c, s) is called accepting, if the verifier accepts the protocol run.

– Completeness: Whenever (y, w) ∈ R, the verifier V accepts with probability at least 1− α.
– Special soundness: There exists a PPT algorithm E (the knowledge extractor) which takes two accepting

transcripts (t, c′, s′), (t, c′′, s′′) satisfying c′ 6= c′′ as inputs, and outputs w′ such that (y, w′) ∈ R′.
– Special honest-verifier zero-knowledge (HVZK): There exists a PPT algorithm S (the simulator) taking y ∈
L(R) and c ∈ C as inputs, that outputs (t, s) so that the triple (t, c, s) is indistinguishable from an accepting
protocol transcript generated by a real protocol run.

This definition differs from the standard definition of Σ-protocols in two ways. First, we allow the hon-
est prover to fail in at most an α-fraction of all protocol runs, whereas the standard definition requires perfect
completeness, i.e., α = 0. However, this relaxation is crucial in our construction that is based on rejection sam-
pling [26,27], where the honest prover sometimes has to abort the protocol to achieve zero-knowledge. Second,
we introduce a second relationR′ ⊇ R, such that provers knowing a witness inR are guaranteed privacy, but the
verifier is only ensured that the prover knows a witness for R′. This has already been used in [1] and informally
also in, e.g., [19,16]. If the soundness gap betweenR andR′ is sufficiently small, the implied security guarantees
are often enough for higher-level applications.

We want to stress that previous results showing that aΣ-protocol is always also an honest-verifier ZKPoK with
knowledge error 1/|C| directly carry over to the modified definition whenever 1 − α > 1/|C|. Zero-knowledge
against arbitrary verifiers can be achieved by applying standard techniques such as Damgård et al. [17,14].

Finally, it is a well known result that negligible knowledge and completeness errors in λ can be achieved, e.g.,
by running the protocol λ times in parallel and accepting if and only if at least λ(1− α)/2 transcripts were valid,
if there exists a constant c such that (1− α)/2 > 1/|C|+ c .

Some of the Σ-protocol presented in this paper will further satisfy the following useful properties:

– Quasi-unique responses: No PPT adversary A can output (y, t, c, s, s′) with s 6= s′ such that V(y, t, c, s) =
V(y, t, c, s′) = accept.

– High-entropy commitments: For all (y, w) ∈ R and for all t, the probability that an honestly generated com-
mitment by P takes on the value t is negligible.

3 Proving Knowledge of Ring-LWE Secrets
Before stating our basic protocol for efficiently proving knowledge of short s, e such that 2y = as+ e, we prove
a technical lemma that is at the heart of the knowledge extractor of our protocols.

3.1 A Technical Lemma
The following lemma guarantees that certain binomials in Z[X]/(Xn+1) can be inverted, and their inverses have
only small coefficients.
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Prover Verifier

rs, re ←$ DÕ(
√
nα)

t = ars + re
(caux, daux) = aCommit(t) caux -

c←$ C = {0, . . . , 2n− 1}c�
ss = rs +Xcs
se = re +Xce

accept with probability
DÕ(

√
nα)(se)

MD
e,Õ(

√
nα)

(se)

DÕ(
√
nα)(ss)

MD
s,Õ(

√
nα)

(ss)

t, daux, (ss, se) - Xcy + t
?
= ass + se

aCOpen(t, caux, daux)
?
= accept

‖ss‖ , ‖se‖ ≤ Õ(nα)

Protocol 3.2: Proof of knowledge of LWE-secrets s, e such that y = as+ e.

Lemma 3.1. Let n be a power of 2 and let 0 < i, j < 2n − 1. Then 2(Xi − Xj)−1 mod (Xn + 1) only has
coefficients in {−1, 0, 1}.

Proof. Without loss of generality, assume that j > i. Using that Xn = −1 mod (Xn + 1) we have that 2(Xi −
Xj)−1 = −2Xn−i(1−Xj−i)−1. It is therefore sufficient to prove the claim for i = 0 only.

Now remark that, for every k ≥ 1 it holds that: (1−Xj)(1 +Xj +X2j + . . .+X(k−1)j) = 1−Xkj .
Let us write j = 2j

′
j′′, with j′′ a positive odd integer and 0 ≤ j′ ≤ log2(n), and let us choose k = 2log2(n)−j

′

(recall that n is a power of 2). We then have jk = nj′′, and Xkj = (−1)j′′ = −1 mod (Xn + 1), hence
1−Xkj = 2 mod (Xn + 1). Therefore, we have

2(1−Xj)−1 = 1 +Xj +X2j + . . .+X(k−1)j mod (Xn + 1)

= 1±Xj mod n ±X2j mod n ± . . .±X(k−1)j mod n mod (Xn + 1) .

Finally, in this equation, no two exponents are equal, since otherwise this means that n divides jk′ with 1 ≤ k′ < k,
which is impossible by definition of k. ut

3.2 The Protocol
We next present our basic protocol. Let therefore be y = as + e, where the LWE-secrets s, e ←$ Dα are chosen
from a discrete Gaussian distribution with standard deviation α. Protocol 3.2 now allows a prover to convince a
verifier that it knows short s′ and e′ such that 2y = as′+ e′, i.e., the verifier is ensured that the prover knows short
secrets for twice the public input. Here, by short we mean the following: An honest prover will always be able
to convince the verifier whenever ‖s‖ , ‖e‖ ≤ Õ(

√
nα), which is the case with overwhelming probability if they

were generated honestly. On the other hand, the verifier is guaranteed that the prover knows LWE-secrets with
norm at most Õ(n2α). This soundness gap on the size of the witnesses is akin to those in, e.g., [16,1].

To be able to simulate aborts when proving the zero-knowledge property of the protocol, we must not send
the prover’s first message in the plain, but commit to it and later open it in the last round of the Σ-protocol. We
therefore make use of an auxiliary commitment scheme (aCSetup, aCommit, aCOpen), and assume that honestly
generated commitment parameters are given as common input to both parties. We do not make any assumptions on
the auxiliary commitment scheme. However, if it is computationally binding, the resulting protocol is only sound
under the respective assumption, and similarly if it is computationally hiding. For simplicity, the reader may just
think of the scheme as a random oracle.

Theorem 3.3. Protocol 3.2 is an HVZK Σ′-protocol for the following relations:

R = {((s, e), (a, y)) : y = as+ e ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)}

R′ = {((s, e), (a, y)) : 2y = as+ e ∧ ‖s‖ , ‖e‖ ≤ Õ(n2α)}

The protocol has a knowledge error of 1/(2n), a completeness error of 1−1/M2, and high-entropy commitments.
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Proof. We need to prove the properties of Definition 2.5.

Completeness. First note that by Theorem 2.4, the prover will respond with probability 1/M for each secret, i.e.,
with an overall probability of 1/M2. If the prover does not abort, we have that:

ass + se = a(rs +Xcs) + (re +Xce) = Xc(as+ e) + (ars + re) = Xcy + t .

For the norms we have that ‖ss‖ ≤ ‖rs‖ + ‖s‖ ≤ Õ(nα) with overwhelming probability, as the standard
deviations of rs is Õ(

√
nα), and similarly for se.

Honest-verifier zero-knowledge. Given a challenge c, the simulator outputs (aCommit(0), c,⊥) with probability
1/M2. With probability 1 − 1/M2, the simulator S proceeds as follows: It chooses ss, se ←$ DÕ(

√
nα), and

computes t = ass + se −Xcy, and (caux, daux)←$ aCommit(t). Finally, S outputs (caux, c, (t, daux, (ss, se))).

It follows from Theorem 2.4 that if no abort occurs the distribution of se, ss does not depend on s, e, and thus
simulated and real protocol transcripts are indistinguishable. In case that an abort occurs, the indistinguishability
follows from the hiding property of aCommit and the fact that aborts are equally likely for every c.

