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THE RHIC AND LHC: PROBES OF QCD AT WEAK COUPLING

LHC RHIC
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HOW TO DEAL WITH THE QGP?
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HOW TO DEAL WITH THE QGP?

Viscous Hydrodynamics

I) Macroscopic theory
II) Few parameters: PL, PT , ε, ~u
III) Need input:

1) Equation of state f(PL, PT ) = ε
2) Small anisotropy
3) Initialization: ε(τ0), PL(τ0)? ...
4) viscous coefficients: shear viscosity η,...
5) Short isotropization time
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HEAVY ION COLLISIONS: THE GENERAL PICTURE
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem

CGC

Glasma Isotropization?
Time scale?

Hydrodynamics

QGP

Huge anisotropy Small anisotropy
(negative PL)

Long time puzzle: Does (fast) isotropization occur?
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HOW TO STUDY THE TRANSITION?

Strongly coupled method: AdS/QCD?

Supersymmetric
SU(N) gauge theory

Black hole

String theory
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HOW TO STUDY THE TRANSITION?

Weakly coupled QCD with only gluons
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HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime:
αs � 1 but fgluon ∼ 1

αs
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

Gluon saturation when emission = recombination
⇒ Saturation scale Qs
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2 THEORETICAL FRAMEWORK
The Color Glass Condensate
The Classical statistical approximation
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

THE MAIN ASSUMPTIONS

• Fast gluons are "frozen" by time dilation.

• Described as static color sources J located on the light cone axis

• Small x→ Gluon saturation→ J ∼ Q3
s α

−1/2
s .

• Slow gluons are the standard gauge field Aµ ∼ Qs α
−1/2
s .

• System boost-invariant→ Aµ rapidity independant.

Langrangian of theory reads

L = −
1
4
FµνF

µν + JµAµ
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

x+x−

CGC
J− J+

E ,B

LO: ε =
1
2

(
~E

2
+ ~B

2
)

︸ ︷︷ ︸
Classical
color fields

DµF
µν = Jν︸︷︷︸

Color sources
on the light cone

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

ε = E2
⊥ +B2

⊥ + E2
L +B2

L

PT = E2
L +B2

L

PL = E2
⊥ +B2

⊥ − E2
L −B2

L
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

ε = E2
⊥︸︷︷︸
0

+ B2
⊥︸︷︷︸

0
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Initial Tµν is (ε, ε, ε,−ε)!
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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THE COLOR GLASS CONDENSATE AT NLO

E2(x) = E2(x)︸ ︷︷ ︸
LO

+
1
2

∫
~k

∣∣e~k(x)∣∣2︸ ︷︷ ︸
NLO

+ · · ·

e~k(x) perturbation to E(x) created by a plane wave
of momentum ~k in the remote past.
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THE COLOR GLASS CONDENSATE AT NLO
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Small Fluctuations grow exponentially (Weibel instability)
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THE COLOR GLASS CONDENSATE AT NLO

• Because of instabilities, the NLO correction eventually becomes as large
as the LO⇒ Important effect, should be included

• NLO alone will grow forever⇒ unphysical effect, should be taken care of
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• Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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2 THEORETICAL FRAMEWORK
The Color Glass Condensate
The Classical statistical approximation
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THE CLASSICAL-STATISTICAL METHOD

• At the initial time τ = τ0, take:

~E0(τ0,~x) = ~E0(τ0,~x) +
∫
~k

c~k~e~k(τ0,~x)

where c~k are random coefficients:
〈
c~kc~k ′

〉
∼ δ~k~k ′

• Solve the Classical equation of motion DµFµν = Jν

• Compute
〈
~E

2
(τ,~x)

〉
, where 〈〉 is the average on the c~k (Monte-Carlo)

• One can show that this resums all the fastest growing terms at each
order, leading to a result that remain bounded when τ→∞
[GELIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution
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NLO:
Parabolic
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around LO
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed:
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed:
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potential
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3 A PROOF OF CONCEPT: SCALAR FIELD THEORY
The Theory
Numerical results
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SCALAR FIELD THEORY

Adapted coordinate system to describe a Heavy Ion Collision?

x⊥

z

System boost invariant in z direction
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SCALAR FIELD THEORY

