
Theoretical Population Biology 158 (2024) 89–108

A
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Neutral diversity in experimental metapopulations
Guilhem Doulcier a,b,∗, Amaury Lambert c,d

a Macquarie University, Department of Philosophy, Sydney, Australia
b Max Planck Institute for Evolutionary Biology, Department of Theoretical Biology, Plön, Germany
c SMILE – Stochastic Models for the Inference of Life Evolution, Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS UMR8197, INSERM
U1024, France
d Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, PSL Université, Paris, France

A R T I C L E I N F O

Keywords:
Neutral diversity
Population genetics
Experimental evolution

A B S T R A C T

New automated and high-throughput methods allow the manipulation and selection of numerous bacterial
populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a
setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-
wide extinction and splitting events. We model bacterial growth by a birth–death process and use the theory
of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of
neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency
spectrum for different experimental regimes. We also explore how neutral variation diverges between two
recently split populations by establishing a new formula for the expected number of shared and private
mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple
mutations.
1. Introduction

Microbial communities are ubiquitous in nature and perform critical
roles in biogeochemical cycles (Fuhrman, 2009), agricultural productiv-
ity (Trivedi et al., 2016) and human health (Pflughoeft and Versalovic,
2012). Microbial diversity has been recognised to have a strong impact
on these dynamics (Kassen et al., 2000; Maron et al., 2018; Delgado-
Baquerizo et al., 2016). As a consequence, considerable effort is be-
ing deployed in understanding and engineering their eco-evolutionary
dynamics by either building ‘‘bottom-up’’ synthetic communities (Li
et al., 2022), screening variants from environmental samples (Mil-
shteyn et al., 2014), or finally developing ‘‘selective breeding’’ for
microbial communities (Mueller and Sachs, 2015; Arias-Sánchez et al.,
2019). In the following, we use stochastic processes to study some
basic parameters of a device that could be used for the screening
and selection of microbial communities. This device is abstract but
inspired by recent advances in high-throughput microbial population
manipulation methods.

Microbial populations offer numerous advantages in the domain
of experimental evolution (i.e., the study of evolutionary dynamics
happening in real time as a response to conditions imposed by the
experimenter; Kawecki et al. 2012). These advantages include large
population sizes, easily manipulable environments, the possibility to
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freeze and store whole populations indefinitely. . . Experimental evo-
lution requires the set-up of many parallel bacterial cultures that can
take several forms from bottles (in the order of 1 litre, ≈ 1𝐿) to
tubes (≈ 10−3𝐿), microplates (≈ 10−4𝐿), or microfluidic compartments
(≈ 10−9𝐿). Recently, new techniques for the high-throughput manip-
ulation of bacterial populations have emerged. For instance, digital
millifluidics (Cottinet, 2013; Dupin, 2018; Doulcier, 2019; Ardré et al.,
2022) allows producing and imaging thousands of droplets of culture
broth within a carrying fluid. The droplets amount to around 2×10−6𝐿
with a carrying capacity of 105 to 106 cells (Cottinet, 2013). Droplets
can be imaged and quantitative measures be performed (e.g., optical
density, fluorescence signal) during growth of the bacteria, allowing a
high-throughput monitoring of ecological dynamics.

Being able to phenotype, screen and eventually artificially select
microbial communities at scale could open new possibilities in ex-
perimental evolution as well as biological engineering. In particular,
a new kind of experimental design becomes accessible, compared to
more traditional experimental evolution set-ups (e.g., screening by
plating or flow cytometry). We call this design ‘‘nested populations’’,
in which both cells and microbial populations (e.g., physically bounded
by droplets) have their own demography with birth and death events.
The consequence of such a nested design is that populations themselves
become units of selection (Lewontin, 1970) in their own right. Such
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experiments are routinely performed in microcosms (Hammerschmidt
et al., 2014). However, the ability of millifluidic devices to monitor in
the order of a thousand cultures and retrieve some of them for analysis
makes them particularly suitable for the artificial selection of micro-
bial communities (Xie and Shou, 2021), such as through ecological
scaffolding (Doulcier et al., 2020; Black et al., 2020).

Neutral diversity in experimentally nested populations is the focus
of this manuscript. The aim is to build a quantitative understanding
of simple diversity patterns within the experimental set-up. The main
objective is to understand how they can be manipulated by changing
the parameters that are accessible to the experimentalist or device
designer. We consider the hypothesis that a high neutral diversity is
favourable for the experiment, either because it increases the probabil-
ity to screen individual variants of interest, or because populations with
high diversity are more likely to have properties of interest themselves.
Moreover, neutral diversity offers a solid foundation for more complex
models of microbial communities (Ofiţeru et al., 2010). First, a model
of the device is presented. It relies on the assumption that cells undergo
constant exponential growth. The optimal operating regime parameters
of the machine (e.g., dilution factor, duration of droplet growth cycles,
carrying capacity) are derived from characteristics of the biological
material: birth and death rates. From a theoretical perspective, the
system constitutes a dynamical meta-population in discrete space with
explicit demography. It contrasts with simpler models, in which demog-
raphy is simplified (Etheridge, 2008), as well as with more complex
spatially structured models (Barton et al., 2002, 2013), in which space
is continuous. Second, a coalescent model of the population across bot-
tlenecks is proposed and coupled with a neutral mutation model with
infinite alleles. This allows computation of the number of mutations
and the distribution of allele frequencies within droplets after several
droplet growth cycles. It shows that small bottlenecks are required
to maximise diversity in one cycle, but larger bottlenecks are more
favourable for diversification across many cycles. Then, the effect of
splitting a droplet into several lineages is studied by computing the
number of mutations accumulated in a single lineage or all the droplet
lineages. Finally, a simple mutation accumulation model illustrates the
interest of droplet-level selection for artificial selection.

2. Modelling nested population dynamics

Consider a device that allows the manipulation of droplets via serial
transfers (Fig. 1). Cells are distributed among a train of 𝐷 droplets
(called populations or droplets). The birth and death of cells are mod-
elled by a linear branching process with constant rates 𝑏 for birth and
𝑑 for death (Fig. 2). The net growth rate 𝑟 ∶= 𝑏 − 𝑑 is called the
Malthusian parameter. After a duration 𝑇 , a new train of 𝐷 droplets is
prepared by diluting them 1

𝛿 fold. Hence, for each dilution event, a cell
has a probability 𝛿 of being sampled and thus being present in the new
roplet (Fig. 3). This procedure is repeated periodically; each dilution
ollowed by a growth phase constitutes a cycle of the experiment or a

droplet generation. Tables 1–3 present a summary reference of all the
symbols used in the text.

More formally, the initial population contains 𝑍0 = 𝑐 cells and is
ubmitted to a bottleneck with sampling probability 𝛿 at the beginning
f every cycle except the first, meaning that bottlenecks occur at times
, 2𝑇 … 𝑛𝑇 . The 𝑛th cycle corresponds to the slice of time [(𝑛−1)𝑇 , 𝑛𝑇 ).
hus, ‘‘the end of cycle 𝑛’’ corresponds to the moment 𝑛𝑇 −, just before
he 𝑛th dilution. To illustrate this, at the end of the third cycle, 𝑡 = 3𝑇 −,
he population has experienced two bottlenecks at time 𝑇 and 2𝑇 .

Birth 𝑏 and death 𝑑 rates depend on the biological material used
e.g., species, strain), as well as the culture medium, and are not easily
ontrolled. However, the duration of the growth phase 𝑇 , the dilution
actor 𝛿, and the number of droplets 𝐷 can be changed by altering the
xperimental set-up. A model can help to predict the effect of those
arameters and determine those that should be the focus of engineering
fforts, such as the development of devices supporting larger droplets,
n increased number of same-size droplets, a wider range of dilution
actors, or droplets that are stable for longer times.
90
.1. Optimal operating regime

When designing a serial transfer experiment, the operator has three
ain parameters that might be controlled: the size of the cultures (and,

y extension, the carrying capacity of droplets, 𝐾, in number of cells),
he duration of the growth phase separating two successive transfers 𝑇 ,
nd the dilution factor 𝛿. Two problems must be avoided: if population
izes are too small and dilution too high, the resulting cultures might
e empty. Conversely, if the population sizes are too large, and dilution
oo low, the population will spend most of its time in a stationary phase,
ith little effect of bottlenecks.

Any dilution event presents the risk of extinguishing the population.
hen performing a serial transfer experiment, this must be avoided

t all costs because an empty microcosm brings about the end of the
xperiment (at least for the given independent lineage). In a nested
opulations’ design, the presence of some empty microcosms can be
olerated because empty patches in the population can be filled by
plitting a single parent droplet into several offspring droplets in the
ext generation.

In general, the stationary phase is not desirable for several reasons.
irst, a population that reaches saturation will go through fewer gener-
tions than if it was growing freely, reducing the potential evolutionary
ynamics. Moreover, physiological changes in the stationary phase
ight result in undesired phenotypic effects on the population. Finally,

n the case of millifluidic experiments, saturating densities are known
o increase the risk of cross-contamination between droplets.