Special soundness. Assume that we are given (caux, c
′, (t′, d′aux, (s

′
s, s
′
e))) and (caux, c

′′, (t′′, d′′aux, (s
′′
s , s
′′
e))) pass-

ing the checks performed by the verifier. From the binding property of the auxiliary commitment scheme we get
that t′ = t′′ =: t. Now, by subtracting the verification equations we get: (Xc′−Xc′′)y = a(s′s−s′′s)+(s′e−s′′e) .
Multiplying by 2(Xc′ −Xc′′)−1 yields:

2y = a
2(s′s − s′′s)

Xc′ −Xc′′
+

2(s′e − s′′e)

Xc′ −Xc′′
=: aŝ+ ê .

Furthermore, we get that ‖ŝ‖ ≤ ‖s′e − s′′e‖
√
n
∥∥∥ 2
Xc′−Xc′′

∥∥∥ ≤ Õ(n2α), where in the second inequality we used
Lemma 3.1, and similarly for ê.

High-entropy commitments. This directly follows from the security of the auxiliary commitment scheme. ut

By Section 2.5, both the completeness and the knowledge error can be made negligible if n > M2.

4 Proving Equality among Classical and Lattice-Based Primitives

In the following we show how our basic protocol from Section 3 can be used to link number-theory and lattice-
based primitives via zero-knowledge proofs of knowledge. We exemplify this by showing how to prove that the
messages contained in Pedersen commitments correspond to the plaintext in an encryption under the secure version
of NTRU. We want to stress that in particular the choice of the encryption scheme is arbitrary, and it is easy to
exchange it against other schemes, including standard NTRU [22] or Ring-LWE encryption [28].

Let y = hs+ pe+m ∈ Rq be the NTRU encryption of a message m ∈ {0, 1}n, and let p > 2n2 be coprime
with q. Let further g̃, h̃ be a Pedersen commitment parameters, cf. Section 2.2, and let c̃mt i = mig̃ + rih̃ for
i = 0, . . . , n− 1 be commitments to coefficients of m, where the order of g̃ and h̃ is q̃ > 2n2.

Then Protocol 4.1 can be used to prove, in zero-knowledge, that the commitments and the ciphertext are
broadly well-formed and consistent, i.e., contain the same message. More precisely, the protocol guarantees the
verifier that the prover knows the plaintext encrypted in 2y, and that the coefficients of the respective message are
all smaller than p. Furthermore, it shows that the messages are the same that are contained in 2c̃mt i, i.e., 2y and
the 2c̃mt i are consistent.
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Prover Verifier

rs, re ←$ DÕ(
√
nα)

rm ←$ DÕ(
√
n)

rr,i ←$ Zq̃ for i = 0, . . . , n− 1
t = hrs + pre + rm
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , 2n− 1
(caux, daux) = aCommit(t, (t̃i)

n−1
i=0 )

caux -
c←$ C = {0, . . . , 2n− 1}c�

ss = rs +Xcs
se = re +Xce
sm = rm +Xcm
sr = rr + (r0, . . . , rn−1)�c

accept with probability
DÕ(

√
nα)(se)

MD
e,Õ(

√
nα)

(se)

DÕ(
√
nα)(ss)

MD
s,Õ(

√
nα)

(ss)

DÕ(
√
n)(sm)

MD
m,Õ(

√
n)

(sm)

(t, (t̃i)
n−1
i=0 ), daux, (ss, se, sm, sr)- Xcy + t

?
= hss + pse + sm

(c̃mt0, . . . , c̃mtn−1)�c + (t̃0, . . . , t̃n−1)
?
= smg̃ + srh̃

aCOpen((t, t̃0, . . . , t̃n−1), caux, daux)
?
= accept

‖ss‖, ‖se‖ ≤ Õ(nα)
‖sm‖ ≤ Õ(n)

Protocol 4.1: Proof that Pedersen commitments and NTRU encryption contain the same plaintext.

Theorem 4.2. Protocol 4.1 is an HVZK Σ′-protocol for the following relations:

R =

{
((m, s, e, (ri)

n−1
i=0 ), (g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y)) : y = hs+ pe+m ∧

n−1∧
i=0

c̃mt i = mig̃ + rih̃

∧ ‖m‖∞ ≤ 1 ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)

}
,

R′ =
{
((m, s, e, (ri)

n−1
i=0 ), (g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y)) : 2y = hs+ pe+m ∧

n−1∧
i=0

2c̃mt i = mig̃ + rih̃

∧ ‖m‖∞ ≤ 2n2 ∧ ‖s‖ , ‖e‖ ≤ Õ(n2α)
}

The protocol has a knowledge error of 1/(2n), and a completeness error of 1− 1/M3.
Furthermore, if for the auxiliary commitment scheme a commitment does not only bind the user to the message,

but also to the opening information, the protocol has quasi-unique responses and high-entropy commitments.

A detailed proof is given in Appendix C.2. By the remark in Section 2.5, both the completeness and the knowledge
error can be made negligible if n > M3.

5 Application to Group Signatures
We next show how Protocol 4.1 can be used to construct a group signature scheme whose signature size is only
logarithmic in the number of group members. As discussed in Section 1.3, our scheme will be private under
lattice assumptions, but only unforgeable under the discrete logarithm assumption, which is sufficient for many
applications such as e-voting, where long-term privacy is vital.

However, before presenting the actual signature scheme, we will prove secure a generic construction that is
folklore, and underlies several direct constructions in the literature [2,8] and a variant was described explicitly
by Chase and Lysyanskaya [11]. However, we provide the first formal proof that this construction actually yields
secure group signature schemes.

The resulting construction will satisfy the following definition of group signatures providing full (CCA)
anonymity, and is a variant of the definition put forth by Bellare et al. [4].
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Experiment Expanon−b
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1n)

(st , i∗0 , i
∗
1 ,m

∗)←$ AGOpen(gok ,·,·)((gpk ,gsk), ε)
σ∗ ←$ GSign(gsk[ib],m

∗)

b′ ←$ AGOpen(gok ,·,·)(σ∗, st)
If (m∗, σ∗) 6∈ QGOpen return b′ else return 0

Experiment Exptrace
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1n)

(m, σ)←$ AGSign(gsk[·],·),gsk[·](gpk , gok)
i ←$ GOpen(gok ,m, σ)
If GVerify(gpk ,m, σ) = 1 ∧ i 6∈ Qgsk

∧ (i ,m) 6∈ QGSign then return 1 else return 0

Fig. 1. The anonymity (left) and traceability (right) experiments for group signatures. The sets
QGOpen,QGSign,Qgsk contain all queries (m, σ), (i ,m), and i that A submitted to its GOpen, GSign, and gsk
oracles, respectively.

Definition 5.1. A group signature scheme is a tuple (GKG,GSign,GVerify,GOpen) where:

– On input 1λ, 1n , the key generation algorithm GKG outputs a group public key gpk , an opening key gok , and
a vector of n signing keys gsk where gsk[i ] is given to user i ∈ {1, . . . ,n}.

– On input gsk = gsk[i ] and message m ∈M, the signing algorithm GSign outputs a group signature σ.
– On input gpk ,m, σ, the verification algorithm GVerify outputs accept or reject.
– On input gok ,m, σ, the opening algorithm GOpen outputs the identity of the purported signer i ∈ {1, . . . ,n}

or ⊥ to indicate failure.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever keys and signatures are honestly generated, i.e., for all λ,n ∈ N,
all i ∈ {1, . . . ,n}, and all m ∈M

Pr[GVerify(gpk ,m, σ) = accept : (gpk , gok ,gsk)←$ GKG(1λ, 1n), σ ←$ GSign(gsk[i ],m)] = 1 .

– Anonymity: One cannot tell which signer generated a particular signature, even when given access to an
opening oracle. Referring to Figure 1, for all PPT A there exists a negligible function negl such that∣∣Pr[Expanon−0

A (λ) = 1]− Pr[Expanon−1
A (λ) = 1]

∣∣ ≤ negl(λ) .

– Traceability: One cannot generate a signature that cannot be opened or that opens to an honest user. Referring
to Figure 1, for all PPT A there exists a negligible function negl such that

Pr[Exptrace
A (λ)] ≤ negl(λ) .

