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HEAVY ION COLLISIONS: THE GENERAL PICTURE
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HEAVY ION COLLISIONS: THE GENERAL PICTURE
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

[) Macroscopic theory
II) Few parameters: Pp, Pr, €, i
[1I) Need input:

1) Equation of state f(Pp, Pr) =€
2) Small anisotropy

3) Initialization: e(7), Pr(10)7 ...
4) viscous coefficients: shear viscosity 7,...
5) Short isotropization time
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

[) Macroscopic theory

II) Few parameters: Pp, Pr, €, u
[1I) Need input:
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem

. Glasma - Isotropization? QGP
v cae Time scale? Hydrodynamics
Huge anisotropy Small anisotropy

(negative P;)

Long time puzzle: Does (fast) isotropization occur?
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® THEORETICAL FRAMEWORK
How to deal with a Heavy lon Collision
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HoOw TO STUDY THE TRANSITION?
Strongly coupled method: AdS/QCD?

Supersymmetric
SU(N) gauge theory

String theory

Black hole
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HOW TO STUDY THE TRANSITION?
Weakly coupled method: QCD
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THOMAS EPELBAUM

HOW TO STUDY THE TRANSITION?
Weakly coupled QCD with only gluons

H1 and ZEU:

S

—— HERAPDFLO

I e uncert.

[ model uncert.

Q=10 GeV?

[ parametrization uncert.

.
10°

.
107

Early Isotropization of the Quark Gluon Plasma

.
10"

2/28



HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

Gluon saturation when emission = recombination
= Saturation scale O,
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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® THEORETICAL FRAMEWORK

The Color Glass Condensate

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma



THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

THE MAIN ASSUMPTIONS

Fast gluons are "frozen" by time dilation.

Described as static color sources J located on the light cone axis

Small x — Gluon saturation — J ~ Q? o /2

Slow gluons are the standard gauge field A" ~ 0, o; /2.

System boost-invariant — A" rapidity independant.

Langrangian of theory reads

1 / 1
L= =TT Tl
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

xr Ll‘+
CGC
. 1 /22 =2 R N
LO: e:§(8 +B> DI = J
~— ~—
Classical Color sources
color fields on the light cone

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

e=8 +B1 +& +B7
Pr=¢&7 +B7
P =8 +B% —& —B7
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

4

(’we

[LAPPI, MCLERRAN (2006)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

e= & + Bi +&7 +B7
~— =~
0 0

Pr=2¢& +B;

PL= & + B & —3B7
~— =~

0 0

Initial 7" is (e, €, €,—€)!
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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[GELIS, FUKUSHIMA (2012)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time

€ =2Pr+P; = Pr=c¢

RRanL LT,

dre+ < =0

lim e=cst —PL=-¢
T—0+
—
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[GELIS, FUKUSHIMA (2012)]
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THE COLOR GLASS CONDENSATE AT NLO

E*(x) = Sz(x)+—J |lex(0)|"+- -

LO NLO

ex(x) perturbation to €(x) created by a plane wave
of momentum & in the remote past.
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THE COLOR GLASS CONDENSATE AT NLO
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[ROMATSCHKE, VENUGOPALAN (2006)]
Small Fluctuations grow exponentially (Weibel instability)
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THE COLOR GLASS CONDENSATE AT NLO

e Because of instabilities, the NLO correction eventually becomes as large
as the LO = Important effect, should be included

¢ NLO alone will grow forever = unphysical effect, should be taken care of

o il . \
) llMM
i

20 o 20 40 60 80 20 0 20 40 60 80
time time

Plo — 810 — Phio 8o ——

e Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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® THEORETICAL FRAMEWORK

The Classical statistical approximation
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THE CLASSICAL-STATISTICAL METHOD

At the initial time T = 1, take:

Eo(T0,%) = Eo(0, %) +J

k

C,?Z];(To, f)

where c; are random coefficients: (cycp, ) ~ 5z,

Solve the Classical equation of motion D, F*Y = J

Compute <E2(T, 5c’)>, where () is the average on the ¢; (Monte-Carlo)

One can show that this resums all the fastest growing terms at each
order, leading to a result that remain bounded when T — o
[GELIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution

/ NLO: |

/' Parabolic_i\\
| approximation
,'/ around LO ‘\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

!/ NLO:

/' Parabolic_i\
! approximation ' |
,'/ around LO ‘\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential

9=05 —— g=1 —— g=2 9=4 =8 —— &3 ——
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©® A PROOF OF CONCEPT: SCALAR FIELD THEORY
The Theory
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SCALAR FIELD THEORY

Adapted coordinate system to describe a Heavy lon Collision?