For all these reasons, there is an optimal dilution factor that keeps
he population in an exponential phase while maximising the pop-
lation size, at which selection experiments should be conducted .

A model of population dynamics can provide a first estimate of the
ptimal range of parameters for an experiment. In the following, a
tochastic model of cells in exponential growth conditions (i.e., super-
ritical) with periodic bottlenecks is used to derive the probability
f losing a single cell lineage, or a single droplet lineage due to the
ffect of dilution, as a function of experimentally accessible parameters.
aturation phenomena are not modelled explicitly because the birth
nd death rates are considered independent of population size, but the
opulation dynamics are required to stay under a carrying capacity
hreshold.

.1.1. Survival of a single lineage
A first quantity that can be derived from the linear branching

rocess with periodic dilution that models the population dynamics is
he probability that a single initial cell has no descent in the population
fter 𝑛 cycles.

roposition 1 (Survival Probability). Cells within droplets in serial trans-
ers are modelled by a linear birth–death process, with constant parameters
and 𝑑, that is subject to periodic bottlenecks 𝛿 every duration 𝑇 .

The probability 𝑠𝑛 that a lineage spawned by a single cell at the
eginning of the first cycle is not extinct at the end of the 𝑛th cycle is:

𝑛 = 1 − ℎ(𝑄1𝑄
𝑛−1
𝛿 , 0), (1)

here 𝑠 ↦ ℎ(𝑀, 𝑠) is the linear fractional function with coefficient
∈ 𝑀2(R):

𝑀 =
[

𝑣 𝑤
𝑥 𝑦

]

∈ 𝑀2(R), ℎ(𝑀, 𝑠) = 𝑣𝑠 +𝑤
𝑥𝑠 + 𝑦

. (2)

and for 𝜀 ∈ (0, 1] the matrix 𝑄𝜀 is:

𝑄𝜀 =
[

𝑝 − 1 + 𝜀(1 − 𝑞) (1 − 𝜀) + 𝜀𝑞
𝑝 − 1 1

]

(3)

with,
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Fig. 1. Sketch of the experimental set-up. Let a population of cells following a birth–death process with rates 𝑏, 𝑑 be distributed within 𝐷 droplets. After a growth phase duration
𝑇 , a new cycle starts: the content of each droplet is diluted to seed a new droplet. Each cell has a probability 𝛿 to be transferred at the start of the next cycle. Here, the serial
transfer regime is depicted: each droplet is diluted into exactly a single new droplet in the next cycle. In the full nested populations’ design, a droplet can be split into several
droplets in the cycle or removed altogether.
ℎ

2

D

Fig. 2. Events in a Linear-Birth-Death Model. Individuals give birth to new indi-
viduals at a constant rate 𝑏, and die at constant rate 𝑑, independently. The process is
super-critical if 𝑏 > 𝑑.

Fig. 3. Dilution process. Individual cells are independently selected to be transferred
to the next cycle (with probability 𝛿) or to be discarded (with probability 1 − 𝛿).

𝑝(𝑏, 𝑑, 𝑇 ) 𝑞(𝑏, 𝑑, 𝑇 )

Sub-critical cells 𝑏 < 𝑑 −𝑟
𝑑−𝑏𝑒𝑟𝑇

𝑑(1−𝑒𝑟𝑇 )
𝑑−𝑏𝑒𝑟𝑇

Critical cells 𝑏 = 𝑑 1
1+𝑏𝑇

𝑏𝑇
1+𝑏𝑇

Super-critical cells 𝑏 > 𝑑 𝑟𝑒−𝑟𝑇

𝑏−𝑑𝑒−𝑟𝑇
𝑑(1−𝑒−𝑟𝑇 )
𝑏−𝑑𝑒−𝑟𝑇

Proposition 1 shows that the survival probability of a lineage de-
ends on the birth rate 𝑏 and death rate 𝑑 of the cells but is also

a function of the dilution factor 𝛿, duration of the growth phase 𝑇 ,
and the number of cycles 𝑛. When considering a single dilution and
a pure birth process (𝑠2, Fig. 4), the survival probability is equivalent
o 𝛿E(𝑍𝑇 ) when 𝛿 is small; hence the linear increase with slope 1 in
og–log scale.

The numerical computation of 𝑄𝑛−1
𝛿 might be problematic due to

epeated multiplication of small numbers. However, since the final
( 𝑛−1) ( 𝑛−1)
91

esult only involves the ratio 𝑄𝛿 01 ∕ 𝑄𝛿 11, it is possible to m
Fig. 4. Survival probability at the end of the second cycle 𝑠2. This corresponds to
a first growth phase, a dilution event, and a second growth phase. The probability is
presented as a function of the dilution factor 𝛿 for pure birth processes 𝑏 > 0, 𝑑 = 0, 𝑇 =
1.

normalise 𝑄𝛿 to have its smallest entry as 1. Indeed, this ratio does
not depend on a multiplicative scalar on the matrix: ∀𝛼 > 0, ℎ(𝑄𝑛

𝛿 , 0) =
(𝛼𝑄𝑛

𝛿 , 0). Taking 𝛼 = 1
𝛿 greatly improves the numerical stability of the

computation.
The limit of this probability when the number of cycles increases

gives a clearer understanding of the long-term behaviour of the popu-
lation:

Proposition 2 (Long-Term Survival Probability). Let 𝑠𝑛 be the survival
probability after 𝑛 cycles of the lineage spawned by a single cell.

lim
𝑛→+∞

𝑠𝑛 =

{

0 if 𝛿𝑒𝑟𝑇 ≤ 1
𝑟(𝛿−𝑒−𝑟𝑇 )
𝛿𝑏(1−𝑒−𝑟𝑇 ) otherwise.

Proposition 2 confirms that, in the long run, lineages become extinct
with certainty (𝑠∞ = 0) if and only if the expected number 𝛿𝑒𝑟𝑇 of cells
descending from a single initial cell and surviving the first bottleneck is
smaller than 1. It gives the survival probability otherwise (see Fig. 5).

In the following, only super-critical populations will be considered
(𝑏 > 𝑑).

.1.2. Optimal cycle duration and dilution
Saturation of cell dynamics is not desirable, as mentioned earlier.

epending on the nature of the cells (e.g., species, strain), and of the

edium (e.g., pH, nutrient availability, temperature), it is possible to
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Fig. 5. Survival probability for several cycles 𝑠𝑛. The probability is presented for
pure birth processes 𝑏 = 1, 𝑑 = 0, 𝑇 = 1. Above the critical threshold 𝛿∗, the survival
robability does not tend towards 0. The dotted line corresponds to the limit 𝑠∞.

Fig. 6. Maximal Cycle Duration 𝑇 ∗ as a function of the Malthusian parameter 𝑏 − 𝑑
nd the initial occupancy 𝑐

𝐾
.

define an experimental carrying capacity 𝐾 that corresponds to the
number of cells that can be sustained in a droplet without saturation.
The simple linear birth–death model cannot represent saturating popu-
lations because no density dependence is included in this model; thus,
for the model to be coherent, the duration of the growth phase must
be short enough that the population size does not reach the carrying
capacity:

Proposition 3 (Maximal Cycle Duration). Let 𝑇 ∗ be the maximal cycle
duration before reaching saturation. Cells are following a super-critical
birth–death process with growth rate 𝑏 − 𝑑 = 𝑟 > 0. The carrying capacity
is 𝐾 and the initial number of cells is 𝑐 :

𝑇 ∗ = −
ln( 𝑐

𝐾 )

𝑟
(4)

Proposition 3 shows that the optimal duration of the growth phase
s linear in the inverse of the Malthusian parameter 𝑟 of the population
Fig. 6), meaning that a population that grows (on average) twice as
ast as another should be subject to cycles half as long as the other, for
given initial occupancy 𝑐

𝐾 .
Additionally, the optimal duration of the growth phase is propor-

tional to the logarithm of the initial occupancy 𝑐
𝐾 of the droplet (with

a minus sign, since this logarithm is always negative or zero as 𝑐 ≤ 𝐾).
As a consequence, for a given strain, multiplying the volume of the
droplets by two, or dividing the inoculum size by two will increase the
maximal duration of the growth phase by ln 2

𝑟 .
To keep the same maximal duration 𝑇 ∗ if the Malthusian parameter

𝑟 is doubled, the carrying capacity of the droplet must be multiplied by
the inverse of the previous initial occupancy 𝐾∕𝑐.

This result holds for a single cycle only. For a given dilution factor
92

, the population is shrunk by an expected ratio 𝛿, while for a given e
cycle duration 𝑇 , the population is expanded by an expected ratio
𝛿𝑒𝑟𝑇 . To prevent the population from saturating for all cycles, the
initial occupancy at the beginning of each cycle must be constant. This
consideration allows discovery of the optimal dilution factor 𝛿∗ when
the growth phase duration is fixed. By simply setting 𝛿∗ to be the
solution of 𝛿𝑒𝑟𝑇 = 1, we obtain 𝛿∗ = 𝑒−𝑟𝑇 . We record this result in
Proposition 4.