5.1 Building Blocks
The construction is based on weakly unforgeable standard signatures, and signature proofs of knowledge. In the
following, we recap the respective definitions.

Informally, a signature scheme is a triple (SKG,SSign, SVerify), where SKG generates a signing/verification
key pair (ssk , spk), SSign can be used to sign a message m using the signing key, and SVerify can be used to check
the validity of a signature only using the public verification key. It should hold that honestly computed signatures
are always valid, and that no adversary can come up with a valid signature on a new message after having received
signatures on message that he chose before obtaining spk . A formal definition can be found in Appendix A.3.

We adapt definitions of Chase-Lysyanskaya to allow for signatures in the random-oracle model that are sim-
ulated by programming the random oracle and extracted through rewinding. We also add definition of simulation
soundness, meaning that adversary cannot produce new signatures for false statements even after seeing simulated
signatures on arbitrary statements.

Definition 5.2. A signature of knowledge scheme for a language L ⊆ {0, 1}∗ with witness relation RL is a tuple
(SoKSetup, SoKSign, SoKVerify, SoKSim) where:
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– On input 1λ, the setup algorithm SoKSetup outputs common parameters sokp.
– On input sokp, x, w such that (x,w) ∈ RL and message m ∈ M, the signing algorithm SoKSign outputs a

signature of knowledge sok .
– On input sokp, x,m, sok , the verification algorithm SoKVerify outputs accept or reject.
– The stateful simulation algorithm SoKSim can be called in three modes. When called as (sokp, st) ←$

SoKSim(setup, 1λ, ε), it produces simulated parameters sokp, possibly keeping a trapdoor in its internal
state st . When run as (h, st ′) ←$ SoKSim(ro, Q, st), it produces a response h for a random oracle query
Q. When run as (sok , st ′) ←$ SoKSim(sign, x,m, st), it produces a simulated signature of knowledge sok
without using a witness.
For ease of notation, let StpSim(1λ) be the algorithm that returns the first part of SoKSim(setup, 1λ, st),
let ROSim(Q) be the algorithm that returns the first part of SoKSim(ro, Q, st), let SSim(x,w,m) be the
algorithm that returns the first part of SoKSim(sign, x,m, st) if (x,w) ∈ RL and returns ⊥ otherwise,
and let SSim′(x,m) be the algorithm that returns the first part of SoKSim(sign, x,m, st) without checking
language membership. The experiment keeps a single synchronized state for SoKSim across all invocations of
these derived algorithms.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever parameters and signatures are correctly generated, i.e., for all
λ ∈ N, all (x,w) ∈ RL, and all m ∈M, there exists a negligible function negl such that

Pr

[
SoKVerify(sokp, x,m, sok) = reject :

sokp ←$ SoKSetup(1λ), sok ←$ SoKSign(sokp, x, w,m)

]
≤ negl(1λ) .

– Simulatability: No adversary can distinguish whether it is interacting with a real random oracle and signing
oracle, or with their simulated versions. Formally, for all PPT A there exists a negligible function negl such
that ∣∣∣Pr[b = 1 : sokp ←$ StpSim(1λ), b←$ AROSim(·),SSim(·,·,·)(sokp)]

−Pr[b = 1 : sokp ←$ SoKSetup(1λ), b←$ AH(·),SoKSign(sokp,·,·,·)(sokp)]
∣∣∣ ≤ negl(λ) .

– Extractability: The only way to produce a valid signature of knowledge is by knowing a witness. Formally, for
all PPT A there exists an extractor SoKExtA and a negligible function negl such that

Pr

SoKVerify(sokp, x,m, sok) = accept ∧ (x,w,m) 6∈ Q ∧ (x,w) 6∈ RL :

sokp ←$ StpSim(1λ; ρS), (x,m, sok)←$ AROSim(·),SSim(·,·,·)(sokp; ρA),
w ←$ SoKExtA(sokp, x,m, sok , ρS, ρA)

 ≤ negl(λ) ,

where Q is the set of queries (x,w,m) that A submitted to its SSim oracle.
– Simulation-soundness: No adversary can produce a new signature on a false statement, even after seeing a

signature on an arbitrary statement. Formally, for all PPT A there exists a negligible function negl such that

Pr

SoKVerify(sokp, x,m, sok) = accept ∧ (x′,m ′, sok ′) 6= (x,m, sok) ∧ x 6∈ L :

sokp ←$ StpSim(1λ), (x,m, st)←$ AROSim(·)(sokp), sok ←$ SSim′(x,m),

(x′,m ′, sok ′)←$ AROSim(·)(sok , st)

 ≤ negl(λ) .

5.2 Generic Construction
A folklore construction of group signatures is to have a user’s signing key be a standard signature on his identity
i , and to have a group signature on message m be an encryption of his identity together with a signature of
knowledge on m that the encrypted identity is equal to the identity in his signing key. The construction appeared
implicitly [2,8] or explicitly [11] in the literature, but was never proved secure.
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To obtain full anonymity, this generic construction would probably require CCA security from encryption
scheme, but our NTRU variant is only semantically secure. We could apply a generic CCA-yielding transfor-
mation using random oracles or non-interactive zero-knowledge proofs of knowledge (NIZK), but this would
make the signature of knowledge hopelessly inefficient. Instead, we take inspiration from the Naor-Yung con-
struction [29,32] by using a semantically secure scheme to encrypt the user’s identity twice under two different
public keys and letting the signature of knowledge prove that both ciphertexts encrypt the same plaintext. More-
over, our proof system for LWE encryption in Section 3 does not quite prove knowledge of (m, ρ) such that
C = Enc(epk ,m, ρ), but rather of (m ′, ρ′) such that 2C = Enc(epk ,m ′, ρ′). We therefore give a generic con-
struction that deviates slightly from the general idea, but that is sufficient and that we can efficiently instantiate
with our protocol from Section 3.

Let (EncKG,Enc,Dec) be an encryption scheme with message spaceM and a homomorphism (Φ,ϕ, ψ) such
that ϕ is an injective function and such that for all epk and for all m ∈ ID ⊆M

C = Enc(epk ,m; ρ) ⇒ Φ(C) = Enc(epk , ϕ(m);ψ(ρ)) .

Let (SKG, SSign,SVerify) be a standard signature scheme, and let (SoKSetup,SoKSign,SoKVerify,SoKSim) be
a signature of knowledge scheme for the language L with witness relationship

RL = {((spk , epk1, epk2, C1, C2), (i , sig , ρ1, ρ2)) :

SVerify(spk , i , sig) = accept ∧ Φ(C1) = Enc(epk1, ϕ(i); ρ1) ∧ Φ(C2) = Enc(epk2, ϕ(i); ρ2)} ,

consider the following group signature scheme with user identities i ∈ ID:

– GKG(1λ, 1n): The group manager generates signature keys (spk , ssk) ←$ SKG(1λ), encryption keys (epk1,
esk1) ←$ EncKG(1λ), (epk2, esk2) ←$ EncKG(1λ), and parameters sokp ←$ SoKSetup(1λ). He computes
gsk[i ]←$ SSign(ssk , i) for i ∈ ID and outputs gpk = (spk , epk1, epk2, sokp), gok = esk1, and gsk.

– GSign(gsk ,m): Signer i computes two ciphertexts C1 ← Enc(epk1, i ; ρ1) and C2 ← Enc(epk2, i ; ρ2), com-
putes a signature of knowledge sok ←$ SoKSign(sokp, (spk , epk1, epk2, C1, C2), (i , sig , ψ(ρ1), ψ(ρ2)),m)
and outputs σ = (C1, C2, sok).

– GVerify(gpk ,m, σ): To verify a group signature, one checks that SoKVerify(sokp, (spk , epk1, epk2, C1, C2),
m, sok) = accept.

– GOpen(gok ,m, σ): The opener decrypts d ← Dec(esk1, C1) and returns i ∈ ID such that ϕ(i) = d (by
inverting ϕ if possible, otherwise by exhaustive search).

