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© MOTIVATION
Probing the strong force
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THE STRONG FORCE: A PECULIAR ONE

The Faur Fundamental Interactions

il Electromagnetic
L

All forees in the world can be
attributed to these four interactions!
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THE STRONG FORCE: A PECULIAR ONE
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THE RHIC AND LHC: PROBES OF QCD AT WEAK COUPLING
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THE RHIC AND LHC: PROBES OF QCD AT WEAK COUPLING
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THE RHIC AND LHC: PROBES OF QCD AT WEAK COUPLING

Nuclei Neutron star H
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THE RHIC AND LHC: PROBES OF QCD AT WEAK COUPLING

New state
of matter?

Nuclei Neutron star 1Y
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© MOTIVATION

The Quark Gluon Plasma
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A NEW STATE OF MATTER: THE QUARK GLUON PLASMA

4
== 0 QGP
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A NEW STATE OF MATTER: THE QUARK GLUON PLASMA
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A NEW STATE OF MATTER: THE QUARK GLUON PLASMA
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A NEW STATE OF MATTER: THE QUARK GLUON PLASMA
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A NEW STATE OF MATTER: THE QUARK GLUON PLASMA

CMS Experiment at LHC, CERN

Data recorded: Sun Nov 14 19:31:39 2010 CEST
Run/Event: 151076 / 1328520

Lumi section: 249

Jet 1, pt: 70.0 GeV'
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How TO DEAL WITH THE QGP?

CGC
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[Luzum, ROMATSCHKE (2008)]
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How TO DEAL WITH THE QGP?

Viscous Hydrodynamics

[) Macroscopic theory
II) Few parameters: Pp, Pr, €, i
[1I) Need input:

1) Equation of state f(Pp, Pr) =€

2) Small anisotropy

3) Initialization: e(7), Pr(10)7 ...

4) viscous coefficients: shear viscosity 7,...
5) Short isotropization time
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How TO DEAL WITH THE QGP?

Viscous Hydrodynamics

[) Macroscopic theory

—

II) Few parameters: Pp, Pr, €, u
[1I) Need input:




© MOTIVATION

How to deal with a Heavy lon Collision
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Hydrodynamics

ideal
viscous
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HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem

. Glasma Isotropization? QGP
v cae Time scale? Hydrodynamics
Huge anisotropy Small anisotropy

(negative Py)

Long time puzzle: Does (fast) isotropization occur?
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HoOw TO STUDY THE TRANSITION?
Strongly coupled method: AdS/QCD?

Supersymmetric
SU(N) gauge theory

String theory

Black hole

THOMAS EPELBAUM Onset of hydrodynamical behaviour in heavy ion collisions



HOW TO STUDY THE TRANSITION?
Weakly coupled method: QCD
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HOW TO STUDY THE TRANSITION?

Weakly coupled QCD with only gluons
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HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

Gluon saturation when emission = recombination
= Saturation scale O,
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION

7T

E

THOMAS EPELBAU Onset of hydrodynamical behaviour in heavy ion collisions



TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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TWO ADDITIONAL FEATURES: SATURATION AND TIME DILATION
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® THEORETICAL FRAMEWORK
The Color Glass Condensate
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

THE MAIN ASSUMPTIONS

Fast gluons are "frozen" by time dilation.

Described as static color sources J located on the light cone axis
/2

Small x — Gluon saturation — J ~ Q% o; '

Slow gluons are the standard gauge field A" ~ 0, o; /2.

System boost-invariant — A" rapidity independant.

Langrangian of theory reads

1 / 1
L= =TT Tl
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

xr Ll‘+
CGC
. 1 /22 =2 R N
LO: e:§(8 +B> DI = J
~— ~—
Classical Color sources
color fields on the light cone

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

e=8 +B1 +& +B7
Pr=¢&7 +B7
P =8 +B% —& —B7
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

4

(’we

[LAPPI, MCLERRAN (2006)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

e= & + Bi +&7 +B7
~ =~
0 0
Pr=¢& + B
P= 8+ P 8-
—~ =~
0 0

Initial TV is (e, €, €, —¢€)!
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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[GELIS, FUKUSHIMA (2012)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time

€ =2Pr+P; = Pr=c¢

RRanL LT,
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[GELIS, FUKUSHIMA (2012)]
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THE COLOR GLASS CONDENSATE AT NLO

1
E(x) = &2(x) + 3 J* |e,?(x)|2 +
—— AF/
LO NLO

ex(x) perturbation to €(x) created by a plane wave
of momentum & in the remote past.
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THE COLOR GLASS CONDENSATE AT NLO
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[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)
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THE COLOR GLASS CONDENSATE AT NLO

e Because of instabilities, the NLO correction eventually becomes as large
as the LO = Important effect, should be included