Proposition 4 (Optimal Dilution Factor). Let 𝛿∗ be the optimal dilution
factor for which the expected number of cells is constant across generations.
For cells following a birth–death process with growth rate 𝑏−𝑑 = 𝑟 > 0 and
a growth phase duration 𝑇 :

𝛿∗ = 𝑒−𝑟𝑇 . (5)

If 𝑇 = 𝑇 ∗ (Proposition 3),

𝛿∗ = 𝑐
𝐾

(6)

Proposition 4 shows that the dilution sampling probability should
be equal to the initial occupancy when the duration of the cycle is
maximal.

To summarise, the optimal operating regime of the experiment can
be expressed from the Malthusian parameter of the population and the
initial occupancy of the droplets 𝑐

𝐾 . As a result, the dilution sampling
probability is 𝛿∗ = 𝑐

𝐾 , and the duration of a cycle is 𝑇 ∗ = − log(𝛿∗)
𝑟 . Fixing

any two of (𝑐, 𝐾, 𝑇 , 𝛿) values constrains the other two.
When the experiment is in the optimal regime, the expression of the

survival of a lineage at cycle 𝑛 is simpler:

Proposition 5 (Optimal Regime Survival Rate). Let 𝑠∗𝑛 be the survival
probability of a lineage after 𝑛 cycles of duration 𝑇 and with bottleneck
𝛿∗ = 𝑒−𝑟𝑇 , where 𝑟 = 𝑏 − 𝑑 > 0 is the Malthusian parameter of the
population.

Then:

𝑠∗𝑛 = 𝑟
𝑏𝑛(1 − 𝛿∗) + 𝛿∗𝑟

(7)

In the optimal regime, each initial cell has, on average, one de-
scendant cell surviving the next bottleneck. The process counting the
number of cells at time 𝑘𝑇 is thus a critical Galton–Watson process (as
a function of 𝑘). Proposition 5 shows that, in the optimal regime, the
survival probability of a lineage decreases as the inverse of the number
of cycles, which is typical of critically branching populations.

Additionally, when taking a finite number of cycles 𝑛, the survival
does not tend towards zero, even for vanishingly small bottlenecks 𝛿.
This derives from the fact that, in the optimal regime, a small bottle-
neck is compensated by a long cycle duration 𝑇 ∗; thus, vanishingly
small bottlenecks correspond to infinitely long cycles.

Finally, in the case of pure birth (i.e., 𝑑 = 0), the survival of
a lineage is independent of the birth rate 𝑏. It is certain if there is
no bottleneck (𝛿 = 1), and tends towards 1

𝑛 for vanishingly small
bottlenecks (𝛿 → 0).

Overall, once the size of the droplets (which constrains 𝐾) and
he initial occupancy (which constrains 𝑐) have been chosen by the
perator, other parameters of the machine (duration of the growth
hase 𝑇 , dilution factor 𝛿) can be deduced — and, conversely, fixing
and 𝛿 constrains 𝐾 and 𝑐. The next section explores how one should

elect these parameters when the aim is to maximise genetic diversity
ithin and between the droplets.

. Modelling neutral diversity

Neutral diversity concerns mutations arising in the population of
ells that are assumed not to change their birth or death rates. Neutral
iversity gives rise to recognisable patterns that can be predicted from
mechanistic model of birth–death in the population. In experimental

volution, and a fortiori in artificial selection, it is desirable to increase
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Fig. 7. Neutral mutations over the coalescent tree. The neutral mutations (coloured
crosses) are distributed following a Poisson Process over the (real) coalescent tree
(black). Each individual may carry several mutations distinguishing it from the most
recent common ancestor.

the diversity within the population because this allows greater explo-
ration of the phenotypic space. Indeed, mutations that are essentially
neutral for cells might be of interest for the experimenter, or be
intermediate states towards new phenotypes.

In the following, mutations follow a Poisson Point Process with
constant rate 𝜃 over the lifespan of the cells, independently of their
genealogy. As a consequence, the time between two mutations along
a lineage (regardless of births and deaths) is exponentially distributed,
and thus has no memory: the conditional expected time to the next
mutation will be the same for all cells, irrespective of their age or the
time of the last mutation in the lineage. This is a simplifying assumption
that represents the spontaneous nature of mutations while ignoring the
existence of mutations that can change the mutation rate (Sniegowski
et al., 1997, 2000).

3.1. Coalescence times and the coalescent point process

The linear branching process (with constant birth rate 𝑏 and death
rate 𝑑) yields the full genealogy of the population (Fig. 8, left). How-
ever, the standing diversity at a given time in the population is affected
(i) neither by the mutations occurring on lineages that do not have
extant individuals (because their mutations have been lost) (ii) nor by
mutations that are ancestral to the whole population (because they are
shared by all individuals in the population). Thus, to characterise the
standing diversity, it is sufficient to have knowledge of the coalescent
tree of the population (Fig. 8, right), which is the genealogy of the
extant individuals up to their most recent common ancestor.

Coalescent Point Processes (CPP) are stochastic processes whose re-
alisations are real trees with the same probability as the coalescent tree
of the corresponding branching process (Popovic, 2004; Lambert and
Stadler, 2013). A CPP is defined by a time horizon 𝜏 ∈ R+ and a node
depth distribution 𝑓𝐻 . The CPP is the sequence of independent and
identically distributed variables (𝐻𝑖)𝑖=1…𝑁 following 𝑓𝐻 and stopped at
93

the first element 𝑁 such that 𝐻𝑁 > 𝜏 (the CPP is said to be ‘‘stopped
at 𝜏’’). Usually, the node depth distribution is expressed in the form of
the inverse tail distribution 𝐹 :

𝐹 (𝑡) ∶= 1
𝑃 (𝐻 > 𝑡)

(8)

3.2. Measuring neutral diversity

Neutral mutations do not affect the genealogy and can thus be su-
perimposed a posteriori on the coalescent tree. Consider that mutations
appear following a Poisson point process with constant rate 𝜃 over the
coalescent tree. Thus, a mutation is a point on the coalescent tree, as
illustrated in Fig. 7. Additionally, assume that reverse mutations are
impossible (an assumption referred to as the ‘‘infinite sites model’’), so
that all individuals standing above the mutation in the coalescent tree
(i.e., the descent of the mutation point) share the mutation (crosses at
the top of Fig. 7). Individuals may carry zero, one, or several mutations.

The mutational richness of the population 𝑀 (or total diversity) is
the number of unique mutations found in the population. Its expected
value is proportional to the total coalescent tree length.

The mutation frequency spectrum (𝑎𝑘)𝑘∈N is another measure of
iversity that counts how many mutations are represented by 𝑘 indi-
iduals in the population.

All these measures require some knowledge of the shape of the
oalescent tree of the population. The next paragraph is dedicated to
stablishing this for the simple case of serial transfer, while the next
ection is dedicated to the case of splitting droplets.

.3. Diversity within droplets in serial transfer

Establishing the law of the CPP of a lineage within serial transfer
equires identification of the law of the branch length. This law is well
nown for simple branching processes such as the linear birth–death
rocess with parameters (𝑏, 𝑑) (Lambert and Stadler (2013), Proposition
).

The addition of repeated bottlenecks with period 𝑇 is also possible
ithin the theory (Lambert and Stadler (2013), Proposition 7) by

hinning the original process (Fig. 9). Each bottleneck at time 𝑖𝑇 ,
𝑖 = 1,… , 𝑛 may remove independently each branch of the CPP with
probability (1−𝛿) (in grey in Fig. 9). Removing a branch in the past (at
time 𝑖𝑇 ) may result in removing several branches in the present, and
require an adjustment to branch length (green in Fig. 9). The number of
branches removed and the adjustment to the branch length distribution
can be computed from the law of the branch length of the CPP in the
absence of the bottleneck, the sampling probability 𝛿, and the period
of the bottleneck 𝑇 . As a result:

Proposition 6 (Coalescent Tree of a Lineage). Let 𝑛 be the random
coalescent tree spawned by a single cell with extant descent at the end of
the 𝑛th cycle. Then 𝑛 is a CPP stopped at 𝑛𝑇 , with inverse tail distribution
𝐹 :

∀𝑡 = 𝑘𝑇 + 𝑠, 𝐹 (𝑡) = 𝛿𝑘𝐹 (𝑡) + (1 − 𝛿)
𝑘
∑

𝑗=1
𝛿𝑗−1𝐹 (𝑗𝑇 )

= 1 + 𝑏
𝑟

[

𝑒𝑟𝑠(𝛿𝑒𝑟𝑇 )𝑘 − 1 + (1 − 𝛿)𝑒𝑟𝑇
1 − (𝛿𝑒𝑟𝑇 )𝑘

1 − 𝛿𝑒𝑟𝑇

]

with 𝑏 > 0, 𝑑 ≥ 0, 𝑏 ≠ 𝑑, 𝑘 ∈ N and 0 ≤ 𝑠 < 𝑇 . Additionally, in the case of
critical dilution (𝛿∗ = 𝑒−𝑟𝑇 ), we have:

∀𝑡 = 𝑘𝑇 + 𝑠, 𝐹 (𝑡) = 1 + 𝑏
𝑟
(

𝑒𝑟𝑠 − 1 + 𝑘(𝑒𝑟𝑇 − 1)
)

.