Theorem 5.3. The group signature scheme sketched above is anonymous if the encryption scheme is semantically
secure and perfectly complete, and the signature of knowledge scheme is simulatable and simulation-sound.

Theorem 5.4. The group signature scheme is traceable if the underlying signature scheme is weakly unforgeable,
the encryption scheme is perfectly complete, and the signature of knowledge scheme is simulatable and extractable.

The proofs of the last two theorems are omitted here and are given in Appendices C.3 and C.4.

5.3 Signatures of Knowledge from Σ-Protocols
We now show a construction of the required signatures of knowledge in the random-oracle model from a signature
scheme and an encryption scheme withΣ-protocol proofs. More particularly, we require that the signature scheme
can prove knowledge of a signature on a committed message, while the encryption scheme can prove that an
encrypted plaintext is equal to a committed message.

Let (EncKG,Enc,Dec) be an encryption scheme with message spaceM, let (CSetup,Commit,COpen) be a
commitment scheme, and let (Φ,ϕ, ψ) and (Ψ, ϕ, χ) be homomorphisms as before such that for all cpars:

COpen(cpars, cmt , o) = accept ⇒ COpen(cpars, Ψ(cmt), χ(o)) = accept .
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Let (Ps,Vs,Ss) be a Σ-protocol for the language Ls with

RLs = {((spk , cpars, cmt), (sig ,m, o)) :

SVerify(spk ,m, sig) = accept ∧ COpen(cpars,m, cmt , o) = accept}

and let (Pe,Ve,Se) be a Σ-protocol for the language Le with

RLe = {((epk , C, cpars, cmt), (m, ρ, o)) :

Φ(C) = Enc(epk ,m; ρ) ∧ COpen(cpars,m, Ψ(cmt), o) = accept} .

Let Cs and Ce be the challenge spaces for these respective Σ-protocols, and let H : {0, 1}∗ → Cs × Ce. Consider
the following construction of a signature of knowledge scheme for the language L:

– SoKSetup(1λ): Return sokp = cpars ←$ CSetup(1λ).
– SoKSign(sokp, x, w,m): Create a commitment (cmt , o) ←$ Commit(i , cpars). Compute the first round of

one signatureΣ-protocol and two encryptionΣ-protocols: (ts, st s)←$ Ps((spk , cpars, cmt), (sig ,m, o)) and
(tj , st j)←$ Pe((epk j , Cj , cpars, cmt), (ϕ(i), ψ(ρj), χ(o))) for j = 1, 2. Generate the challenges (cs, ce)←
H(spk , cpars, cmt , epk1, C1, epk2, C2, ts, t1, t2,m). Generate the responses ss ← Ps(cs, st s) and sj ←
Pe(ce, ste) for j = 1, 2 and output the signature of knowledge sok = (ts, t1, t2, ss, s1, s2).

– SoKVerify(sokp, x,m, sok): Recompute the challenges (cs, ce) ← H(spk , cpars, cmt , epk1, C1, epk2, C2,
ts, t1, t2,m). Return accept if Vs((spk , cpars, cmt), ts, cs, ss) = accept and Ve((epk j , Cj , cpars, cmt),
tj , ce, sj) = accept for j = 1, 2. Otherwise, return reject.

– SoKSim: The simulation algorithm keeps in its state its random tape, an initially empty table HT to keep
track of previous random-oracle queries, and a counter ctr initialized to zero. The simulator’s random tape ρ
includes random-oracle responses h1, . . . , hqH+qS ←$ Cs×Ce, where qH and qS are upper bounds on the number
of random-oracle and signing queries that an adversary can make. When called as SoKSim(setup, 1λ, ε),
it generates commitment parameters cpars ←$ CSetup(1λ) and returns (cpars, st = (ρ,HT , ctr , cpars)).
When run as SoKSim(ro, Q, st), it checks whether the query Q was made before. If so, it returns hHT [q].
Otherwise, it increases the counter ctr , sets HT [Q]← ctr , and returns hctr . When run as SoKSim(sign, (spk ,
epk1, epk2, C1, C2),m, st), the simulator first creates a commitment (cmt , o) ←$ Commit(1, cpars). It then
increases the counter ctr and parses hctr as (cs, ce). It runs the simulators Ss, Se to obtain simulated protocol
transcripts (ts, ss) ←$ Ss((spk , cpars, cmt), cs) and (tj , sj) ←$ Ss((epk j , Cj , cpars, cmt), ce) for j = 1, 2.
If HT [spk , cpars, cmt , epk1, C1, epk2, C2, ts, t1, t2,m] is not defined, then set it to hctr , else abort.

Theorem 5.5. The above scheme is correct if the proof systems (Ps,Vs) and (Pe,Ve) are complete.

Theorem 5.6. The above scheme is simulatable in the random-oracle model if the commitment scheme is hiding
and the proof systems (Ps,Vs) and (Pe,Ve) are special HVZK and have high-entropy commitments.

Theorem 5.7. The above scheme is extractable in the random-oracle model if the commitment scheme is binding
and the proof systems (Ps,Vs) and (Pe,Ve) are special-sound and have super-polynomial challenge spaces.

Theorem 5.8. The above scheme is simulation-sound if the underlying commitment scheme is binding and the
underlying Σ-protocols (Ps,Vs,Ss) and (Pe,Ve,Se) are special-sound, have quasi-unique responses, and have
super-polynomial challenge spaces.

Due to length limitations, the proofs of the previous theorems can be found in Appendices C.5 to C.8.

5.4 Σ-Protocols for Boneh-Boyen Signatures and the Group Signature Scheme
In the following we briefly recap the weakly unforgeable version of the Boneh-Boyen signature scheme [6,7]. We
assume that the reader is familiar with bilinear pairings and the strong Diffie-Hellman (SDH) assumption, and
only recap them in Appendix A.4.

The Boneh-Boyen signature scheme is defined as follows for a bilinear group generator BGGen:
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Prover Verifier

d←$ Z×q̃
rd, rm,i, rr,i ←$ Zq̃
s̃ = s̃ig

d

t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , n− 1

t̃ = z̃rde(s̃, g̃2)
−

∑n−1
i=0 2irm,i s̃, t̃, (t̃i)

n−1
i=0 -

c←$ Zq̃c�
sd = rd + cd
sm,i = rm,i + cmi for i = 0, . . . , n− 1
sr,i = rr,i + cri for i = 0, . . . , n− 1

sd, (sm,i, sr,i)
n−1
i=0 - s̃ 6 ?= 1

t̃e(s̃, ṽ)c
?
= z̃sde(s̃, g̃2)

−
∑n−1
i=0 2ism,i

t̃i + cc̃mt i
?
= sm,ig̃ + sr,ih̃

Protocol 5.10: Proof of possession of a signature on m, which is also contained in a set of Pedersen commitments.

SKG. This algorithm first computes (q̃,G1,G2,GT , e)←$ BGGen(1λ). It chooses g̃1 ←$ G1, g̃2 ←$ G2, x←$ Z×q̃ ,
and defines ṽ = g̃x2 and z̃ = e(g̃1, g̃2). It outputs spk = ((q̃,G1,G2,GT , e), g̃1, g̃2, ṽ, z̃) and ssk = x.

SSign. To sign a message m ∈ Zq̃ with secret key ssk = x, this algorithm outputs the signature s̃ig = g̃
1

x+m

1 .
SVerify. Given a signature public key spk , a message m ∈ Zq̃ and a signature s̃ig , this algorithm outputs accept

if ṽg̃m2 = 1 in case s̃ig = 1, and if e(s̃ig , ṽg̃m2 ) = z̃ in case s̃ig 6= 1. In all other cases, it outputs reject.

Lemma 5.9. If the SDH assumption holds for BGGen, then the above scheme is a weakly unforgeable signature
scheme according to Definition A.3.

We next show how a user can prove possession of a Boneh-Boyen signature on a message m, while keeping
both, the message and the signature, private. In addition, the proof will additionally show that the m is also
contained in a set of Pedersen commitments c̃mt i = mig̃ + rih̃ such that m =

∑n−1
i=0 2imi, cf. Section 2.2.

