

The onset of hydrodynamical flow in high energy heavy ion collisions

Stellenbosch, 4th November 2013

Thomas EPELBAUM

IPhT

OUTLINE

Introduction

Theoretical tools

Numerical results

Conclusion

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

- 1) Equation of state $f(P_L, P_T) = \epsilon$
- 2) Small anisotropy
- 3) Initialization: $\epsilon(\tau_0), P_L(\tau_0)? \dots$
- 4) viscous coefficients: shear viscosity η, \dots
- 5) Short isotropization time

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Viscous Hydrodynamics

I) Macroscopic theory II) Few parameters: $P_L, P_T, \epsilon, \vec{u}$ III) Need input:

1) Equation of state $f(P_L, \overline{\tau_0}) = \epsilon$ 2) Small anisotropis 3) Initialization: $\epsilon(\tau_0)$, $P_L(\tau_0)$? ... 4) viscoue coefficients: shear viscosity η ,... 5) SNOT isotropization time

HEAVY ION COLLISIONS: THE GENERAL PICTURE

Early transition: the problem

Isotropization? Time scale?

Huge anisotropy (negative P_L)

Small anisotropy

Long time puzzle: Does (fast) isotropization occur?

HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime: $\alpha_s \ll 1 \text{ but } f_{\text{gluon}} \sim \frac{1}{\alpha_s}$

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Theoretical framework (Weakly coupled but strongly interacting)

[KRASNITZ, VENUGOPALAN (1998)]

THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time

Strong anisotropy at early time

THE COLOR GLASS CONDENSATE AT NLO

$$E^{2}(x) = \underbrace{\frac{\mathcal{E}^{2}(\boldsymbol{x}_{\perp})}{\underbrace{\mathcal{L}O}} + \underbrace{\frac{1}{2} \int_{\vec{k}} |\boldsymbol{e}_{\vec{k}}(x)|^{2}}_{\mathsf{NLO}} + \cdots$$

$e_{\vec{k}}(x)$ perturbation to $\mathcal{E}(x)$ created by a plane wave of momentum \vec{k} in the remote past.

Obtained by solving the linearized equation of motions.

THE COLOR GLASS CONDENSATE AT NLO

[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)

THE COLOR GLASS CONDENSATE AT NLO

- Because of instabilities, the NLO correction eventually becomes as large as the LO ⇒ Important effect, should be included
- NLO alone will grow forever \Rightarrow unphysical effect, should be taken care of

Such growing contributions are present at all orders of the perturbative expansion

How to deal with them?

THE CLASSICAL-STATISTICAL METHOD

• At the initial time $\tau = \tau_0$, take:

$$\vec{E}_0(\tau_0, \vec{x}) = \vec{\varepsilon}_0(\tau_0, \vec{x}) + \int_{\vec{k}} c_{\vec{k}} \vec{e}_{\vec{k}}(\tau_0, \vec{x})$$

where $c_{\vec{k}}$ are random coefficients: $\langle c_{\vec{k}} c_{\vec{k}'} \rangle \sim \delta_{\vec{k}\vec{k}'}$

- Solve the **Classical** equation of motion $D_{\mu}F^{\mu\nu} = J^{\nu}$
- Compute $\left\langle \vec{E}^2(\tau, \vec{x}) \right\rangle$, where $\langle \rangle$ is the average on the $c_{\vec{k}}$ (Monte-Carlo)
- One can show that this resums all the fastest growing terms at each order, leading to a result that remain bounded when $\tau \to \infty$ [GeLIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higer orders

THE CLASSICAL-STATISTICAL METHOD

THE NLO SPECTRUM

- Need to know $\vec{e}_{\vec{k}}(\tau_0, \vec{x})$ at the time τ_0 we start the numerical simulation
- For practical reasons, we must start in the forward light cone $(\tau_0 > 0)$

This can be done analytically [TE,GELIS 1307:1765]

THE NLO SPECTRUM

Result

$$e_{\nu\vec{k}_{\perp}}^{i} = i\nu\left(F^{i,-} - F^{i,+}\right) \qquad e_{\nu\vec{k}_{\perp}}^{\eta}(x) = \mathcal{D}^{i}\left(F^{i,-} - F^{i,+}\right)$$
with
$$F_{k}^{i,+}(x) \sim e^{i\nu\eta} \mathcal{U}_{1}^{\dagger}(\vec{x}_{\perp}) \int_{\vec{p}_{\perp}} e^{i\vec{p}_{\perp}\cdot\vec{x}_{\perp}} \widetilde{\mathcal{U}}_{1}(\vec{p}_{\perp} + \vec{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2k_{\perp}}\right)^{i\nu} \left[\delta^{ij} - \frac{2p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}}\right] \epsilon_{k\lambda}^{j}.$$

- \mathbf{U}_1^{\dagger} depends on the color source \mathbf{J}^+ of the first nucleus
- Analogous formula for $F^{i,-}$.

YM ON A LATTICE

Gauge potential $A^{\mu} \rightarrow$ link variables (exact gauge invariance on the lattice)

Numerical parameters

- Transverse lattice size L = 64, transverse lattice spacing $Q_s a_T = 1$
- Longitudinal lattice size N = 128, longitudinal lattice spacing $a_L = 0.016$
- Number of configurations for the Monte-Carlo $N_{\text{conf}} = 200$ to 2000
- Initial time $Q_s \tau_0 = 0.01$

NUMERICAL RESULTS [TE,GELIS 1307:2214]

NUMERICAL RESULTS [TE,GELIS 1307:2214]

NUMERICAL RESULTS [TE,GELIS 1307:2214]

ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

If the system is closed from being thermal

$$e^{-\frac{3}{4}} \sim s \Longrightarrow \frac{\eta}{s}$$
 Not far from $\frac{1}{4\pi}$

CONCLUSION

- Correct NLO spectrum from first principles
- Fixed anisotropy for g = 0.5 at $\tau \sim 1 fm/c$
- No need for strong coupling to get isotropization
- Compatible with viscous hydrodynamical expansion
- Assuming simple first order viscous hydrodynamics

 $\eta\varepsilon^{-\frac{3}{4}}\lesssim 1$

BACKUP: COMPLETELY INCOHERENT INITIAL FIELDS VS CGC