The case 𝑏 = 𝑑 is covered in the appendix.

Proposition 6 gives the cumulative probability function for the node
depth 𝐻 : P(𝐻 < 𝑡) = 1− 1

𝐹 (𝑡) (Fig. 10). Note that this function is defined
piecewise for each cycle.

Because 𝐹 (𝑡) → ∞ as 𝑡 → ∞, the cumulative distribution function
of node depths tends to 1, which shows that 𝐻 cannot take the value
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Fig. 8. From a Birth-Death Process to a Coalescent Point Process. On the left-hand side is a birth–death process where a number of individuals give birth (eggs) and die
(skulls) at different points in time, which flows from left to right. On the right-hand side is the corresponding continuous coalescent tree, where time flows from bottom to top.
Note that at time 𝐶, lineage 3 coalesces with lineage 4, and that at time 𝐵, lineages 1 and 2 coalesce. Finally, at time 𝐴, lineage (1, 2) coalesces with lineage (3, 4).
Fig. 9. Bottlenecks are modelled by thinning the process. A bottleneck at some
point in the past (red bottle) results in the extinction of some lineages (in grey), which
modifies the genealogy (thick green lines).

Fig. 10. Cumulative probability for the branch length. Dotted lines represent
bottlenecks.
94
Fig. 11. Node depth distribution. Sample of 108 realisations of the random variable
𝐻 by the inversion of the cumulative probability function method. Deep nodes follow
a power law distribution with parameter 𝛼 = −1 (orange line).

+∞, as is expected for critically (and also super-critically) branching
populations.

The random variable 𝐻 can be easily sampled from its cumula-
tive probability function. As illustrated in Fig. 11, the distribution of
deep nodes (deeper than depth 1) can be fitted by a power law with
parameter −1 (criticality).

3.4. Number of mutations

To find the expected number of mutations within a droplet, the
expected size of the full coalescent tree must be considered. This
relies on the node depth distribution, conditioned to be lower than the
duration of the experiment. It results in the following:

Proposition 7 (Number of Mutations). Let 𝑀𝑛 be the expected number of
mutations (compared to the ancestral phenotype) accumulated in a lineage
at the end of the 𝑛th cycle, with dilution 𝛿∗ = 𝑒−(𝑏−𝑑)𝑇 , birth rate of cells 𝑏,
death rate 𝑑, and mutation rate 𝜃.

𝑀𝑛 = 𝜃𝑠∗𝑛𝐿𝑛, (9)

with 𝐿𝑛 the average length of the coalescent tree at the end of the 𝑛th cycle
of an extant lineage started by one cell at 𝑡 = 0:

𝐿𝑛 = 𝐹 (𝑛𝑇 )
𝑛𝑇 𝑑𝑡 , (10)
∫0 𝐹 (𝑡)



Theoretical Population Biology 158 (2024) 89–108G. Doulcier and A. Lambert

e

w
w

𝐿

l
c
v
b
t
t
n

b
a
b

t
𝜃

𝑀

Fig. 12. Expected number of mutations through experimental cycles. The expected
number of mutations increases with the number of experimental cycles. The initial
number of cells is 𝑐 = 𝐾𝛿. For one cycle (𝑛 = 1), smaller dilution factors give better
results (the curve 𝛿 = 0.5 is lower than the curve for 𝛿 = 0.001). For more cycles,
however, a larger dilution factor yields more mutations.

Fig. 13. Expected number of mutations for different dilution factors. The initial
number of cells is 𝑐 = 𝐾𝛿. For a single cycle (𝑛 = 1), smaller dilution factors always
yield more mutations. However, if more than one cycle is performed (𝑛 ≥ 2), there is
a non-zero optimal dilution factor that maximises the expected number of mutations
found in the population.

Fig. 14. Mutation-optimising bottleneck size as a function of the number of
cycles. The initial number of cells is 𝑐 = 𝐾𝛿. The bottleneck size that optimises the
xpected number of mutations is increasing with the number of cycles performed.

ith 𝐹 the inverse tail distribution of the associated CPP. More specifically,
hen using the expression of 𝐹 from Proposition 6:

𝑛 =
(

1 + 𝑏
𝑟
𝑛(𝑒𝑟𝑇 − 1)

)

𝑛
∑

𝑘=0

𝑟𝑇 − log
(

𝑘(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

(𝑘+1)(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

)

𝑏𝑘(𝑒𝑟𝑇 − 1) − 𝑑
(11)

Proposition 7 shows that the expected number of mutations 𝑀𝑛
accumulated in a lineage is, naturally, proportional to the mutation
rate 𝜃. The expected number of mutations is also proportional to the
expected coalescent tree length of a single extant lineage 𝐿𝑛 (weighted
by the proportion of lineages that actually survive 𝑠 ). This expected
95

𝑛

coalescent length is parameterised by the birth and death rates of the
cells, but also the duration of the growth phase 𝑇 . The proportion of
lineages that actually survives plays an important role here. Consider a
massively parallel experiment with the goal of screening as many muta-
tions as possible. To find the optimal protocol, one must not only seek
to optimise the number of mutations that accumulate on one lineage
𝜃𝐿𝑛 but also discount this number by the proportion of them that are
extinct 𝑠𝑛. Otherwise, one might waste a lot of resources conducting
an experiment consisting mainly in serial transfer of droplets devoid of
cells altogether. Finally, since the number of accumulated mutations is
proportional to the number of initial lineages, increasing this number
by producing more numerous or bigger droplets (with the same initial
occupancy) proportionally increases the number of mutations.

The expected number of mutations increases indefinitely with the
number of cycles (Fig. 12). However, the rate of increase is tied to the
dilution bottleneck and tends to slow down when the number of cycles
increases. Note that for a small number of cycles, the expected number
of mutations increases with a higher dilution: one cycle with a dilution
by two yields less diversity than one cycle with a dilution by one
hundred. However, if ten cycles are performed, a dilution by two yields
more diversity. This illustrates a trade-off between a harsh bottleneck,
which allows long cycles and thus potentially many mutations but leads
to the loss of most extant mutations (due to founder effects), and a
softer bottleneck that allows for fewer mutations to accumulate during
each cycle but compounds more because fewer mutations are lost.

Fig. 13 clarifies the link between the expected number of mutations
and the dilution bottleneck. Note that smaller bottleneck sizes are
compensated by longer cycles because the experiment is supposed to
be performed in optimal conditions (𝛿 = 𝑒−𝑟𝑇 ). If there is only one
cycle (𝑛 = 1), the maximal expected number of mutations is reached
when the dilution bottleneck is vanishingly small (𝛿 → 0) and the cycle
ength adequately long (𝑇 → ∞). However, if there is more than one
ycle (𝑛 > 1), the expected number of mutations reaches a maximum
alue between 𝛿 = 0 and 𝛿 = 1. This maximum-diversity dilution
ottleneck value increases with the number of cycles (Fig. 14). Thus,
he dilution bottleneck should be adjusted to the expected duration of
he experiment in terms of cycle number to maximise accumulation of
eutral mutations.

Overall, the expected number of neutral mutations accumulated
y the population increases through time and can be optimised by
ppropriately choosing a bottleneck size that optimises the trade-off
etween accumulating new mutations and not losing old ones.

Note that 𝐿𝑛 behaves like 𝑇 𝑛 ln(𝑛) (Lambert (2009), Theorem 2.4);
hus, the expected neutral diversity after 𝑛 cycles is equivalent to
𝑠𝑛𝑇 𝑛 ln(𝑛).

Thanks to (7), and because 𝛿 = 𝛿⋆ = 𝑒−𝑟𝑇 , we obtain:

𝑛 ∼𝑛→+∞
𝜃𝑇 𝑟

𝑏(1 − 𝑒−𝑟𝑇 )
ln(𝑛).

The mere number of mutations contains little information about the
diversity within a droplet. Indeed, some of those mutations could be
born by a single individual, while others might be shared by the whole
population. The next section addresses this problem by exploring the
mutation frequency spectrum.