The idea underlying Protocol 5.10 is similar to that in Camenisch et al. [9]: The prover first rerandomizes the
signature to obtain a value s, which it sends to the verifier. Subsequently, the prover and the verifier run a standard
Schnorr proof for the resulting statement.

Theorem 5.11. Protocol 5.10 is a perfectly HVZK proof of knowledge for the following relations:

R =

{
((s̃ig ,m, r, (mi, ri)

n−1
i=0 ), (spk , (c̃mt i)

n−1
i=0 )) : SVerify(spk ,m, s̃ig) = accept ∧

c̃mt i = mig̃ + rih̃ ∧ ṽg̃m2 6= 1 ∧ m =

n−1∑
i=0

2imi

}
andR′ is defined asR but without the condition that ṽg̃m2 6= 1.

The protocol is perfectly complete, and has a knowledge error of 1/q̃. Furthermore, the protocol has quasi
unique responses and high-entropy commitments.

The proof of this theorem is straightforward and can be found in Appendix C.9.

The Group Signature Scheme. Combining Protocols 4.1 and 5.10 now directly gives a group signature by the
construction from Section 5.3. The ID is given by {0, 1}` (which can be identified with {0, . . . , 2` − 1}), where
` = min(n, blog2 q̃c − 1), n is the dimension of the ring being used and q̃ is the order of the groups of the
commitment- and the signature schemes. All homomorphisms there can just be instantiated with a multiplication
by 2. Note here that for the given identity space and the way our constructions work, multiplying by 2 can be seen
as multiplication over the integers, as no modular reductions take place for all elements from ID. Note further
that NTRU can be made perfectly complete by truncating the discrete Gaussian distributions for key generation
and encryption appropriately without touching security.
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A Definitions
A.1 Commitment Schemes
In the following we formally define commitment schemes.

Definition A.1. A commitment scheme is a triple (CSetup,Commit,COpen) such that:

– On input 1λ, the key generation algorithm CSetup outputs commitment parameters cpars .
– The commitment algorithm Commit takes as inputs a message m from a message spaceM and commitment

parameters cpars , and outputs a commitment/opening pair (cmt , o).
– The opening algorithm COpen takes parameters cpars , a message m , a commitment cmt , and opening o, and

outputs accept or reject.

Furthermore, the algorithms satisfy the following properties:

– Correctness: COpen outputs accept whenever the inputs were computed by an honest party, i.e.,

Pr

[
COpen(cpars,m, cmt , o) = accept :

cpars ←$ CSetup(1λ),m ∈M,
(cmt , o)←$ Commit(cpars,m)

]
= 1

– Binding: A commitment cannot be opened to different messages. A scheme is said to be computationally
binding if no PPT adversary can come up with a commitment and two different openings, i.e., for every PPT
adversary A there exists a negligible function negl such that:

Pr

b = b′ = accept ∧m 6= m ′ :
cpars ←$ CSetup(1λ), (cmt ,m, o,m ′, o ′)←$ A(cpars),

b = COpen(cpars,m, cmt , o),
b′ = COpen(cpars,m ′, cmt , o′)

 ≤ negl(λ)

A scheme is said to be perfectly binding if this holds unconditionally, i.e., negl(λ) = 0.
– Hiding: A commitment computationally hides the committed message: for every probabilistic polynomial time

(PPT) adversary A there is a negligible function negl such that:

Pr

[
b = b′ :

cpars ←$ CSetup(1λ), (m0,m1, aux)←$ A1(cpars), b←$ {0, 1},
(cmt , o) = Commit(mb, cpars), b

′ ←$ A2(cmt , aux)

]
≤ 1

2
+ negl(λ) .

A scheme is said to be perfectly hiding if a commitment information-theoretically does not contain any infor-
mation about the contained message, i.e., negl(λ) = 0.

A.2 Semantically Secure Encryption
Definition A.2. A semantically secure public key encryption scheme is a triple (EncKG,Enc,Dec) satisfying the
following:

– On input 1λ, EncKG outputs a secret key/public key pair (esk, epk).
– The encryption algorithm Enc takes the public key epk and a message m from some message spaceM, and

outputs a ciphertext c.
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– The decryption algorithm Dec takes the secret key esk and a ciphertext c and returns a message m′ ∈ M ∪
{⊥}.

Furthermore, the algorithms have to satisfy the following properties:

– Correctness: Dec returns m if c is an honest encryption of m with overwhelming probability. That is, there
exists a negligible function negl such that:

Pr
[
m = m′ : (esk, epk)←$ EncKG(1λ),m ∈M, c←$ Enc(epk,m),m′ = Dec(esk, c)

]
≥ 1− negl(λ)

For every m ∈M we have that Dec(esk,Enc(epk,m)) = m whenever (esk, epk)←$ EncKG(1λ)
– Semantic security: A scheme is called semantically (or IND-CPA) secure, if for every PPT adversary A =
(A1,A2) there exists a negligible function negl such that:

Pr

[
b = b′ :

(esk, epk)←$ EncKG(1λ), b←$ {0, 1}, (m0,m1, aux)←$ A1(epk)
c = Enc(epk,mb), b

′ ←$ A2(aux, c)

]
≤ negl(λ) .

A.3 Weakly Unforgeable Signatures
Definition A.3. A standard signature scheme is a tuple (SKG, SSign,SVerify) where:

– On input 1λ, the key generation algorithm SKG outputs a public key spk and a signing key ssk .
– On input ssk and message m ∈M, the signing algorithm SSign outputs a signature sig .
– On input spk ,m, sig , the verification algorithm SVerify outputs accept or reject.

The algorithms satisfy the following properties:

– Correctness: SVerify outputs accept whenever the keys and signature are honestly generated, i.e., for all
λ ∈ N and all m ∈M

Pr[SVerify(spk ,m, sig) = accept : (spk , ssk)←$ SKG(1λ), sig ←$ SSign(ssk ,m)] = 1 .

– Weak unforgeability: The signature scheme is weakly unforgeable if for every PPT adversary A there is a
negligible function negl such that

Pr


SVerify(spk ,m, sig) = accept ∧ m 6∈ {m1, . . . ,ms} :

(m1, . . . ,ms)←$ A(1λ), (spk , ssk)←$ SKG(1λ),
For i = 1, . . . , s do sig i ←$ SSign(ssk ,mi),

(m, sig)←$ A(spk ,m1, . . . ,ms)

 ≤ negl(λ) .

A.4 Bilinear Pairings and the SDH Assumption
Let therefore q be prime, and G1,G2,GT be groups of order q. A mapping e : G1×G2 → GT is called a bilinear
pairing, if it satisfies the following:

1. Bilinearity: ∀u ∈ G1, ∀v ∈ G2, ∀a, b ∈ Z it holds that e(ua, vb) = e(u, v)ab,
2. Non-degeneracy: if g1 and g2 are generators of G1 and G2, respectively, then e(g1, g2) generates GT , and
3. Computability: all group operations and e can be efficiently computed.

The scheme presented by Boneh and Boyen is provable secure under the strong Diffie-Hellman assumption
recapitulated next.

Definition A.4. Let BGGen, the bilinear group generator, be a PPT algorithm that, on input 1λ, outputs a prime
q, groups G1,G2,GT of order q, and a bilinear map e : G1 × G2 → GT . We say that the strong Diffie-Hellman
(SDH) assumption holds for BGGen, if for every PPT adversary A and every polynomially bounded function k
there exists a negligible function negl such that the following holds:

Pr

[
(a1, a2) = (c, g

1
x+c

1 ) ∈ Z×G1 :
(q,G1,G2,GT , e)←$ BGGen(1λ), g1 ←$ G1, g2 ←$ G2,

x←$ Z×q , (a1, a2)←$ A(g1, g
x
1 , . . . , g

(xk(λ))
1 , g2, g

x
2 )

]
≤ negl(λ) .

17



B Generalized Forking Lemma
We make use of the forking lemma of Bellare and Neven [5], which is a generalized variant of the original forking
lemma due to Pointcheval and Stern [31].

