

Early Isotropization of the Quark Gluon Plasma

Santiago de Compostela, 29th October 2013

Thomas EPELBAUM

IPhT

OUTLINE

MOTIVATION

- **2** THEORETICAL FRAMEWORK
- **3** A PROOF OF CONCEPT: SCALAR FIELD THEORY
- **4** YANG-MILLS THEORY
- **6** CONCLUSION

[LUZUM, ROMATSCHKE (2008)]

THOMAS EPELBAUM

Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

- 1) Equation of state $f(P_L, P_T) = \epsilon$
- 2) Small anisotropy
- 3) Initialization: $\epsilon(\tau_0), P_L(\tau_0)? \dots$
- 4) viscous coefficients: shear viscosity η, \dots
- 5) Short isotropization time

Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

1) Equation of state $f(P_{1}^{2}, \overline{P}_{1}^{2}) = \epsilon$ 2) Small anisotropic

3) Initialization. $\epsilon(\tau_0), P_L(\tau_0)? \dots$ 4) viscous coefficients: shear viscosity η,\dots

4) viscou coefficients: shear viscosity $\eta,...$ 5) SAAt isofopization time

Early transition: the problem

Isotropization? Time scale?

Huge anisotropy (negative *P*_L) Small anisotropy

Long time puzzle: Does (fast) isotropization occur?

THOMAS	EDEL DATIM
THOMAS	LILLDAOM

THEORETICAL FRAMEWORK How to deal with a Heavy Ion Collision The Color Glass Condensate The Classical statistical approximation

How to study the transition? Strongly coupled method: AdS/QCD?

How to study the transition? Weakly coupled method: QCD

How to study the transition? Weakly coupled QCD with only gluons

HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime: $\alpha_s \ll 1 \text{ but } f_{\text{gluon}} \sim \frac{1}{\alpha_s}$

Gluon saturation when emission = recombination \Rightarrow Saturation scale Q_s

THEORETICAL FRAMEWORK How to deal with a Heavy Ion Collision The Color Glass Condensate The Classical statistical approximation

THE MAIN ASSUMPTIONS

- Fast gluons are "frozen" by time dilation.
- Described as static color sources J located on the light cone axis
- Small $x \to \text{Gluon saturation} \to J \sim Q_s^3 \alpha_s^{-1/2}$.
- Slow gluons are the standard gauge field $\mathcal{A}^{\mu} \sim Q_s \alpha_s^{-1/2}$.
- System boost-invariant $\rightarrow \mathcal{A}^{\mu}$ rapidity independant.

Langrangian of theory reads

$$\mathcal{L} = -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} + J_{\mu} \mathcal{A}^{\mu}$$

Theoretical framework (Weakly coupled but strongly interacting)

$$\boldsymbol{\epsilon} = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{B}_{\perp}^2 + \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{B}_{L}^2$$
$$\boldsymbol{P}_T = \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{B}_{L}^2$$
$$\boldsymbol{P}_L = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{B}_{\perp}^2 - \boldsymbol{\varepsilon}_{L}^2 - \boldsymbol{B}_{L}^2$$

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

[LAPPI, MCLERRAN (2006)]

$$\boldsymbol{\epsilon} = \underbrace{\boldsymbol{\mathcal{E}}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathcal{B}}_{\perp}^{2}}_{0} + \boldsymbol{\mathcal{E}}_{L}^{2} + \boldsymbol{\mathcal{B}}_{L}^{2}$$
$$\boldsymbol{P}_{T} = \boldsymbol{\mathcal{E}}_{L}^{2} + \boldsymbol{\mathcal{B}}_{L}^{2}$$
$$\boldsymbol{P}_{L} = \underbrace{\boldsymbol{\mathcal{E}}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathcal{B}}_{\perp}^{2}}_{0} - \boldsymbol{\mathcal{E}}_{L}^{2} - \boldsymbol{\mathcal{B}}_{L}^{2}$$

Initial $T^{\mu\nu}$ is $(\epsilon, \epsilon, \epsilon, -\epsilon)!$

Strong anisotropy at early time

[GELIS, FUKUSHIMA (2012)]

Strong anisotropy at early time

[GELIS, FUKUSHIMA (2012)]

THE COLOR GLASS CONDENSATE AT NLO

 $e_{\vec{k}}(x)$ perturbation to $\mathcal{E}(x)$ created by a plane wave of momentum \vec{k} in the remote past.

THE COLOR GLASS CONDENSATE AT NLO

[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)

THOMAS EPELBAUM

THE COLOR GLASS CONDENSATE AT NLO

- Because of instabilities, the NLO correction eventually becomes as large as the LO ⇒ Important effect, should be included
- NLO alone will grow forever \Rightarrow unphysical effect, should be taken care of

Such growing contributions are present at all orders of the perturbative expansion

How to deal with them?

