



# Onset of hydrodynamical behaviour in heavy ion collisions

Frankfurt, 24th October 2013

Thomas EPELBAUM

IPhT

### OUTLINE

### MOTIVATION

- **2** THEORETICAL FRAMEWORK
- **3** A PROOF OF CONCEPT: SCALAR FIELD THEORY
- **4** YANG-MILLS THEORY
- **6** CONCLUSION

### MOTIVATION

### Probing the strong force

The Quark Gluon Plasma How to deal with a Heavy Ion Collision

#### THE STRONG FORCE: A PECULIAR ONE



### THE STRONG FORCE: A PECULIAR ONE



THOMAS EPELBAUM

### LHC

### RHIC









### MOTIVATION

Probing the strong force The Quark Gluon Plasma How to deal with a Heavy Ion Collision













### HOW TO DEAL WITH THE QGP?





### [LUZUM, ROMATSCHKE (2008)]

THOMAS EPELBAUM

HOW TO DEAL WITH THE QGP?

## Viscous Hydrodynamics

### I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

- 1) Equation of state  $f(P_L, P_T) = \epsilon$
- 2) Small anisotropy
- 3) Initialization:  $\epsilon(\tau_0), P_L(\tau_0)? \dots$
- 4) viscous coefficients: shear viscosity  $\eta, \dots$
- 5) Short isotropization time

HOW TO DEAL WITH THE QGP?

## Viscous Hydrodynamics

### I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

1) Equation of state  $f_{0} = \epsilon$ 2) Small anisotropic 0

3) Initialization.  $\epsilon(\tau_0), P_L(\tau_0)? \dots$ 4) viscous coefficients: shear viscosity  $\eta,\dots$ 

4) viscout coefficients: shear viscosity  $\eta,...$ 5) SIOt is of opization time

### MOTIVATION

Probing the strong force The Quark Gluon Plasma How to deal with a Heavy Ion Collision

### HEAVY ION COLLISIONS: THE GENERAL PICTURE



HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem



Isotropization? Time scale?



Huge anisotropy (negative *P*<sub>L</sub>) Small anisotropy

### Long time puzzle: Does (fast) isotropization occur?

### How to study the transition? Strongly coupled method: AdS/QCD?



# How to study the transition? Weakly coupled method: QCD



### How to study the transition? Weakly coupled QCD with only gluons



### HOW TO STUDY THE TRANSITION?

## Weakly coupled method at dense regime: $\alpha_s \ll 1 \text{ but } f_{\text{gluon}} \sim \frac{1}{\alpha_s}$















Gluon saturation when emission = recombination  $\Rightarrow$  Saturation scale  $Q_s$ 










# TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION





# THEORETICAL FRAMEWORK The Color Glass Condensate The Classical statistical approximation

#### THE MAIN ASSUMPTIONS

- Fast gluons are "frozen" by time dilation.
- Described as static color sources J located on the light cone axis
- Small  $x \to$  Gluon saturation  $\to J \sim Q_s^3 \alpha_s^{-1/2}$ .
- Slow gluons are the standard gauge field  $\mathcal{A}^{\mu} \sim Q_s \alpha_s^{-1/2}$ .
- System boost-invariant  $\rightarrow \mathcal{A}^{\mu}$  rapidity independant.

Langrangian of theory reads

$$\mathcal{L} = -rac{1}{4}\mathcal{F}_{\mu
u}\mathcal{F}^{\mu
u} + J_{\mu}\mathcal{A}^{\mu}$$

## Theoretical framework (Weakly coupled but strongly interacting)



$$\boldsymbol{\epsilon} = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{B}_{\perp}^2 + \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{B}_{L}^2$$
$$\boldsymbol{P}_T = \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{B}_{L}^2$$
$$\boldsymbol{P}_L = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{B}_{\perp}^2 - \boldsymbol{\varepsilon}_{L}^2 - \boldsymbol{B}_{L}^2$$

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]