Lemma B.1. Let q be an integer and let C be a set. Let A be a randomized algorithm that on input in, h1, . . . , hq
returns a pair (I, out), where 0 ≤ I ≤ q. Let IG be a randomized input generator algorithm. The accepting
probability of A is

acc = Pr
[
I ≥ 1 : in ←$ IG, h1, . . . , hq ←$ C, (I, out)←$ A(in, h1, . . . , hq)

]
.

The forking algorithm ForkA(in) associated to A first chooses random coins ρ for A and h1, . . . , hq ←$ C. It then
runs A(in, h1, . . . , hq; ρ) to an integer I and side output out . If I = 0 then it returns (0, ε, ε), otherwise it chooses
fresh random h′I , . . . , h

′
q ←$ C and runs A again on input (in, h1, . . . , hI−1, h′I , . . . , h

′
q) and on the same random

tape ρ) until it outputs (I ′, out ′). If I = I ′ and hI 6= h′I , then ForkA outputs (1, out , out ′), otherwise it returns
(0, ε, ε). Let

frk = Pr
[
b = 1 : in ←$ IG, (b, out , out ′)←$ ForkA(in)

]
.

Then

frk ≥ acc ·
(
acc

q
− 1

#C

)
.

Alternatively,
acc ≤ q

#C
+
√
q · frk .

C Proofs
C.1 Proof of Lemma 2.3
Proof. Because q = 3 mod 8, the polynomial Xn + 1 splits into two irreducible polynomials modulo q. Now
suppose that there are two possible plaintexts hs+ pe+m and hs′ + pe+m′ that correspond to the same NTRU
ciphertext c. Then h(s− s′)+ p(e− e′)+ (m−m′) = 0. Since Xn+1 splits into two irreducible polynomials of
degree n/2 modulo q, we have that for a fixed s−s′, e−e′,m−m′,Prh[h(s−s′)+p(e−e′)+(m−m′) = 0] ≤ 1

qn/2
.

The claim in the lemma is obtained by applying the union bound. ut

C.2 Proof of Theorem 4.2
Proof. We need to prove the properties of Definition 2.5.
Completeness. First note that by Theorem 2.4, the prover will respond with probability 1/M for each secret, i.e.,
with an overall probability of 1/M3. Assuming that the prover does not abort, we have that:

hss + pse + sm = h(rs +Xcs) + p(re +Xce) + (rm +Xcm)

= Xc(hs+ pe+m) + (hrs + pre + rm) = Xcy + t .

For the norms it is easy to see that ‖ss‖ ≤ ‖rs‖ + ‖s‖ ≤ ‖rs‖ +
√
nα ≤ nα with overwhelming probability

because the standard deviation of rs is much smaller than nα, and similar for se and sm.
What remains to show are the verification equations for the Pedersen commitments. First, note that as q, q̃

are much larger than the standard deviation of rs, rm, the computation of ss and sm is over the integers, i.e.,
with overwhelming probability there is no modular reduction. Furthermore, multiplying by Xc corresponds to
anti-cyclically shifting the coefficients in the respective polynomial.

smg̃ + srh̃ = ((rm,0, . . . , rm,n−1) + (m0, . . . ,mn−1)�c) g̃ + ((rr,0, . . . , rr,n−1) + (r0, . . . , rn−1)�c) h̃

= (rm,0, . . . , µm,n−1)g̃ + (rr,0, . . . , rr,n−1)h̃+ (m0, . . . ,mn−1)�cg̃ + (r0, . . . , rn−1)�ch̃

= (t̃0, . . . , t̃n−1) + c̃mt�c
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Finally, by the completeness of the auxiliary commitment scheme, aCOpen will always output accept for an
honest prover.
Honest-verifier zero-knowledge. The proof is a straightforward generalization of that for Theorem 3.3 and the
basic Schnorr protocol [33], and therefore omitted.
Soundness. Assume that we have two accepting transcripts for the same first message but different challenges, i.e.,
that we have (caux, c

′, ((t′, (t̃′i)
n−1
i=0 ), d

′
aux, (s

′
s, s
′
e, s
′
m, s

′
r)) and (caux, c

′′, ((t′′, (t̃′′i )
n−1
i=0 ), d

′′
aux, (s

′′
s , s
′′
e , s
′′
m, s

′′
r)) that

pass the checks performed by the verifier.
Then, by the binding property of the auxiliary commitment scheme, we have that t′ = t′′ =: t and (t̃′i)

n−1
i=0 =

(t̃′′i )
n−1
i=0 =: (t̃i)

n−1
i=0 .

Now, by subtracting the verification equations, we get that:

(c̃mt0, . . . , c̃mtn−1)�c′′ − (c̃mt0, . . . , c̃mtn−1)�c′ = (s′′m − s′m)g̃ + (s′′r − s′r)h̃ ,

(Xc′′ −Xc′)y = h(s′′s − s′s) + p(s′′e − s′e) + (s′′m − s′m) .

By the symmetry of anti-cyclic shifts and multiplication by powers of X , this is easily seen to be equivalent to:

(c̃mt0, . . . , c̃mtn−1)C = (s′′m − s′m)g̃ + (s′′r − s′r)h̃ , (1)
yC = h(s′′s − s′s) + p(s′′e − s′e) + (s′′m − s′m) , (2)

where the ith column of the matrix C contains the coefficients of (Xc′ − Xc′′) mod Xn + 1. Note that as
‖s′m‖ , ‖s′′m‖ are small, the coefficients of s′m − s′′m in Rq and Zq̃ are the same over the integers, as no modular
reduction takes place here.

By Lemma 3.1 we have that 2(Xc′ −Xc′′) is invertible in Z/(Xn + 1), and the inverse only has coefficients
in {1, 0, 1}. Let d be the inverse, and D denote the corresponding matrix. Since 2 is coprime with q and q̃, D can
also be seen as a matrix with entries in Rq and Zq̃. By multiplying (1) and (2) by D from the right, we get that
m̂ = 2(s′m − s′′m)d, r̂ = 2(s′r − s′′r)D, ê = 2(s′e − s′′e)d and ŝ = 2(s′s − s′′s)d satisfy the following:

hŝ+ pê+ m̂ = 2y

m̂ig + r̂ih = 2ti for 0 ≤ i < n,

and the norms of ê, m̂, ŝ satisfy ‖m̂‖∞ ≤ n(‖s′m‖∞ + ‖s′′m‖∞) ≤ 2n2, and similarly for ê and ŝ. Note again that
as q, q̃ > 2n2, m̂ is the same in Rq and Zq̃ over the integers.
Quasi-unique responses. Assume that a PPT adversary outputs (caux, c, (t

′, t̃′0, . . . , t̃
′
n−1), d

′
aux, (s

′
s, s
′
e, s
′
m, s

′
r))

and (caux, c, (t
′′, t̃′′0, . . . , t̃

′′
n−1), d

′′
aux, (s

′′
s , s
′′
e , s
′′
m, s

′′
r)) that pass the tests performed by the verifier. By the strong

binding requirements on the auxiliary commitment scheme, we get that t′ = t′′ =: t, t̃′i = t̃′′i =: t̃i for all i, and
d′aux = d′′aux. What remains to show is that ss, se, sm, sr are unique as well.

We have that 0 = (s′m − s′′m)g̃ + (s′r − s′′r)h̃. Not that for every i, s′m,i 6= s′′m,i if and only if s′ri 6= s′′ri . In

this case we get that logg̃ h̃ = −s′m−s′′m
s′r−s′′r

, which any PPT adversary can only compute with negligible probability
under the assumed DLOG assumption.

We further get that s′s = s′′s , s′m = s′′m and s′e = s′′e in Rq, as otherwise we had that h(s′s − s′′s) + p(s′e −
s′′e) + (s′m − s′′m) = 0. However, if an adversary could come up with such values, it would be able to distinguish
uniformly random h from NTRU public keys, as by Lemma 2.3 there does not exist a non-trivial solution to the
last equation with overwhelming probability for truly random h.
High-entropy commitments. This directly follows from the security of the auxiliary commitment scheme. ut

C.3 Proof of Theorem 5.3
Proof. We prove the theorem by describing a sequence of indistinguishable games, where the adversary’s view in
the final game is completely independent of the hidden bit b chosen by the experiment.