¢ NLO alone will grow forever = unphysical effect, should be taken care of

o il . \
) llMM
i

20 o 20 40 60 80 20 0 20 40 60 80
time time

Plo — 810 — Phio 8o ——

e Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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® THEORETICAL FRAMEWORK

The Classical statistical approximation
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THE CLASSICAL-STATISTICAL METHOD

At the initial time T = 1, take:

qcl?é'];("fo, f)

Eo(T0,%) = Eo(0, %) +J
7

where c; are random coefficients: (cycp, ) ~ 5z,

Solve the Classical equation of motion D, F*Y = J

Compute <E2(T, 5c’)>, where () is the average on the ¢; (Monte-Carlo)

One can show that this resums all the fastest growing terms at each
order, leading to a result that remain bounded when T — o
[GELIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution

/ NLO: |

/' Parabolic_i\\
| approximation
,'/ around LO ‘\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

!/ NLO:

/' Parabolic_i\
! approximation ' |
,'/ around LO ‘\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential

9=05 —— g=1 —— g=2 9=4 =8 —— &3 ——
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©® A PROOF OF CONCEPT: SCALAR FIELD THEORY
The Theory
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SCALAR FIELD THEORY

Adapted coordinate system to describe a Heavy lon Collision?

A

X1

System boost invariant in z direction
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SCALAR FIELD THEORY

Proper time/rapidity coordinate system

n=cst T =cst

x~ l l xt

<~— T0
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SCALAR FIELD THEORY

The model

Initial conditions: classical statistical method

b0, x1,m) = @o(T0,¥L) + Y cvi, €M avu, (To,x1)
ky,v

Time evolution: Klein Gordon equation
2 10 , 192

2 Txor Vi 2o

O

2
]¢+%¢3=0
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Initial anisotropy
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Interactions isotropize the system

4 N\
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion dilutes the system

4 N\
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HOW INTERACTIONS COMPETE WITH EXPANSION?

Expansion < Interactions for realistic o,?
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©® A PROOF OF CONCEPT: SCALAR FIELD THEORY

Numerical results
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Th¢om [DUSLING, TE, GELIS, VENUGOPALAN (2012]
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€ BEHAVIOUR

10
1»4/3
T!
2P+ Py
e ——
10°
-1 \
10
10°
10 100
T

Bjorken Law: d-e + <2 =0
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COMPARISON WITH HYDRO: VISCOSITY

2n
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COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]
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©® YANG-MILLS THEORY
The theory
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THE NLO SPECTRUM

» Need to know &;(1o, X) at the time T, we start the numerical simulation

e For practical reasons, we must start in the forward light cone (ty > 0)

x~ xt

5*(33) t,_;\_Joo eik:.a:

This can be done analytically [TE,GELIS 1307:1765]
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THE NLO SPECTRUM

Result of [TE,GELIS 1307:1765]

ey =iy (F'T —F) ele () =D (F™ —F')
with
i,+ iv gt (= sz_ X0 pJ_T ij zplplj_ j
Fy (x) ~ ™M U (XL) U(pJ_+kJ_) 5 -—— €§(>\.
2 2k P

o U! depends on the color source J* of the first nucleus

e Analogous formula for 7~
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©® YANG-MILLS THEORY

Numerical results
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YM ON A LATTICE

Gauge potential A* — link variables (exact gauge invariance on the lattice)

7 ,
L )—'77

)
ay, ar

Numerical parameters
Transverse lattice size L = 64, transverse lattice spacing Qar = 1
Longitudinal lattice size N = 128, longitudinal lattice spacing a; = 0.016
Number of configurations for the Monte-Carlo N o, = 200 to 2000
Initial time Q,t9 = 0.01
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =8107* (g =0.1)

T [fm/c]
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

o, =8107* (g =0.1)
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NUMERICAL RESULTS [TE,GELIS 1307:2214]

o =21072 (g =0.5)
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =21072 (g = 0.5)
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NUMERICAL RESULTS [TE,GELIS 1307:2214]
o, =21072 (g = 0.5)

T [fm/c]
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ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

— 2T]()T72
——

4
€EX €0T 3

Ideal hydro first order correction

we can compute the dimensionless ratio (1 =1nyt")

ne

IS

<1

In contrast, perturbation theory at LO gives e~ ~ 300.

If the system is closed from being thermal

; 1
€ %~s:>HNotfarfrom —
K} 47
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CONCLUSION

. Correct NLO spectrum from first principles

o Fixed anisotropy for g = 0.5 at T ~ 1fin/c

° No need for strong coupling to get isotropization

o Assuming simple first order viscous hydrodynamics
ne i <1

o Compatible with viscous hydrodynamical expansion
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CONCLUSION

Viscous Hydrodynamics

[) Macroscopic theory
II) Few parameters: Pp, Pr, €, i
[1I) Need input:
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