The onset of hydrodynamical flow in high energy heavy ion collisions

Stellenbosch, 4th November 2013

Thomas EPELBAUM
IPhT
OUTLINE

Introduction

Theoretical tools

Numerical results

Conclusion
Viscous Hydrodynamics

I) Macroscopic theory
II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$
III) Need input:

1) Equation of state $f(P_L, P_T) = \epsilon$
2) Small anisotropy
3) Initialization: $\epsilon(\tau_0), P_L(\tau_0)$? ...
4) Viscous coefficients: shear viscosity η, ...
5) Short isotropization time
Viscous Hydrodynamics

I) Macroscopic theory
II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$
III) Need input:

1) Equation of state $f(P_L, P_T) = \epsilon$
2) Small anisotropy
3) Initialization: $\epsilon(\tau_0), P_L(\tau_0)$? ...
4) Viscous coefficients: shear viscosity η, ...
5) Short isotropization time

None of this is easy to get from QCD.
Early transition: the problem

- **Isotropization?**
- **Time scale?**

Huge anisotropy
(negative P_L)

Small anisotropy

Long time puzzle: Does (fast) isotropization occur?
How to study the transition?

Weakly coupled method at dense regime:
\[\alpha_s \ll 1 \text{ but } f_{\text{gluon}} \sim \frac{1}{\alpha_s} \]
The Color Glass Condensate [McLerran, Venugopalan (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

\[x^- \quad \text{CGC} \quad x^+ \]

LO:
\[\epsilon = \frac{1}{2} \left(\varepsilon^2 + B^2 \right) \]
\[\mathcal{D}_\mu \mathcal{F}^{\mu\nu} = J^\nu \]

Classical color fields

Color sources on the light cone

[Krasnitz, Venugopalan (1998)]
Strong anisotropy at early time
Strong anisotropy at early time

\[\epsilon = 2P_T + P_L \Rightarrow P_T = \epsilon \]

\[\lim_{\tau \to 0^+} \epsilon = \text{cst} \Rightarrow P_L = -\epsilon \]
\[E^2(x) = \mathcal{E}^2(x_\perp) + \frac{1}{2} \int \frac{d^2k}{(2\pi)^2} |e_{\vec{k}}(x)|^2 + \cdots \]

\(e_{\vec{k}}(x) \) perturbation to \(\mathcal{E}(x) \) created by a plane wave of momentum \(\vec{k} \) in the remote past.

Obtained by solving the linearized equation of motions.
Small Fluctuations grow exponentially (Weibel instability)
Because of instabilities, the NLO correction eventually becomes as large as the LO \Rightarrow Important effect, should be included

NLO alone will grow forever \Rightarrow unphysical effect, should be taken care of

Such growing contributions are present at all orders of the perturbative expansion

How to deal with them?
The classical-statistical method

- At the initial time $\tau = \tau_0$, take:

$$\vec{E}_0(\tau_0, \vec{x}) = \vec{E}_0(\tau_0, \vec{x}) + \int k \, c_k \vec{e}_k(\tau_0, \vec{x})$$

where c_k are random coefficients: $\langle c_k c_{k'} \rangle \sim \delta_{kk'}$

- Solve the Classical equation of motion $D_\mu F^{\mu \nu} = J^\nu$

- Compute $\langle \vec{E}^2(\tau, \vec{x}) \rangle$, where $\langle \rangle$ is the average on the c_k (Monte-Carlo)

- One can show that this resums all the fastest growing terms at each order, leading to a result that remain bounded when $\tau \to \infty$

[ELIS, LAPP, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higher orders
The classical-statistical method

The onset of hydrodynamical flow in high energy heavy ion collisions
The NLO spectrum

- Need to know $\vec{e}_k(\tau_0, \vec{x})$ at the time τ_0 we start the numerical simulation
- For practical reasons, we must start in the forward light cone ($\tau_0 > 0$)

This can be done analytically [TE, Gélis 1307:1765]
THE NLO SPECTRUM

Result

\[e^{i \nu \vec{k}_\perp} = i \nu (F_i^-, - F_i^+) \]
\[e^{\eta \vec{k}_\perp} (x) = \mathcal{D}^i (F_i^-, - F_i^+) \]

with

\[F_{k}^{i, +} (x) \sim e^{i \nu \eta} \mathcal{U}^\dagger_1 (\vec{x}_\perp) \int_{\vec{p}_\perp} e^{i \vec{p}_\perp \cdot \vec{x}_\perp} \tilde{\mathcal{U}}_1 (\vec{p}_\perp + \vec{k}_\perp) \left(\frac{p^2 \tau}{2 k_\perp} \right)^i \nu \left[\delta^{ij} - \frac{2 p_i^j p_\perp^i}{p^2_\perp} \right] e^{j}_k \lambda . \]

• \(\mathcal{U}^\dagger_1 \) depends on the color source \(J^+ \) of the first nucleus

• Analogous formula for \(F_i^-, - \).
YM on a lattice

Gauge potential $A^\mu \rightarrow$ link variables (exact gauge invariance on the lattice)

Numerical parameters

- Transverse lattice size $L = 64$, transverse lattice spacing $Q_s a_T = 1$
- Longitudinal lattice size $N = 128$, longitudinal lattice spacing $a_L = 0.016$
- Number of configurations for the Monte-Carlo $N_{\text{conf}} = 200$ to 2000
- Initial time $Q_s \tau_0 = 0.01$
Numerical results [TE, Gelis 1307:2214]

\[\alpha_s = 8 \times 10^{-4} \ (g = 0.1) \]
Numerical Results [TE, Gelis 1307:2214]

\[\alpha_s = 2 \times 10^{-2} \ (g = 0.5) \]
Numerical results [TE,Gelis 1307:2214]

\[\alpha_s = 2 \times 10^{-2} \quad (g = 0.5) \]
ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

\[\epsilon \approx \epsilon_0 \tau^{-\frac{4}{3}} - 2\eta_0 \tau^{-2} \]

Ideal hydro first order correction

we can compute the dimensionless ratio \((\eta = \eta_0 \tau^{-1})\)

\[\eta \epsilon^{-\frac{3}{4}} \lesssim 1 \]

In contrast, perturbation theory at LO gives \(\eta \epsilon^{-\frac{3}{4}} \sim 300\).

If the system is closed from being thermal

\[\epsilon^{-\frac{3}{4}} \sim s \implies \frac{\eta}{s} \text{ Not far from } \frac{1}{4\pi} \]
Conclusion

- Correct NLO spectrum from first principles
- Fixed anisotropy for $g = 0.5$ at $\tau \sim 1 \text{fm}/c$
- No need for strong coupling to get isotropization
- Compatible with viscous hydrodynamical expansion
- Assuming simple first order viscous hydrodynamics

$$\eta \epsilon^{-\frac{3}{4}} \lesssim 1$$
\[\langle A \rangle \sim 0, \quad \langle E \rangle \sim 0 \]
\[\langle A^2 \rangle - \langle A \rangle^2 \sim \frac{Q_s^2}{g^2} \]
\[\langle E^2 \rangle - \langle E \rangle^2 \sim \frac{Q_s^4}{g^2} \]

May give correct answer at LO
Not correct at NLO

\[\langle A \rangle \sim \frac{Q_s}{g}, \quad \langle E \rangle \sim \frac{Q_s^2}{g} \]
\[\langle A^2 \rangle - \langle A \rangle^2 \sim Q_s^2 \]
\[\langle E^2 \rangle - \langle E \rangle^2 \sim Q_s^4 \]
give correct answer at LO
give correct answer at NLO