Game 0: This is the original game as described in Figure 1.
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Game 1: We now use the simulator SoKSim to generate the signature of knowledge sok∗ in the challenge sig-
nature σ∗ = (C∗1 , C

∗
2 , sok

∗). Meaning, we use StpSim to generate the parameters sokp, we use ROSim to
respond to A’s random-oracle queries, and we compute sok∗ as SSim((spk , epk1, epk2, C1, C2), (i ,gsk[i

∗
b ],

ρ1, ρ2),m
∗). It is easy to see that any adversary A distinguishing Game 0 from Game 1 can be used to break

the simulatability of the signature of knowledge scheme.
Game 2: Instead of computing sok∗ using SSim, we generate it as SSim′((spk , epk1, epk2, C1, C2),m

∗), i.e.,
without first checking language membership. Since we only call SSim′ on actual language elements anyway,
this change is purely conceptual, so this game is identical to the previous game from the point of view of the
adversary.

Game 3: In the computation of the target signature σ∗ = (C∗1 , C
∗
2 , sok

∗), we computeC∗2 as Enc(epk2, 1) instead
of Enc(epk2, i

∗
b ). Any adversary distinguishing this game from the previous one can be used to break the

semantic security of the encryption scheme. Note that we continue to simulate the opening oracle using esk1,
as in the real scheme, so we never need to decrypt any ciphertexts under epk2. Also note that now sok∗ is
actually a signature of knowledge on a false statement, because C∗1 and C∗2 encrypt different user identities.

Game 4: We now respond to A’s opening queries by decrypting C2 using esk2 instead of decrypting C1 using
esk1. This does not change the view of the adversary as long as all pairs (C1, C2) included in A’s open-
ing queries decrypt to the same plaintext. The simulation-soundness guarantees that, except with negligible
probability, all group signatures include actual language elements, meaning that there exist i , ρ1, ρ2 such that
Φ(C1) = Enc(epk1, ϕ(i); ρ2 and Φ(C2) = Enc(epk2, ϕ(i); ρ2). Due to the perfect completeness of the en-
cryption scheme, this means that both ciphertexts decrypt to the same plaintext d. Due to the injectivity of ϕ,
they therefore lead to the same i such that ϕ(i) = d.

Game 5: We now also replaceC∗1 with an encryption of 1 instead of b. Since we no longer decrypt anything under
esk1 during the simulation, this game is indistinguishable from the previous one by the semantic security of
the encryption scheme. Note that at this point, the simulation is completely independent of the bit b, so that A
has exactly the same probability to output 1 for either choice of b. ut

C.4 Proof of Theorem 5.4
Proof. We distinguish between the case that A wins because GOpen(gok ,m, σ) = ⊥, and the case that it does so
because GVerify(gpk ,m, σ) = 1 ∧ i 6∈ Qgsk ∧ (i ,m) 6∈ QGSign ∧ i 6= ⊥.

In the former case, simulatability and extractability together mean that, except with negligible probability,
there must exist i , sig , ρ1 such that SVerify(spk , i , sig) = accept and Φ(C1) = Enc(epk1, ϕ(i); ρ1). By the per-
fect completeness of the encryption scheme, such a ciphertext cannot fail to decrypt under esk1 to some plaintext
d. The only way for opening to fail is if there does not exist i ′ ∈ ID such that d = ϕ(i ′), which means that
i 6∈ ID, meaning that sig must be a forgery.

In the latter case, consider the following sequence of games.

Game 0: This is the real traceability game.
Game 1: We now simulate random-oracle responses and the signatures of knowledge included in issued group

signatures with SoKSim. This game is indistinguishable from Game 0 by the simulatability of the signature of
knowledge scheme.

Game 2: We now use the extractor SoKExt on the signature of knowledge in the forgery to obtain (sig , i) such
that SVerify(spk , i , sig) = accept. By the extractability property, the extractor succeeds in doing so with
non-negligible probability.

Game 3: We now simulate all signatures of knowledge in GSign responses using SSim′, i.e., without checking
the witness. This game is identical to the previous one since we call SSim only on valid language elements.
Note that the simulation no longer requires to compute standard signatures on the user identities i .

Given an adversary A with non-negligible probability of winning in Game 3, consider the following ad-
versary B against the weak unforgeability of the standard signature scheme. Algorithm B guesses an identity
i∗ ←$ {1, . . . ,n} and asks for signatures on all identities 1, . . . ,n except i∗. It runs A, using the challenge public
key spk as part of the group public key gpk , and simulating random-oracle responses and signatures of knowledge
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in group signatures with SoKSim. When A outputs its forgery, B extracts (sig , i). If i = i∗, B outputs (sig , i) as
its own forgery. ut

C.5 Proof of Theorem 5.5
Proof. The SoKVerify algorithm only rejects if Vs or one of the two executions of Ve reject. Given that they each
reject at most with negligible probability α, SoKVerify rejects with probability at most 3α. ut

C.6 Proof of Theorem 5.6
Proof. We prove the theorem through a sequence of indistinguishable games, where the first game is identical
to AH(·),SoKSign(·,·,·)(sokp) with real parameters sokp and the last is identical to AROSim(·),SSim(·,· ·)(sokp) with
simulated parameters.

Game 0: This is the original game AH(·),SoKSign(·,·,·)(sokp) with sokp ←$ SoKSetup(1λ).
Game 1: Generate sokp ←$ StpSim(1λ) and respond to A’s random-oracle queries, as well as the random-oracle

queries made by the SoKSign oracle, using ROSim(·). This game is identical to the previous game since both
generate parameters through CSetup(1λ) and both return truly random responses to random-oracle queries.

Game 2: If the random-oracle query caused by an invocation of the SoKSign oracle was made previously, either
by the adversary, or by another SoKSign query, then the simulation is aborted. This happens with negligible
probability due to the high-entropy commitments of the proof systems (Ps,Vs) and (Pe,Ve).

Game 3: Respond to all signature queries SoKSign(x,w,m) with SSim(x,w,m). We prove that Game 2 is in-
distinguishable from Game 1 through a hybrid argument on the signature queries of A. Let Game 2.j be the
game where A’s first j signature queries are responded to with SSim, while all later queries are responded to
with SoKSign. Clearly, we have that Game 2.0 is identical to Game 2 and Game 2.qS to Game 3. Suppose that
A can distinguish with non-negligible probability between Game 2.j and Game 2.(j + 1). Then consider the
following sequence of sub-games.

Game 2.j.0: Identical to Game 2.j
Game 2.j.1: When responding to the j + 1st SSim query, rather than computing ts, ss through Ps, use the

simulator Ss using the same challenge value cs. This game is indistinguishable from Game 2.j.0 by the
special honest-verifier zero-knowledge property of (Ps,Vs).

Game 2.j.2: Similarly, use Se instead of Pe to generate t1, s1, t2, s2. Indistinguishability follows from the
honest-verifier zero-knowledge property of (Ps,Vs).

Game 2.j.3: Finally, generate the commitment cmt as a commitment of 1 instead of of i . Indistinguishability
follows from the hiding property of the commitment scheme. ut

C.7 Proof of Theorem 5.7
Proof. Consider the algorithm B that runs the adversary A against a simulated random oracle and signing oracle.
More precisely, on input 1λ, h1, . . . , hq ←$ C, and random tape (ρS, ρA), algorithm B runs sokp ←$ StpSim(1λ; ρS)

and (x∗,m∗, sok∗) ←$ AROSim(·),SSim(·,·,·)(sokp; ρA), using the values h1, . . . , hq as random-oracle responses.
Let Q∗ = (spk , cpars, cmt , epk1, C1, epk2, C2, ts, t1, t2,m

∗) be the “crucial” random oracle query that is in-
volved in the computation and verification of sok∗. We can assume without loss of generality that A makes this
query before it stops executing, so let I = HT [Q∗] be the index of the returned random-oracle response. If
SoKVerify(sokp, x∗,m∗, sok∗) = accept and A did not make a signature query (x∗, w,m∗) for any w such that
(x∗, w) ∈ RL, then B outputs (I, (x∗,m∗, sok∗)), otherwise it outputs (0, ε).