# [LAPPI, MCLERRAN (2006)]

$$\boldsymbol{\epsilon} = \underbrace{\boldsymbol{\mathcal{E}}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathcal{B}}_{\perp}^{2}}_{0} + \boldsymbol{\mathcal{E}}_{L}^{2} + \boldsymbol{\mathcal{B}}_{L}^{2}$$
$$\boldsymbol{P}_{T} = \boldsymbol{\mathcal{E}}_{L}^{2} + \boldsymbol{\mathcal{B}}_{L}^{2}$$
$$\boldsymbol{P}_{L} = \underbrace{\boldsymbol{\mathcal{E}}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathcal{B}}_{\perp}^{2}}_{0} - \boldsymbol{\mathcal{E}}_{L}^{2} - \boldsymbol{\mathcal{B}}_{L}^{2}$$

Initial  $T^{\mu\nu}$  is  $(\epsilon, \epsilon, \epsilon, -\epsilon)!$ 

# Strong anisotropy at early time



# [GELIS, FUKUSHIMA (2012)]

THOMAS EPELBAUM

Strong anisotropy at early time



## [GELIS, FUKUSHIMA (2012)]

THOMAS EPELBAUM

#### THE COLOR GLASS CONDENSATE AT NLO

$$E^{2}(x) = \underbrace{\frac{\mathcal{E}^{2}(x)}{\bigcup}}_{\text{LO}} + \underbrace{\frac{1}{2} \int_{\vec{k}} |\boldsymbol{e}_{\vec{k}}(x)|^{2}}_{\text{NLO}} + \cdots$$

 $e_{\vec{k}}(x)$  perturbation to  $\mathcal{E}(x)$  created by a plane wave of momentum  $\vec{k}$  in the remote past.

### THE COLOR GLASS CONDENSATE AT NLO



[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)

THOMAS EPELBAUM

# THE COLOR GLASS CONDENSATE AT NLO

- Because of instabilities, the NLO correction eventually becomes as large as the LO ⇒ Important effect, should be included
- NLO alone will grow forever  $\Rightarrow$  unphysical effect, should be taken care of



Such growing contributions are present at all orders of the perturbative expansion

# How to deal with them?

# THEORETICAL FRAMEWORK The Color Glass Condensate The Classical statistical approximation

#### THE CLASSICAL-STATISTICAL METHOD

• At the initial time  $\tau = \tau_0$ , take:

$$\vec{E}_0(\tau_0, \vec{x}) = \vec{\mathcal{E}}_0(\tau_0, \vec{x}) + \int_{\vec{k}} c_{\vec{k}} \vec{e}_{\vec{k}}(\tau_0, \vec{x})$$

where  $c_{\vec{k}}$  are random coefficients:  $\langle c_{\vec{k}}c_{\vec{k}'}\rangle \sim \delta_{\vec{k}\vec{k}'}$ 

- Solve the **Classical** equation of motion  $D_{\mu}F^{\mu\nu} = J^{\nu}$
- Compute  $\left\langle \vec{E}^2(\tau, \vec{x}) \right\rangle$ , where  $\langle \rangle$  is the average on the  $c_{\vec{k}}$  (Monte-Carlo)
- One can show that this resums all the fastest growing terms at each order, leading to a result that remain bounded when  $\tau \to \infty$  [GeLIS, LAPPI, VENUGOPALAN (2008)]

# This gives: LO+NLO+Subset of higer orders













# A PROOF OF CONCEPT: SCALAR FIELD THEORY The Theory Numerical results

#### SCALAR FIELD THEORY

# Adapted coordinate system to describe a Heavy Ion Collision?



# System boost invariant in z direction

#### SCALAR FIELD THEORY

# Proper time/rapidity coordinate system



SCALAR FIELD THEORY

# The model

# Initial conditions: classical statistical method

$$\phi(\tau_0, \mathbf{x}_{\perp}, \eta) = \boldsymbol{\varphi}_0(\tau_0, \mathbf{x}_{\perp}) + \sum_{\mathbf{k}_{\perp}, \mathbf{v}} c_{\mathbf{v}\mathbf{k}_{\perp}} e^{i\mathbf{v}\eta} \, \mathbf{a}_{\mathbf{v}, \mathbf{k}_{\perp}}(\tau_0, \mathbf{x}_{\perp})$$

# Time evolution: Klein Gordon equation

$$\underbrace{\left[\frac{\partial^2}{\partial\tau^2} + \frac{1}{\tau}\frac{\partial}{\partial\tau} - \boldsymbol{\nabla}_{\perp}^2 - \frac{1}{\tau^2}\frac{\partial^2}{\partial\eta^2}\right]}_{\Box}\boldsymbol{\varphi} + \frac{g^2}{6}\boldsymbol{\varphi}^3 = 0$$

# Initial anisotropy



Interactions isotropize the system



Expansion dilutes the system



Expansion  $\leq$  Interactions for realistic  $\alpha_s$ ?