3.5. Mutation frequency spectrum

A more precise assessment of the neutral diversity structure involves
distinguishing between rare mutations (carried by few individuals)
and frequent mutations (widespread within the population). The mu-
tation frequency spectrum presents the proportion of mutations that
are carried by a given number of individuals. The expected mutation
frequency spectrum of a CPP can be deduced from the law of node
depths 𝐻 (Lambert (2009), Theorem 2.2). Indeed, the number of
mutations carried by 𝑖 individuals is proportional to the length of the
coalescent tree subtending 𝑖 leaves (Fig. 15). As a result:
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Fig. 15. Finding the mutation frequency spectrum. The mutations shared by 3
individuals are the ones that arose within the orange region only. This region is
delimited by max(𝐻𝑖+1 ,𝐻𝑖+2) < 𝑡 < min(𝐻𝑖 ,𝐻𝑖+3).

Proposition 8 (Mutation Frequency Spectrum). Consider the CPP 𝑛, with
overlaying mutations following a Poisson point process with intensity 𝜃.

Let 𝑀𝑓
𝑛 be the expected number of mutations fixed in the population:

that is, mutations shared by all individuals. Then:

𝑀𝑓
𝑛 = 𝜃𝑠𝑛 ∫

𝑛𝑇

0

𝐹 (𝑠)
𝐹 (𝑛𝑇 )

−
𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠 (12)

Let 𝑎𝑢 be the expected frequency of mutations that are shared by 𝑢 > 0
individuals in the limit of a large sample of the population.

𝑎𝑢 = 𝜃 ∫

𝑛𝑇

0

⎛

⎜

⎜

⎝

1 −
1

𝐹 (𝑥) −
1

𝐹 (𝑛𝑇 )

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

𝑢−1
⎛

⎜

⎜

⎝

1
𝐹 (𝑥) −

1
𝐹 (𝑛𝑇 )

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

2

𝑑𝑥 (13)

As is expected for neutral diversity, Proposition 8 shows that the
utation frequency spectrum is proportional to the mutation rate 𝜃,
eaning that an increasing proportion of individuals carry mutations

f the rate increases, but that this does not change the relative frequency
f the size of groups carrying a given mutation.

Fig. 16 shows the mutation frequency spectra for one and for a
undred cycles, and for three different dilution factors. Note that for
single cycle, harsher bottlenecks (i.e., smaller 𝛿 and correspondingly

longer cycle duration 𝑇 ) increase the tail of the distribution (i.e., there
re more mutations that are shared by many individuals). This effect of
and 𝑇 is not as simple when considering several cycles. For 𝑛 = 100,

he distribution is more heavy-tailed when the bottlenecks are soft
𝛿 = 0.5) than when they are harsh (𝛿 = 0.001).

Fig. 17 shows the power law tails of mutation frequency spectra.
When the coalescent tree is a Kingman coalescent, corresponding

to a long-lived population with approximately constant size, the muta-
tion frequency spectrum has power law with exponent −1 (harmonic
spectrum, Ewens’ sampling formula, Ewens (1972)). In our setting, this
happens when 𝛿 is close to 1 (constant population size) and 𝑛𝑇 is large
(long-lived population). For a fixed growth rate 𝑟, because 𝛿𝑒𝑟𝑇 = 1,
this means that (1 − 𝛿 is small but) 𝑛(1 − 𝛿) is large, as in the yellow
region of the heat map of Fig. 17.

When the coalescent tree is a Yule tree, corresponding to full,
unbounded growth, the mutation frequency spectrum has power law
with exponent −2 (Lambert, 2009; Dinh et al., 2020; Durrett, 2013).
This is what happens for small 𝛿, regardless of 𝑛, as in the turquoise
region of Fig. 17. Indeed, when 𝛿 is small, 𝑇 is large (for fixed 𝑟), so
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that all derived mutations occurred since the last bottleneck.
Fig. 16. Mutation frequency spectrum. Give the frequency of mutations carried by
a given number of individuals in a large sample of the population. Top: After 𝑛 = 1
cycle. Bottom: After 𝑛 = 100 cycles.

A third case stands out in our setting when 𝑛 is not too large and
𝛿 is sufficiently close to 1 that very few births/coalescences occur over
the time interval of length 𝑛𝑇 , which happens when 𝑛(1 − 𝛿) = 𝑂(1).
In this case, conditioning the CPP to have coalescences smaller than
𝑛𝑇 (an event of vanishing probability) yields a CPP with uniform node
depths, which gives rise to a power law mutation frequency spectrum
with exponent −3, as in the deep blue region of Fig. 17.

The information entropy of the mutation frequency spectrum can
be used to systematically explore the effect of 𝛿 on the shape of the
distribution. Fig. 18 shows that if more than one cycle is performed,
there is a value of 𝛿 that is expected to optimise the information entropy
of the mutation frequency spectrum. This value is different from the
value that optimises the number of mutations (Fig. 13). Thus, there is
a trade-off between accumulating many mutations and having a diverse
mutation frequency spectrum. The decision to fix 𝛿 in order to optimise
one or the other depends on the goal of the experiment.

To sum up, higher dilution factor or longer duration of droplet
growth cycles result in longer trees and increased diversity, even
though the population may risk going extinct. Extinction of the pop-
ulation marks the ‘‘death’’ of the culture and is the eventual fate of
a serial transfer experiment in the limit of many cycles. In a nested
populations’ design, the cultures can also ‘‘reproduce’’ and replace the
extinct ones. This has far-reaching consequences for the genealogy of
the cells, as shown in the next section.

4. Diversity in dividing droplets

Nested populations’ design differs from simple serial transfer in
parallel cultures by the opportunity for the cultures (droplets, tubes or
other compartments) to be subject to birth and death themselves. At
each cycle, some cultures may be removed from the experiment, while
others can be duplicated, usually by dispatching samples of the original
droplet in several new fresh medium compartments (rather than one in
regular parallel serial transfer experiments).

This section focuses on the consequences of imposing a droplet-level
birth–death process on the neutral diversity. To this end, consider the
simple scenario (depicted in Fig. 19) of a pair of droplets that share a
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Fig. 17. Mutation frequency spectrum power law tail. Left: Slope of the regression 𝛼, such that 𝑙𝑜𝑔(𝑎𝑢) = 𝛼𝑙𝑜𝑔(𝑢) + 𝑏, for 𝑢 > 500. For a branching process without bottleneck,
the expected value is −2; it is −1 for a Moran process and −3 for a Coalescent Point Process with uniform node depths. White dashed lines are isolines −1, −2, −3. Right: three
illustrative mutation frequency spectra with associated regression lines. The location of the three spectra in the parameter space is represented by colour-matching dots on the left
heat-map.
Fig. 18. Shannon Entropy of the mutation frequency spectrum. Defined as 𝑆 =
−
∑

𝑖 𝑎𝑖 log(𝑎𝑖).

common ‘‘droplet ancestor’’ several cycles in the past. The two droplets
differ by the initial sampling performed in their common ancestor and
also by all new mutations accumulated since they became isolated.

In the following, the cells follow a super-critical linear birth–death
process with parameters 𝑏−𝑑 = 𝑟 > 0. The parameters of the population
structure are supposed to be optimal in the sense of Section 2.1: each
cycle has a duration 𝑇 ∗ = −𝑟−1 ln (𝑐𝐾−1), and each lineage has an
independent probability of being sampled at a bottleneck of 𝛿∗ = 𝑒−𝑟𝑇 ∗ .
Consider that the droplet split happens at cycle 𝑚 and the observation
occurs at cycle 𝑚 + 𝑛.

4.1. Survival probability

First, let us consider the probability that a lineage spawned by a
single cell 𝑛 cycles in the past is not extinct within both droplets.
The key to establish this probability is to recognise that the lineage
undergoes a bottleneck with survival probability 𝛿 at each cycle, except
the cycle of the droplet split where each cell has a probability 2𝛿
to survive. Indeed, two inoculation volumes are concurrently sampled
from the ancestral droplet and dispatched into two offspring (Fig. 20).
Thus:

Proposition 9 (Survival probability - Split droplet). Cells within droplets
in serial transfer are modelled by a linear birth–death process with constant
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parameters 𝑏 and 𝑑, subject to periodic bottlenecks 𝛿 every duration 𝑇 for
𝑚 + 𝑛 cycles, except at cycle 𝑚 where 𝑘 droplets are produced (instead
of one). Each new droplet is submitted independently to the serial transfer
procedure for the remaining 𝑛 cycles.

The probability 𝑠𝑘,𝑚,𝑛 that a lineage spawned by a single cell at the
beginning of the first cycle is not extinct at the end of the (𝑛+𝑚)th cycle is
given by:

𝑠𝑘,𝑚,𝑛 = 1 − ℎ(𝑄1𝑄
𝑚−1
𝛿 𝑄𝑘𝛿𝑄

𝑛−1
𝛿 , 0), (14)

where the matrix 𝑄𝜀 for 𝜀 ∈ [0, 1] and the function ℎ are defined in
Proposition 1.

Proposition 9 is similar in its conclusion to Proposition 1, which
treated the case of a simple serial transfer. However, the expression is
considerably less easy to handle, as the iteration does not simplify into
a single matrix power.