4

X1

System boost invariant in z direction

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 13/28



SCALAR FIELD THEORY

Proper time/rapidity coordinate system

n=cst T =cst

x~ l l xt

<~— T0
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SCALAR FIELD THEORY

The model

Initial conditions: classical statistical method

b0, x1,m) = @o(T0,¥L) + Y cvi, €M avu, (To,x1)
ky,v

Time evolution: Klein Gordon equation
2 10 , 192

2 Txor Vi 2o

O

2
]¢+%¢3=0
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Initial anisotropy
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Interactions isotropize the system

4 N\
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion dilutes the system

4 N\

Pr
LDL
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion < Interactions for realistic o,?
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©® A PROOF OF CONCEPT: SCALAR FIELD THEORY

Numerical results
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nv
TRESUM

[DUSLING, TE, GELIS, VENUGOPALAN (2012]
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Th¢om [DUSLING, TE, GELIS, VENUGOPALAN (2012]
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€ BEHAVIOUR

10"
1»4/3
,.c—]
2P+ Py
e ——
10°
-1 \
10
10°
10 100
T

Bjorken Law: d-e + <2 =0
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HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: e =2P, + Pr
IDEAL HYDRO
Isotropic system

Thiom = €utu” — P(g"¥ —utu")
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HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: e =2P, + Pr
IDEAL HYDRO
Isotropic system

Thiom = €utu” — P(g"¥ —utu")

Viscous HYDRO
Anisotropic system

T = ThY +nm

ideal

In our case

2
+4 P =

€
Pr =~
T=3 "3

W[ m
o8}
A
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FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from 0, 7" = 0):

e+ Pr 4e 4n
=0 0 —— ===
— Te—i-3T I

0.€ +
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FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from 0, 7" = 0):

P 4 4
aTe+€+ L—op —>E)Te—|——E:—l
3t 37

assuming n = * and STEFAN-BOLTZMANN entropy s ~ ei

4e 4 7 el

0 ——== - —

€t3rT3 5 %
~—

te

Q

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 17728



FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN’s Law (coming from 0, 7" = 0):

P 4
€t L—0 %aTe—i——E:f—

aT€+ 31 32

assuming n = * and STEFAN-BOLTZMANN entropy s ~ ei

4e 4 7 el

0 ——== - —

SRR i B
v

cte

At a given time, knowing e, Pr, P, and assuming
an EOS

STEFAN-BOLTZMANN entropy

o1 = %

1 =cte

gives a very simple hydro model.
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COMPARISON WITH HYDRO: ISOTROPIZATION

10 ‘
Wp+P ——
& ——
Py ——
100 P, — |1
\
\
W\\Q\M\\\%‘
{M’W e
107
10°
0 50 100 150 200 250 300

THOMAS EPELBAUM Early Isotropization of the Quark Gluon Plasma 18/28



COMPARISON WITH HYDRO: ISOTROPIZATION

107! \

T~
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107
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T
=70 —— Field theory —
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COMPARISON WITH HYDRO: ISOTROPIZATION

107! \

T

//'M %%

50 100 150 200 250 300

=150 —— Field theory —
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COMPARISON WITH HYDRO: ISOTROPIZATION

107! \

\ .
T T——

50 100 150 200 250 300

15=200 —— Field theory —
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COMPARISON WITH HYDRO: VISCOSITY

2
Pr—pP =1
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= M
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perturbation theory
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COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]
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©® YANG-MILLS THEORY
The theory
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THE NLO SPECTRUM

» Need to know &;(1o, X) at the time T, we start the numerical simulation

e For practical reasons, we must start in the forward light cone (ty > 0)

x~ xt

5*(33) t,_;\_Joo eik:.a:

This can be done analytically [TE,GELIS 1307:1765]
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THE NLO SPECTRUM

Result of [TE,GELIS 1307:1765]

ey =iy (F'T —F) ele () =D (F™ —F')
with
i,+ iv gt (= sz_ X0 pJ_T ij zplplj_ j
Fy (x) ~ ™M U (XL) U(pJ_+kJ_) 5 -—— €§(>\.
2 2k P

o U! depends on the color source J* of the first nucleus

e Analogous formula for 7~
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©® YANG-MILLS THEORY

Numerical results
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YM ON A LATTICE