Using the generalized forking lemma, recalled in Lemma B.1, for any algorithm B that outputs (I, out∗) with
probability acc, the forking algorithm ForkB returns two accepting outputs out∗, out ′∗ corresponding to random-
oracle responses hI 6= h′I with probability

frk ≥ acc ·
(
acc

q
− 1

#C

)
.
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Let SoKExtA(sokp, x,m, sok , ρS, ρA) be an algorithm that runs the forking algorithm as described above
to obtain two valid signatures of knowledge (x∗,m∗, sok∗), (x′∗,m ′∗, sok ′∗) for two different random-oracle
responses hI 6= h′I . Since both runs of A are identical up to the I-th random-oracle response, the arguments
Q∗ and Q∗ to A’s I-th random-oracle query are identical as well. Because these arguments contain the full de-
scriptions of the language elements x∗, x∗s , x

∗
1, x
∗
2, we know that these are the same for both runs, as well as

the message m∗ and the first rounds of the Σ-protocols t∗s , t
∗
1, t
∗
2. Because SoKVerify(sokp, x∗,m∗, sok∗) =

SoKVerify(sokp, x∗,m∗, sok ′∗) = accept, we therefore have two valid transcripts (t∗s , c
∗
s , s
∗
s ), (t

∗
s , c
′
s
∗, s′s

∗) for
Vs((spk

∗, cpars∗, cmt∗), ·) and two valid transcripts (t∗j , c
∗
e , s
∗
j ), (t

∗
j , c
′
e
∗, s′j

∗) for Ve((epk
∗
j , C

∗
j , cpars

∗, cmt∗), ·)
for each of j = 1, 2.

If now c∗s 6= c′s
∗ and c∗e 6= c′e

∗, then we can use the special soundness of the proof systems and extract
witnesses (sig , i , o) and (i ′, ρj , o

′) for j = 1, 2 using the knowledge extractors Es,Ee. By the binding property
of the commitment scheme, we have that ϕ(i) = i ′, because otherwise (ϕ(i), χ(o)) and (i ′, o′) would be valid
openings to different messages of the same commitment cmt∗. From the extracted witnesses, we can therefore
compose a valid witness (i , sig , ρ1, ρ2) for x∗ ∈ L.

However, the forking lemma only guarantees that hI = (c∗s , c
∗
e) 6= h′I = (c′s

∗, c′e
∗), which does not necessarily

imply that c∗s 6= c′s
∗ and c∗e 6= c′e

∗. Since all random-oracle responses are chosen at random, the probability that
any of the components is equal is

Pr
[
c∗s = c′s

∗ ∨ c∗e = c′e
∗] ≤ Pr

[
c∗s = c′s

∗]+ Pr
[
c∗e = c′e

∗] = 1

#Cs
+

1

#Ce
.

The probability that SoKExtA succeeds is therefore at least

frk − 1

#Cs
− 1

#Ce
≥ acc ·

(
acc

q
− 1

#C

)
− 1

#Cs
− 1

#Ce

≥ acc2

q
− 3

min(#Cs,#Ce)
.

If acc is non-negligible, then the first term is non-negligible. If the challenge spaces Cs, Ce are super-polynomial,
then the second term is negligible, so that overall SoKExtA succeeds with non-negligible probability. ut

C.8 Proof of Theorem 5.8
Proof. Suppose there exists an adversary A that breaks the simulation-soundness with non-negligible probabil-
ity. Without loss of generality, we assume that A makes both random-oracle queries Q,Q′ involved in the ver-
ification SoKVerify(sokp, x,m, sok) and SoKVerify(sokp, x′,m ′, sok ′). Let sok = (ts, t1, t2, ss, s1, s2) and
sok ′ = (t′s, t

′
1, t
′
2, s
′
s, s
′
1, s
′
2).

If Q = Q′, then we have that (x,m, ts, t1, t2) = (x,m, ts, t1, t2), since all of these items are part of the
random-oracle query. Since sok = sok ′, it must hold that (ss, s1, s2) 6= (s′s, s

′
1, s
′
2). We therefore have for at least

one of the three Σ-protocols two accepting transcripts with the same commitment and challenge but different
responses, which violates the quasi-unique responses of the proof systems.

If Q 6= Q′, then by a similar reasoning as in the proof of Theorem 5.7, the forking lemma (Lemma B.1)
allows us to extract with non-negligible probability two valid signatures sok ′, sok ′′ for the same statement x′ but
for different random-oracle responses, if the commitment scheme is binding and the proof systems have super-
polynomial challenge spaces. From these, a witness for x′ can be extracted, which contradicts that x′ 6∈ L. ut

C.9 Proof of Theorem 5.11
Proof. We need to prove completeness, honest-verifier zero-knowledge and soundness. As the proof is standard,
we only sketch it here.
Completeness. This is trivial to verify.
Honest-verifier zero-knowledge. Given a challenge c, the simulator S draws s̃′ ←$ G1 and s′d, s

′
m,i, s

′
r,i ←$ Zq̃.

It computes t̃′ = e(s̃′, ṽ)−cz̃s
′
de(s̃′, g̃2)

−
∑n−1
i=0 2is′m,i and t̃′i = −cc̃mt i + s′m,ig̃ + s′r,ih̃. The simulator outputs
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((s̃′, t̃′, (t̃′i)
n−1
i=0 ), c, (s

′
d, (s

′
m,i, s

′
r,i)

n−1
i=0 )). By standard arguments one can see that the output distribution is iden-

tical to that of real protocol runs for challenge c.
Soundness. Using standard arguments one can show that, given two accepting protocol transcripts with the same
first message but different challenges, one can efficiently extract a tuple (d′, (m′i)

n−1
i=0 , (r

′
i)
n−1
i=0 ) such that e(s̃, ṽ) =

z̃d
′
e(s̃, g̃2)

−
∑n−1
i=0 2im′i and c̃mt i = m′ig̃ + r′ih̃ for i = 0, . . . , n − 1. Let now m′ =

∑n−1
i=0 2im′i. If d′ 6= 0,

setting s̃ig
′
= s̃1/d

′
yields e(s̃ig

′d′
, ṽ) = z̃d

′
e(s̃ig

′d′
, g̃2)

−m′ . This is equivalent to e(s̃ig
′
, ṽ) = z̃e(s̃ig , g̃2)

−m′

or e(s̃ig
′
, ṽg̃m

′
2 ) = z̃, and thus s̃ig

′
is a valid signature for m′. If d′ = 0, we get that e(s̃, ṽ) = e(s̃, g̃2)

−m′ or
e(s̃, ṽg̃m

′
2 ) = 1, and therefore ṽg̃m

′
2 = 1 because s̃ 6= 1. In this case setting s̃ig

′
= 1 gives a valid signature for m′.

Quasi-unique responses. Assume that for some t̃, (t̃i)n−1i=0 , c, a PPT adversary A outputs (sd, (sm,i, sr,i)n−1i=0 ), (s
′
d,

(s′m,i, s
′
r,i)

n−1
i=0 ) that pass the verification checks. Define sm =

∑n−1
i=0 sm,i, and similarly for s′m. By dividing the

verification equations we get that:

1 = z̃sd−s
′
de(s̃, g̃2)

s′m−sm and 1 = (sm,i − s′m,i)g̃ + (sr,i − s′r,i)h̃ .

It follows that sm,i = s′m,i and sr,i = s′r,i for all i with overwhelming probability, as otherwise A could compute

logg̃ h̃ = −sm,i−s′m,i
sr,i−s′r,i

. Therefore, also sm = s′m, and thus sd = s′d because z̃ is a generator.
High-entropy commitments. This follows immediately from the fact that each element sent in the first message is
independently and uniformly random in its domain. ut
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