# A PROOF OF CONCEPT: SCALAR FIELD THEORY The Theory Numerical results

# $T_{\text{RESUM}}^{\mu\nu}$ [Dusling, TE, Gelis, Venugopalan (2012]



#### € BEHAVIOUR



THOMAS EPELBAUM

## COMPARISON WITH HYDRO: VISCOSITY





# COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]



# YANG-MILLS THEORY The theory Numerical results

### THE NLO SPECTRUM

- Need to know  $\vec{e}_{\vec{k}}(\tau_0, \vec{x})$  at the time  $\tau_0$  we start the numerical simulation
- For practical reasons, we must start in the forward light cone  $(\tau_0 > 0)$



# This can be done analytically [TE,GELIS 1307:1765]

#### THE NLO SPECTRUM

# Result of [TE,GELIS 1307:1765]

$$e_{\nu \vec{k}_{\perp}}^{i} = i\nu \left( F^{i,-} - F^{i,+} \right) \qquad e_{\nu \vec{k}_{\perp}}^{\eta}(x) = \mathcal{D}^{i} \left( F^{i,-} - F^{i,+} \right)$$
with
$$F_{k}^{i,+}(x) \sim e^{i\nu\eta} \mathcal{U}_{1}^{\dagger}(\vec{x}_{\perp}) \int_{\vec{p}_{\perp}} e^{i\vec{p}_{\perp} \cdot \vec{x}_{\perp}} \widetilde{\mathcal{U}}_{1}(\vec{p}_{\perp} + \vec{k}_{\perp}) \left( \frac{p_{\perp}^{2}\tau}{2k_{\perp}} \right)^{i\nu} \left[ \delta^{ij} - \frac{2p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}} \right] \epsilon_{k\lambda}^{j}$$

- $\mathfrak{U}_1^{\dagger}$  depends on the color source  $J^+$  of the first nucleus
- Analogous formula for  $F^{i,-}$ .
## YANG-MILLS THEORY The theory Numerical results

#### YM ON A LATTICE

Gauge potential  $A^{\mu} \rightarrow$  link variables (exact gauge invariance on the lattice)



### Numerical parameters

- Transverse lattice size L = 64, transverse lattice spacing  $Q_s a_T = 1$
- Longitudinal lattice size N = 128, longitudinal lattice spacing  $a_L = 0.016$
- Number of configurations for the Monte-Carlo  $N_{\text{conf}} = 200$  to 2000
- Initial time  $Q_s \tau_0 = 0.01$



#### THOMAS EPELBAUM

#### Onset of hydrodynamical behaviour in heavy ion collisions 24/27











#### ANOMALOUSLY SMALL VISCOSITY

#### Assuming simple first order viscous hydrodynamics



If the system is closed from being thermal

$$e^{-\frac{3}{4}} \sim s \Longrightarrow \frac{\eta}{s}$$
 Not far from  $\frac{1}{4\pi}$ 

#### CONCLUSION

- Correct NLO spectrum from first principles
- Fixed anisotropy for g = 0.5 at  $\tau \sim 1 fm/c$
- No need for strong coupling to get isotropization
- Assuming simple first order viscous hydrodynamics  $\eta \varepsilon^{-\frac{3}{4}} \lesssim 1$
- Compatible with viscous hydrodynamical expansion

## CONCLUSION

# Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters:  $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

- 1) Equation of state  $f(P_L, P_T) = \epsilon$
- 2) Small anisotropy
- 3) Initialization:  $\epsilon(\tau_0), P_L(\tau_0)? \dots$
- 4) viscous coefficients: shear viscosity  $\eta, \dots$
- 5) Short isotropization time