2 THEORETICAL FRAMEWORK

How to deal with a Heavy Ion Collision The Color Glass Condensate The Classical statistical approximation

THE CLASSICAL-STATISTICAL METHOD

• At the initial time $\tau = \tau_0$, take:

$$\vec{E}_0(\tau_0, \vec{x}) = \vec{\mathcal{E}}_0(\tau_0, \vec{x}) + \int_{\vec{k}} c_{\vec{k}} \vec{e}_{\vec{k}}(\tau_0, \vec{x})$$

where $c_{\vec{k}}$ are random coefficients: $\langle c_{\vec{k}} c_{\vec{k}'} \rangle \sim \delta_{\vec{k}\vec{k}'}$

- Solve the **Classical** equation of motion $D_{\mu}F^{\mu\nu} = J^{\nu}$
- Compute $\left\langle \vec{E}^2(\tau, \vec{x}) \right\rangle$, where $\langle \rangle$ is the average on the $c_{\vec{k}}$ (Monte-Carlo)
- One can show that this resums all the fastest growing terms at each order, leading to a result that remain bounded when $\tau \to \infty$ [GeLIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders

A PROOF OF CONCEPT: SCALAR FIELD THEORY The Theory Numerical results

SCALAR FIELD THEORY

Adapted coordinate system to describe a Heavy Ion Collision?

System boost invariant in z direction

SCALAR FIELD THEORY

Proper time/rapidity coordinate system

SCALAR FIELD THEORY

The model

Initial conditions: classical statistical method

$$\phi(\tau_0, \mathbf{x}_{\perp}, \eta) = \boldsymbol{\varphi}_0(\tau_0, \mathbf{x}_{\perp}) + \sum_{\mathbf{k}_{\perp}, \mathbf{v}} c_{\mathbf{v}\mathbf{k}_{\perp}} e^{i\mathbf{v}\eta} \, \mathbf{a}_{\mathbf{v}, \mathbf{k}_{\perp}}(\tau_0, \mathbf{x}_{\perp})$$

Time evolution: Klein Gordon equation

$$\underbrace{\left[\frac{\partial^2}{\partial\tau^2} + \frac{1}{\tau}\frac{\partial}{\partial\tau} - \boldsymbol{\nabla}_{\perp}^2 - \frac{1}{\tau^2}\frac{\partial^2}{\partial\eta^2}\right]}_{\Box}\boldsymbol{\varphi} + \frac{g^2}{6}\boldsymbol{\varphi}^3 = 0$$

Initial anisotropy

Interactions isotropize the system

Expansion dilutes the system

Expansion \leq Interactions for realistic α_s ?

A PROOF OF CONCEPT: SCALAR FIELD THEORY The Theory Numerical results

$T_{\text{RESUM}}^{\mu\nu}$ [Dusling, TE, Gelis, Venugopalan (2012]

$T_{\text{RESUM}}^{\mu\nu}$ [Dusling, TE, Gelis, Venugopalan (2012]

€ BEHAVIOUR

THOMAS EPELBAUM

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: $\epsilon = 2P_L + P_T$

IDEAL HYDRO	
Isotropic system	
$T_{\text{ideal}}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(g^{\mu\nu} - u^{\mu} u^{\nu})$	

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: $\epsilon = 2P_L + P_T$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_{\tau}\epsilon + \frac{\epsilon + P_L}{\tau} = 0 \rightarrow \partial_{\tau}\epsilon + \frac{4}{3}\frac{\epsilon}{\tau} = \frac{4}{3}\frac{\eta}{\tau^2}$$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_{\tau}\epsilon + rac{\epsilon + P_L}{\tau} = 0 \ o \partial_{\tau}\epsilon + rac{4}{3}rac{\epsilon}{\tau} = rac{4}{3}rac{\eta}{\tau^2}$$

assuming $\eta=\frac{\eta_0}{\tau}$ and STEFAN-BOLTZMANN entropy $s\approx\varepsilon^{\frac{3}{4}}$

$$\vartheta_{\tau} \epsilon + \frac{4}{3} \frac{\epsilon}{\tau} = \frac{4}{3} \underbrace{\frac{\eta}{s}}_{\text{cte}} \frac{\epsilon^{\frac{3}{4}}}{\tau^2}$$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_{\tau} \epsilon + rac{\epsilon + P_L}{\tau} = 0 \ o \partial_{\tau} \epsilon + rac{4}{3} rac{\epsilon}{\tau} = rac{4}{3} rac{\eta}{\tau^2}$$

assuming $\eta = \frac{\eta_0}{\tau}$ and STEFAN-BOLTZMANN entropy $s \approx \varepsilon^{\frac{3}{4}}$

$$\vartheta_{\tau} \epsilon + \frac{4}{3} \frac{\epsilon}{\tau} = \frac{4}{3} \underbrace{\frac{\eta}{s}}_{\text{cte}} \frac{\epsilon^{\frac{3}{4}}}{\tau^2}$$

At a given time, knowing ϵ , P_T , P_L and assuming

- an EOS
- STEFAN-BOLTZMANN entropy
- $\eta = \frac{\eta_0}{\tau}$
- $\frac{\eta}{s} = cte$

gives a very simple hydro model.