4.2. Total diversity

As seen in Proposition 7, quantifying the total neutral diversity in
an infinitely-many sites model is a matter of finding the total length
of the coalescent tree (or forest) of the population. Note that the full
coalescent tree in Fig. 21 can be decomposed into a stump, before the
splitting of droplets, and a corolla: another set of CPP (the corolla)
sampled in one or the other droplet lineage. As a result:

Proposition 10 (Total Diversity - Split droplet). Let 𝑀𝑘,𝑚,𝑛 be the expected
number of mutations accumulated in a lineage at cycle 𝑛 + 𝑚 after the
splitting of the initial droplet at cycle 𝑚 into 𝑘 = 1, 2…

⌊

1
𝛿

⌋

droplets. Then:

𝑀𝑘,𝑚,𝑛 =𝜃𝐿𝑘,𝑚,𝑛

=𝜃𝑠𝑚𝐹 †(𝑚𝑇 )
[

∫

𝑚𝑇

0

1
𝐹 †(𝑠)

𝑑𝑠 + ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠
]

,

where 𝐿𝑘,𝑚,𝑛 is the expected length of the coalescent tree of the population,
𝐹 is the inverse tail distribution of the CPP with periodic bottlenecks, and
𝐹 † ∶= 1 − 𝑘𝛿𝑠𝑛 + 𝑘𝛿𝑠𝑛𝐹 , is the inverse tail distribution of the same CPP
submitted to sampling with probability 𝑘𝛿𝑠𝑛 at the present.

4.3. Private diversity

To assess the divergence between split droplets, one can compute
the expected number of private mutations (i.e., mutations that are only
found in a single of the 𝑘 split droplets). This number is the sum
of all mutations that occur in the droplets after the splitting time
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Fig. 19. Droplet and cell nested coalescent trees. Left: coalescent tree of droplets. Right: coalescent tree of cells. An ancestral droplet lineage (black) is diluted into two offspring
droplets (red, blue). At the time when the droplets are split (cycle 𝑚), the cell lineages within the ancestral droplets are assigned a colour (red or blue) that indicates the daughter
droplet to which they are sent. Mutations appear along the genealogy of cells (crosses). Some mutations appear before the split (yellow, green, purple) and are found in both
droplets (green, purple) if they are sampled by both droplet lineages, or within a single droplet (yellow) if they are segregated by the dilution. Other mutations appear after the
split (light blue, orange) and are only found in one of the droplet lineages.
Fig. 20. Droplet Splitting Process. When a droplet is split into 𝑘 droplets, individual
cells are independently selected to be transferred to the next cycle (with probability 𝛿
for each new droplet) or be discarded (with probability 1 − 𝑘𝛿).

𝑚𝑇 (i.e., mutations in the corolla), plus all the mutations that occur
before the splitting time but in a lineage that only segregates in a
single droplet (i.e., mutations in the stump). Since all the droplets are
interchangeable, this value is identical for the 𝑘 droplets. Overall, this
number is proportional to the red (or blue) part of the CPP in Fig. 19.

Proposition 11 (Private Mutations - Split Droplet). Let a single droplet
be split into 𝑘 = 1…

⌊

1
⌋

at cycle 𝑚. Let 𝑀 ′ be the expected number of
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𝛿 𝑘,𝑚,𝑛
mutations that are private to any of the 𝑘 droplets when observed at cycle
𝑛 + 𝑚.

𝑀 ′
𝑘,𝑚,𝑛 = 𝑘,𝑚,𝑛

⏟⏟⏟
stump

+ 𝑘,𝑚,𝑛
⏟⏟⏟
corolla

= 𝜃𝑠𝑚𝐹
†(𝑚𝑇 )

[

∫

𝑚𝑇

0

𝑘𝑑𝑠
𝐹 †(𝑠)(1 + (𝑘 − 1)𝐹 †(𝑠))

+ ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠
]

,

where 𝐹 is the inverse tail distribution of the CPP with periodic bottlenecks,
and 𝐹 † is the inverse tail distribution of the same CPP submitted to sampling
with probability 𝑘𝛿𝑠𝑛 at the present.

Fig. 22 shows the expected proportion of private mutations
𝑀 ′

𝑘,𝑚,𝑛∕𝑀𝑘,𝑚,𝑛 in split droplets as a function of 𝑚, the number of cycles
before splitting. If 𝑚 is low, there are no shared mutations among
droplets and the ratio is close to 1. If more cycles occur before the
split, the proportion of private mutations decreases, tending towards 0
at a logarithmic rate.

Now, the main purpose of droplet splitting is to select and duplicate
a phenotype of interest. The last section explores, in the context of
artificial selection, the advantage offered by a droplet-splitting process
over the simple screening of parallel cultures in serial transfer.

5. Artificial selection of droplets

A practical application of a device that would allow the manipu-
lation of small cultures of microbial organisms would be the artificial
selection of phenotypes of interest. Suppose that a given phenotype of
interest is reached after the accumulation of 𝛩 mutations and that it is
possible to detect the number of mutations fixed so far, by sequencing
or direct observation of the cultures.

To formalise, let 𝐷 ∈ N∗ be the number of droplets. Each droplet 𝑖 is
assigned a number 𝑒𝑖 = 1, 2,… , 𝛩, corresponding to the number of fixed
mutations. Suppose that the time for a droplet to switch from 𝑒𝑖 = 𝑗 to
𝑒𝑖 = 𝑗 + 1 is exponentially distributed with parameter 𝛼 = 𝜌

𝑁𝐷 , where 𝜌
is the mutation rate (that could be deduced from Proposition 8), scaled
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Fig. 21. Finding the total diversity at cycle 𝑛 +𝑚 of droplets split at cycle 𝑚. All
the lineages (triangles) spawned from the cells dispatched in one of the 𝑘 = 2 droplets
(here red and blue) have the same expected length 𝐿𝑛. The bottom part (or stump)
of the tree (black) result from the sampling of a coalescent point process stopped at
𝑚𝑇 , with probability 𝜋𝑘,𝑚,𝑛, the probability that an extant lineage at cycle 𝑚 will be
sampled in one of the two droplets and survive until cycle 𝑛 + 𝑚.

Fig. 22. Expected proportion of private mutations in split droplets. Droplets are
grown for 𝑚 cycles, then split into 𝑘 = 2 new droplets and grown for 𝑛 new cycles.
𝑏 = 1, 𝑑 = 0, 𝛿 = 𝑒−𝑟𝑇 .

by the number of droplets 𝐷 and the number of cycles 𝑁 . We assume
that the 𝐷 droplets are in state 0 at time 0. We also assume that the
only possible transition is to accumulate a new mutation: that is, no
reversion is possible, as illustrated in Fig. 23.

To assess the advantage of droplet splitting, consider two scenarios,
illustrated in Fig. 24:

(1) Without droplet selection 𝐷 droplet lineages are started in
state 0 at 𝑡 = 0 and undergo serial transfer independently of each
other.

(2) With droplet selection 𝐷 droplet lineages are started in state 0
at 𝑡 = 0. Once a fixed mutant is detected in a lineage, all the other
droplets are killed and this lineage is split in 𝐷 new lineages.

Let 𝛤 (respectively, 𝛤 ∗) be the random variable encoding the first
time for a lineage to get to the state 𝛩 ∈ N in the scenario without
droplet selection (respectively with droplet selection). To compare
them, consider their respective cumulative distribution functions:
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Proposition 12 (Cumulative Distribution Functions). The cumulative
distribution function of 𝛤 ∗ is:

P(𝛤 ∗ ≤ 𝑥) = 1 − 𝑒−𝑥𝜌
(𝛩−1
∑

𝑢=0

(𝜌𝑥)𝑢

𝑢!

)

(15)

The cumulative distribution function of 𝛤 is:

P(𝛤 ≤ 𝑥) = 1 − 𝑒−𝜌𝑥
(𝛩−1
∑

𝑢=0

(𝜌𝑥)𝑢

𝐷𝑢𝑢!

)𝐷

(16)

The selective regime is always faster than the serial transfer regime, in
the sense that 𝛤 ∗ is stochastically smaller than 𝛤

P(𝛤 ∗ ≤ 𝑥) ≥ P(𝛤 ≤ 𝑥). (17)

In addition as the number of mutational steps 𝛩 → ∞, the ratio 𝛤 ∗∕𝛤
converges to 1∕𝐷 almost surely.

Proposition 12 shows that droplet level selection – that is, the pro-
cess of splitting a droplet in which an intermediate mutation was fixed
– leads to reducing the time to reach the 𝛩th mutation. Fig. 25 shows
the shape of the cumulative probability function for both regimes,
illustrating this advantage. This constitutes a simple use case for a
device that allows the automated high-throughput manipulation of
numerous cultures, such as the digital millifluidic analysers (Baraban
et al., 2011; Boitard et al., 2015; Cottinet et al., 2016).

Note that this result is obtained by assuming that the detection of
mutation is cost-free and error-free. A more advanced model of this
system should tackle the problem of imperfect detection.