Gauge potential A* — link variables (exact gauge invariance on the lattice)

7 ,
L )—'77

)
ay, ar

Numerical parameters
Transverse lattice size L = 64, transverse lattice spacing Qar = 1
Longitudinal lattice size N = 128, longitudinal lattice spacing a; = 0.016
Number of configurations for the Monte-Carlo N o, = 200 to 2000
Initial time Q,t9 = 0.01
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EOM ON A LATTICE

Writing
E¥(x) = 3 Ul) = X5 Ul =2 TR
and
Upv (x) = E Ul (x) = ;D
X f X
Upv(x) = C Ul () = D

We can therefore rewrite the EOM as

A i g i w

T
7 2gaa2
X1 _ X1
a'r —— — _lgal W

23/28
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =8107* (g =0.1)

T [fm/c]
0.01 0.1 1 2 3 4

-103

-102

-10t

- 100

-10!
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

o, =8107* (g =0.1)

T [fm/c]
0.01 0.1 1 2 3 4
+1 “\
1/2
1/3
T e s A et SRR g
0 N
Pr/e
P /€
-1 Lo
L L Lo L L L |
0.1 1.0 10.0 20.0 30.0 40.0
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RENORMALIZATION PROCEDURE

1 2 Vmax

<E%,div> Q kL ,max + kl ,max + kL ,max + ..

ToyoveleXal

Q2k2 2 “max
Q3 1 ,max L max L max |

3 last diagrams can be substracted with a simulation where
AL (x) = 0+ aj (x)

E? "fine" (B? too)
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RENORMALIZATION PROCEDURE

2 2
2 2V, max max 2 Vmax
<ET,div> Q + kJ_ max + kJ_ mdxl T + ..

&ﬁ@@

2 Vrnax

Indx
Q2 max L max 2 L max

3 last diagrams can be substracted with a simulation where
AL (x) =0+ aj (x)

How to deal with the first 27 — ad-hoc fit for the time being.

Otherwise E? and B? behaves as T2 at early time.
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RENORMALIZATION PROCEDURE

e=E;+B;+ E + B}
~—

fine fine

Pr= E] + B}
~—

fine fine

P, =E;+B}— E; — B}
~—

fine fine
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RENORMALIZATION PROCEDURE

{PT)phys. = (Pr) tmtas. —(Pr) et
<€, PL>phyS. = <€,PL> L)Laclﬁgl — <€, PL> ?’I;T)t, +AT72 .
—_—— ——— N
computed computed fitted

Ad-hoc term only one to satisfy Bjorken law and EOS:

0T 421 ¥ =0
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RENORMALIZATION PROCEDURE

How come that problematic divergent diagrams behaves as mass terms?

In the continuum limit, they don’t exist local gauge invariant operators of
dimension two.
On the lattice though, they coud be terms like
2
2 Vmax 2
Sg o

1 ,max

where

i
Fp.\/(x)N D\? - {/D
X R X
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

o =21072 (g =0.5)

T [fm/c]
0.01 0.1 1 2 3
+ 100
T + 101
F 4102 “‘%VM S
\\\
5 f P e e
+ 10 ’ Vv /’\M/V\)
-103 j’
102
10 ~J €
-101 7 Pr
-10° PL
|
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =21072 (g = 0.5)

T [fm/c]
0.01 0.1 1 2 3

-103

-1072

-10t

- 100
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =21072 (g = 0.5)

T [fm/c]
0.01 0.1 1 2 3 4

+1

1/2
1/3

40.0

Qs T
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =21072 (g = 0.5)

T [fm/c]
0.01 0.1 1 2 3 4

0.1 1.0 10.0 20.0 30.0 40.0
Qs
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ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

— 2T]()T72
——

4
€EX €0T 3

Ideal hydro first order correction

we can compute the dimensionless ratio (1 =1nyt")

ne

IS

<1

In contrast, perturbation theory at LO gives e~ ~ 300.

If the system is closed from being thermal

; 1
€ %~s:>HNotfarfrom —
K} 47
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CONCLUSION

. Correct NLO spectrum from first principles

° Fixed anisotropy for g = 0.5 at T ~ 1fin/c

° No need for strong coupling to get isotropization

o Compatible with viscous hydrodynamical expansion

o Assuming simple first order viscous hydrodynamics
ne i <1
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CONCLUSION

Viscous Hydrodynamics

[) Macroscopic theory
II) Few parameters: Pp, Pr, €, i
[1I) Need input:
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