COMPARISON WITH HYDRO: VISCOSITY

COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]

YANG-MILLS THEORY The theory Numerical results

THE NLO SPECTRUM

- Need to know $\vec{e}_{\vec{k}}(\tau_0, \vec{x})$ at the time τ_0 we start the numerical simulation
- For practical reasons, we must start in the forward light cone $(\tau_0 > 0)$

This can be done analytically [TE,GELIS 1307:1765]

THE NLO SPECTRUM

Result of [TE,GELIS 1307:1765]

$$e_{\nu \vec{k}_{\perp}}^{i} = i\nu \left(F^{i,-} - F^{i,+} \right) \qquad e_{\nu \vec{k}_{\perp}}^{\eta}(x) = \mathcal{D}^{i} \left(F^{i,-} - F^{i,+} \right)$$
with
$$F_{k}^{i,+}(x) \sim e^{i\nu\eta} \mathcal{U}_{1}^{\dagger}(\vec{x}_{\perp}) \int_{\vec{p}_{\perp}} e^{i\vec{p}_{\perp} \cdot \vec{x}_{\perp}} \widetilde{\mathcal{U}}_{1}(\vec{p}_{\perp} + \vec{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2k_{\perp}} \right)^{i\nu} \left[\delta^{ij} - \frac{2p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}} \right] \epsilon_{k\lambda}^{j}$$

- \mathfrak{U}_1^{\dagger} depends on the color source J^+ of the first nucleus
- Analogous formula for $F^{i,-}$.

YANG-MILLS THEORY The theory Numerical results

YM ON A LATTICE

Gauge potential $A^{\mu} \rightarrow$ link variables (exact gauge invariance on the lattice)

Numerical parameters

- Transverse lattice size L = 64, transverse lattice spacing $Q_s a_T = 1$
- Longitudinal lattice size N = 128, longitudinal lattice spacing $a_L = 0.016$
- Number of configurations for the Monte-Carlo $N_{\text{conf}} = 200$ to 2000
- Initial time $Q_s \tau_0 = 0.01$

EOM ON A LATTICE

Writing

 $\partial_{\tau} \stackrel{X_{l}}{\longleftrightarrow} = -iga_{I} \stackrel{X_{l}}{\longleftrightarrow}$

NUMERICAL RESULTS [TE,GELIS 1307:2214]

THOMAS EPELBAUM

Early Isotropization of the Quark Gluon Plasma 24 / 28

THOMAS EPELBAUM

3 last diagrams can be substracted with a simulation where

$$A^{a}_{\mu}(x) = 0 + a^{a}_{\mu}(x)$$

 E^{2}_{L} "fine" (B^{2}_{L} too)

3 last diagrams can be substracted with a simulation where

$$A^a_{\mu}(x) = \mathbf{0} + a^a_{\mu}(x)$$

How to deal with the first 2? \rightarrow ad-hoc fit for the time being.

Otherwise E_L^2 and B_L^2 behaves as τ^{-2} at early time.

Ad-hoc term only one to satisfy Bjorken law and EOS:

$$\partial_{\tau}\tau^{-\alpha} + 2\tau^{-\alpha-1} = 0$$

How come that problematic divergent diagrams behaves as mass terms?

In the continuum limit, they don't exist local gauge invariant operators of dimension two.

On the lattice though, they coud be terms like

$$g^2 \frac{v_{\max}^2}{k_{\perp,\max}^2 \tau^2} \mathrm{Tr} F^2,$$

where

$$F_{\mu\nu}(x) \sim \prod_{x \to \hat{\mu}} \hat{v} - \hat{v} \prod_{x \to \hat{\mu}} \hat{v}$$

NUMERICAL RESULTS [TE,GELIS 1307:2214]

THOMAS EPELBAUM

NUMERICAL RESULTS [TE,GELIS 1307:2214]

THOMAS EPELBAUM

NUMERICAL RESULTS [TE,GELIS 1307:2214]

THOMAS EPELBAUM

NUMERICAL RESULTS [TE,GELIS 1307:2214]

ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

If the system is closed from being thermal

$$e^{-\frac{3}{4}} \sim s \Longrightarrow \frac{\eta}{s}$$
 Not far from $\frac{1}{4\pi}$

CONCLUSION

- Correct NLO spectrum from first principles
- Fixed anisotropy for g = 0.5 at $\tau \sim 1 fm/c$
- No need for strong coupling to get isotropization
- Compatible with viscous hydrodynamical expansion
- Assuming simple first order viscous hydrodynamics

 $\eta\varepsilon^{-\frac{3}{4}}\lesssim 1$

CONCLUSION

Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

- 1) Equation of state $f(P_L, P_T) = \epsilon$
- 2) Small anisotropy
- 3) Initialization: $\epsilon(\tau_0), P_L(\tau_0)? \dots$
- 4) viscous coefficients: shear viscosity η, \dots
- 5) Short isotropization time