6. Discussion

This manuscript has laid the foundation for a theoretical under-
standing of the evolution of neutral diversity in massively parallel
microbial evolution experiments with population splits. It was heavily
inspired by ongoing engineering efforts to bring experimental evolution
to digital millifluidics (Cottinet, 2013; Boitard et al., 2015; Dupin,
2018; Doulcier, 2019; Ardré et al., 2022).

In experimental microbiology, one desirable feature is to maximise
the number of mutations accumulated within the cultures: for instance,
to screen phenotypes of interest. The result presented above showed
that, in an optimal growth setting, where cells are growing with a
constant birth and death rate, without density-dependence or compe-
tition, the population should be submitted to cycles whose duration
is tailored to compensate the bottleneck imposed at each serial trans-
fer. The choice of the bottleneck should be made according to the
expected duration of the experiment: to optimise the expected num-
ber of mutations, small bottlenecks (i.e., killing most of the lineages)
should be used when the number of cycles is small, while larger
bottlenecks (i.e., lower dilution factor) should be used for long-term
experiments. Additionally, the expected number of mutations increases
linearly with increasing droplet volume and with increasing number
of droplets, which is a matter of technological progress as automation
and larger droplet sizes are under consideration (Dupin, 2018; Postek
et al., 2022). The mutation rate also increases linearly the number
of expected mutations and can be manipulated by choosing mutator
lineages or adding mutating chemicals to the culture broth. However,
the potentially deleterious effects of this method might prevent using
it in practical cases.

In long-term evolution experiments (Kawecki et al., 2012; Van
den Bergh et al., 2018), serial transfer is imposed by the need to
replenish nutrients available to the cells. It is possible to build devices
ensuring that a continuous flow of nutrient washes over the culture (for
large volumes, see chemostats, or morbidostats (Toprak et al., 2013);
in microfluidics, see mother machines (Potvin-Trottier et al., 2018).
However, these methods are usually more prone to contamination. In
contrast, periodically diluting the culture in a fresh medium is simple
and robust.
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Fig. 23. Phenotypes. There are 𝛩 + 1 possible phenotypes. A 𝑗-droplet switches to the next phenotype 𝑗 + 1 at rate 𝛼.
Fig. 24. Propagation of mutations. Without droplet selection, all the lineages accumulate mutations independently. With droplet selection, once a mutation fixation is first
etected, the droplet is split into 𝐷 lineages.
Fig. 25. Cumulative probability distribution of the time to accumulate 𝛩 mutations.
With droplet splitting, accumulation of mutation is faster. 𝐷 = 100.

The nested populations’ design differs from traditional serial trans-
fer of parallel cultures because it allows a birth–death process at the
level of droplets. Serial transfer is pervasive in experimental evolu-
tion (Kawecki et al., 2012) and has received extensive theoretical
treatment. This article focused solely on neutral diversity, considering
that mutations have no effect on the demography of the cells. However,
the effect of beneficial mutations has been studied in serial transfer
settings: in particular, the probability of losing a beneficial mutation
due to repeated bottlenecks (Wahl and Krakauer, 2000; Wahl et al.,
2002; Wahl and Gerrish, 2001; Wahl and Zhu, 2015) and the effect of
bottlenecks on the evolutionary path when multiple beneficial muta-
tions exist (Gamblin et al., 2023). These results should be extended to
the nested populations’ design in the future.

The ‘‘death’’ of a droplet in our framework can have different ori-
gins. First is the experimentalist actively discarding some droplets with
undesired characteristics. Second, it can arise from the fact that some
cultures are effectively empty due to high dilutions in the previous
cycle and may be replaced in the next cycle by cells from a non-
empty culture. Finally, it can also be a consequence of the experimental
100

protocol. Milli- and microfluidics compartments are usually produced
in large numbers, while measurements are performed on all compart-
ments. The retrieval of all the compartments’ contents might not be
practically possible or even desirable when they are too numerous.
In all these cases, some droplets will not be used to generate the
population of the next cycle, and some of them will have to be split
if the droplet population is to keep a constant size.

The use of a non-saturating population dynamics in this manuscript
is a simplification that should be carefully taken into account when
transposing the results of this work to the design of experiments.
Nonetheless, if the cycle duration is short enough that the population
is stopped during the exponential phase, the heuristics developed in
this manuscript should hold. There are, however, two phenomena that
were not modelled here and that will probably muddy the neutral
pattern that was described. First is the absence of mutations affecting
birth and death rates. If most point mutations can be safely consid-
ered neutral, some rare mutations can affect the ability of the cells
to reproduce. If the mutations are beneficial, they will increase in
proportion within the population and will change the relative frequency
of all neutral mutations, by favouring the ones carried by the same
strand of DNA (a phenomenon known as ‘‘hitch-hiking’’, Fay and Wu
2000). Second, horizontal gene transfer might allow the uncoupling of
the mutation transmission from the genealogy (Dutta and Pan, 2002),
muddying the pattern even further. In general, complete models should
combine neutral and non-neutral approaches to describe microbial
communities (Ofiţeru et al., 2010; Dumbrell et al., 2010).

The nested populations’ design also differs from trait groups’ (Wil-
son, 1975) or transient compartments’ (Blokhuis et al., 2018) popula-
tion structure because migration between compartments is prevented.
As a consequence, it is possible to construct a non-ambiguous genealogy
of the cultures. In practice, serial transfer design offers a natural way
to implement the birth–death process by diluting some cultures into
several new compartments (the droplet splitting) and discarding others.

Finally, this manuscript touches briefly on the problem of artifi-
cial selection using a nested populations’ design. This was done by
considering the accumulation of neutral mutations. A more complete
model of artificial selection would, however, take into account in-
teractions between individuals and potentially the selection of whole
communities. Community-level selection has been the subject of both
experimental (Swenson et al., 2000; Panke-Buisse et al., 2015) and
theoretical inquiries (Mueller and Sachs, 2015; Arias-Sánchez et al.,
2019; Xie et al., 2019; Doulcier et al., 2020).

Overall, the results presented in this manuscript should be con-
sidered as a way to build intuition about the experimental system
while providing a null-model for diversity that could be compared
to the actual patterns. Inevitable differences have to appear, but the
point of comparison that is offered by neutral evolution will allow a
better description of the observed diversity. Focusing on the part of
the patterns that differ from this naive theoretical prediction will surely
be fruitful — by showing that other mechanisms besides drift must be

invoked.
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Table 1
Global Symbols reference.

Symbol Name Reference

𝐷 Number of droplets
𝑇 Cycle duration
𝑛 Number of cycles
𝐾 Droplet carrying capacity
𝑐 Initial number of particles
𝑏, 𝑑, 𝑟 Particle birth rate, death rate and Malthusian parameter (𝑟 ∶= 𝑏 − 𝑑)
𝛿 Dilution factor (i.e., particle survival probability at a bottleneck)
𝜃 Particle mutation rate
𝑠𝑛 Probability that a lineage spawned by a single particle is not

extinct at the end of the 𝑛th cycle. (At time 𝑛𝑇 −, just before the
𝑛th dilution). 𝑠𝑛 = 1 − ℎ𝑄𝑛−1𝑅(0)

Proposition 1

𝑠∞ Limit probability that a lineage spawned by a single particle is not
extinct after a large number of cycles. 𝑠∞ = lim𝑛→∞ 𝑠𝑛.

Proposition 2

𝑇 ∗ Maximal cycle duration before reaching saturation. 𝑇 ∗ = 𝑟−1 ln(𝑐𝐾−1) Proposition 3
𝛿∗ Optimal dilution factor 𝛿∗ = 𝑒−𝑟𝑇 Proposition 4
𝑠∗𝑛 Survival probability of a lineage spawned by a single cell before the

𝑛th dilution in the optimal regime in which 𝛿 = 𝑒−𝑟𝑇 .
Proposition 5

𝐹 Inverse tail distribution of the CPP without bottlenecks Proposition 6
𝐹 Inverse tail distribution of the CPP with bottlenecks.

𝐹 (𝑡) = [P(𝐻 > 𝑡)]−1
Eq. (8) and Proposition 6

𝜏𝑛 Coalescent tree of an extant lineage at the end of the 𝑛th cycle. It
is a Coalescent Point Process with inverse tail distribution 𝐹
stopped at the first branch length larger than 𝑛𝑇 .

Proposition 7

𝑁(𝜏𝑛) number of leaves of the coalescent tree 𝜏𝑛. Geometric random
variable with expected value 𝐹 (𝑛𝑇 ).

Eqs. (18) and (19).

𝐿𝑛 Expected length of the coalescent tree 𝜏𝑛. 𝐿𝑛 = 𝐹 (𝑛𝑇 ) ∫ 𝑛𝑇 −

0 𝐹 (𝑥)−1𝑑𝑥 Proposition 7
𝑀𝑛 Expected number of mutations in a lineage after 𝑛 cycles.