Proper time/rapidity coordinate system

η = cst
τ = cst

τ0

x+x−

THOMAS EPELBAUM Onset of hydrodynamical behaviour in heavy ion collisions 17 / 27



SCALAR FIELD THEORY

The model

Initial conditions: classical statistical method

φ(τ0, x⊥,η) = ϕ0(τ0, x⊥) +
∑
k⊥,ν

cνk⊥eiνη aν,k⊥(τ0, x⊥)

Time evolution: Klein Gordon equation

[
∂2

∂τ2 +
1
τ

∂

∂τ
−∇2

⊥ −
1
τ2

∂2

∂η2

]
︸ ︷︷ ︸

�

φ+
g2

6
φ3 = 0
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Initial anisotropy

PT

PL
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Interactions isotropize the system

PT

PL
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion dilutes the system

PT

PL
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion ≶ Interactions for realistic αs?

PT

PL
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3 A PROOF OF CONCEPT: SCALAR FIELD THEORY
The Theory
Numerical results
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TµνRESUM [DUSLING, TE, GELIS, VENUGOPALAN (2012]
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ε BEHAVIOUR
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COMPARISON WITH HYDRO: VISCOSITY

PT − PL =
2η
τ
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COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]
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4 YANG-MILLS THEORY
The theory
Numerical results
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THE NLO SPECTRUM

• Need to know ~e~k(τ0,~x) at the time τ0 we start the numerical simulation

• For practical reasons, we must start in the forward light cone (τ0 > 0)

x− x+

?

~e~k(x) ∼
t 7→−∞

eik.x

This can be done analytically [TE,GELIS 1307:1765]
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THE NLO SPECTRUM

Result of [TE,GELIS 1307:1765]

ei
ν~k⊥

= iν
(
Fi,− − Fi,+) eη

ν~k⊥
(x) = Di (Fi,− − Fi,+)

with

Fi,+
k (x) ∼ eiνη U

†
1(~x⊥)

∫
~p⊥

ei~p⊥·~x⊥ Ũ1(~p⊥ +~k⊥)
(

p2
⊥τ

2k⊥

)iν
[
δij −

2pi
⊥pj
⊥

p2
⊥

]
ε

j
kλ .

• U
†
1 depends on the color source J+ of the first nucleus

• Analogous formula for Fi,−.

THOMAS EPELBAUM Onset of hydrodynamical behaviour in heavy ion collisions 22 / 27



4 YANG-MILLS THEORY
The theory
Numerical results
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YM ON A LATTICE

Gauge potential Aµ → link variables (exact gauge invariance on the lattice)

aL aT

N

L

L
η

x

y

Numerical parameters
• Transverse lattice size L = 64, transverse lattice spacing QsaT = 1
• Longitudinal lattice size N = 128, longitudinal lattice spacing aL = 0.016
• Number of configurations for the Monte-Carlo Nconf = 200 to 2000
• Initial time Qsτ0 = 0.01
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 8 10−4 (g = 0.1)
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)
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ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

ε ≈ ε0τ
− 4

3︸ ︷︷ ︸
Ideal hydro

− 2η0τ
−2︸ ︷︷ ︸

first order correction

we can compute the dimensionless ratio (η = η0τ
−1)

ηε−
3
4 . 1

In contrast, perturbation theory at LO gives ηε−
3
4 ∼ 300.

If the system is closed from being thermal

ε−
3
4 ∼ s =⇒ η

s
Not far from

1
4π
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CONCLUSION

• Correct NLO spectrum from first principles

• Fixed anisotropy for g = 0.5 at τ ∼ 1fm/c

• No need for strong coupling to get isotropization

• Assuming simple first order viscous hydrodynamics

ηε−
3
4 . 1

• Compatible with viscous hydrodynamical expansion
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CONCLUSION

Viscous Hydrodynamics

I) Macroscopic theory
II) Few parameters: PL, PT , ε, ~u
III) Need input:

1) Equation of state f(PL, PT ) = ε
2) Small anisotropy
3) Initialization: ε(τ0), PL(τ0)? ...
4) viscous coefficients: shear viscosity η,...
5) Short isotropization time
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