𝑀𝑛 = 𝜃𝑠𝑛𝐿𝑛

Proposition 7

𝑀𝑓
𝑛 Expected number of fixed mutations in a lineage after 𝑛 cycles. Proposition 8

𝑀𝑠
𝑛 Expected number of segregating mutations in a lineage after 𝑛

cycles. 𝑀𝑠
𝑛 = 𝑀𝑛 −𝑀𝑓

𝑛

Proposition 8

𝑎𝑢 Expected frequency of mutations shared by 𝑢 > 0 individuals after 𝑛
cycles.

Proposition 8
Table 2
Global Symbols reference (cont)

Symbol Name Reference

𝑠𝑘,𝑚,𝑛 Survival probability at the end of the (𝑚 + 𝑛)th
cycle of a lineage spawned by a single cell in a
single droplet at the first cycle, that is was split
into 𝑘 droplets at cycle 𝑚.

Proposition 9

𝜏𝑘,𝑚,𝑛 Coalescent tree at the end of the (𝑚 + 𝑛)th cycle of
a lineage spawned by a single cell in a single
droplet at the first cycle, that is was split into 𝑘
droplets at cycle 𝑚.

Proposition 10

𝜋𝑘,𝑛 Probability that a lineage extant at the end of
cycle 𝑚 just before the droplet is split into 𝑘
droplets will be extant at cycle 𝑚 + 𝑛. 𝜋𝑘,𝑛 = 𝑘𝛿𝑠𝑛.

𝐹 † Inverse tail distribution of the stump tree.
𝐹 †(𝑡) ∶= 𝐹𝜋𝑘,𝑛 (𝑡) = 1 − 𝜋𝑘,𝑛 + 𝜋𝑘,𝑛𝐹 (𝑡), 𝑡 ∈ [0, 𝑚𝑇 ]

𝐿𝑘,𝑚,𝑛 Expected length of the coalescent tree 𝜏𝑘,𝑚,𝑛. Proposition 10
𝑀𝑘,𝑚,𝑛 Expected number of mutations accumulated at the

end of the (𝑚 + 𝑛)th cycle of a lineage spawned by
a single cell in a single droplet at the first cycle,
that is was split into 𝑘 droplets at cycle 𝑚.
𝑀 = 𝜃𝑠𝑘,𝑚,𝑛𝐿𝑘,𝑚,𝑛

𝑀 ′
𝑘,𝑚,𝑛 Expected number of mutations that are only found

in a single droplet at the end of the (𝑚+ 𝑛)th cycle
of a lineage spawned by a single cell in a single
droplet at the first cycle, that is was split into 𝑘
droplets at cycle 𝑚.

Proposition 11
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Table 3
Global Symbols reference (cont.)

Symbol Name Reference

𝛼 Rate at which a lineage accumulate
mutations 𝛼 = 𝜌

𝑁𝐷

Proposition 12

𝛩 Number of mutations to accumulate Proposition 12
𝛤 First time a lineage has accumulated 𝛩

mutations without droplet selection
Proposition 12

𝛤 ∗ First time a lineage has accumulated 𝛩
mutations with droplet selection

Proposition 12
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Appendix

In the following sections we give the mathematical proofs for the
results used in the main text.

Parameters range

Proof of Proposition 1 — Survival Probability. Let 𝑠𝑛 be the survival
probability at 𝑡 = 𝑛𝑇 of a lineage started from a single cell at 𝑡 = 0.

First cycle
Consider one cell at time 𝑡 = 0. This cell follows a Linear Markov

ranching Process (𝑍𝑡)𝑡∈[0,𝑇 ) with constant rates 𝑏, 𝑑 until the dilution
time 𝑇 . We use two results from Athreya and Ney (1972). First, The
branching process goes extinct (𝑍𝑡 = 0) with probability 𝑞(𝑏, 𝑑, 𝑡) ∶=
P(𝑍𝑡 = 0). Second, conditional on non-extinction 𝑍𝑡 follows a geometric
distribution with parameter 𝑝(𝑏, 𝑑, 𝑡), that is, P(𝑍𝑡 = 𝑘|𝑍𝑡 ≠ 0) =
𝑝(1 − 𝑝)𝑘−1. The values of 𝑝 and 𝑞 are given by the following table:

𝑝(𝑏, 𝑑, 𝑡) 𝑞(𝑏, 𝑑, 𝑡)

Subcritical cells 𝑟 < 0 𝑑−𝑏
𝑑−𝑏𝑒𝑟𝑡

𝑑(1−𝑒𝑟𝑡)
𝑑−𝑏𝑒𝑟𝑡

Critical cells 𝑟 = 0 1
1+𝑏𝑡

𝑏𝑡
1+𝑏𝑡

Supercritical cells 𝑟 > 0 (𝑏−𝑑)𝑒−𝑟𝑡
𝑏−𝑑𝑒−𝑟𝑡

𝑑(1−𝑒−𝑟𝑡)
𝑏−𝑑𝑒−𝑟𝑡

The probability generating function of 𝑍𝑇 is:

𝑓𝑍𝑇
(𝑠) =

∑

𝑘≥0
P(𝑍𝑇 = 𝑘)𝑠𝑘 Definition of 𝑓

= P(𝑍𝑇 = 0)𝑠0 +
∑

𝑘≥1
P(𝑍𝑇 = 𝑘)𝑠𝑘

= P(𝑍𝑇 = 0)𝑠0 +
∑

𝑘≥1
P(𝑍𝑇 ≠ 0)

× 𝑃 (𝑍𝑇 = 𝑘|𝑍𝑇 ≠ 0)𝑠𝑘

= 𝑞 +
∑

𝑘≥1
(1 − 𝑞)𝑝(1 − 𝑝)𝑘−1𝑠𝑘 Definition of 𝑝, 𝑞

= 𝑞 + 𝑝𝑠(1 − 𝑞)
∑

𝑘≥0
((1 − 𝑝)𝑠)𝑘

= 𝑞 +
𝑝𝑠(1 − 𝑞)

1 − (1 − 𝑝)𝑠
Geometric series, (1 − 𝑝)𝑠 < 1

=
𝑠(𝑝 − 𝑞) + 𝑞
𝑠(𝑝 − 1) + 1

As expected, 𝑓𝑍𝑇
(1) = 1 and 𝑓𝑍𝑇

(0) = 𝑃 (𝑍𝑇 = 0) = 𝑞.

Second cycle
Consider a cell at the end of the first cycle, just before the first

ilution. Let 𝐵 be the number of descendants of this cell at the end
f the second cycle. There are two possibilities to consider:

• with probability (1 − 𝛿), the cell is discarded during the dilution
at the beginning of the second cycle and 𝐵 = 0,

• with probability 𝛿, the cell is not discarded, and thus sees its
descent grow until the end of the cycle following the same law
as in the first circle, namely the law of 𝑍𝑇 .

Thus,

𝐵 = 1 − 𝛿 + 𝛿𝑓𝑍𝑇
.

We now introduce a notation for the rest of the proof: 𝑓𝑍𝑇
and 𝑓𝐵

are linear fractional, a property that will be useful later when com-
posing generating functions. We associate any linear-fractional function
with a coefficient matrix 𝑀 as follows:

∀𝑀 =
[

𝑣 𝑤
]

∈ 𝑀2(R), ℎ(𝑀, ⋅) ∶ 𝑠 ↦ ℎ(𝑀, 𝑠) = 𝑣𝑠 +𝑤.
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𝑥 𝑦 𝑥𝑠 + 𝑦
We define 𝑄𝜀 for all 𝜀 in [0,1) as:

𝑄𝜀 ∶=
[

𝑝 − 1 + 𝜀(1 − 𝑞) 1 − 𝜀(1 − 𝑞)
𝑝 − 1 1

]

.

Note that, 𝑓𝑍𝑇
is associated with the matrix 𝑄1 and 𝑓𝐵 with the matrix

𝑄𝛿 .

Subsequent cycles
Let 𝑋𝑛 be the number of descendants of an ancestral cell at the

end of the 𝑛th cycle. Let (𝐵𝑛,𝑖)𝑛>0,𝑖>0 be a collection of identical and
independent random variables following the same law as 𝐵. Then the
following recursion holds:

𝑋𝑛 =
𝑋𝑛−1
∑

𝑖=1
𝐵𝑛,𝑖

Since 𝐵 and 𝑋𝑛−1 are independent, the generating function of 𝑋𝑛 is
given by the composition of the generating functions of 𝑋𝑛−1 and 𝐵:
𝑓𝑋𝑛

= 𝑓𝑋𝑛−1
◦𝑓𝐵 .

By induction, the generating function of 𝑋𝑛 is obtained by compos-
ing the generating function of 𝑥1 with the 𝑛 − 1 times iteration of the
generating function of 𝐵:

𝑓𝑋𝑛
= 𝑓𝑋1

◦ 𝑓𝐵◦… ◦𝑓𝐵
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(𝑛−1) times

.

Now, recall that 𝑋1 follows the same law as 𝑍𝑡 (associated with
the matrix 𝑄1) and 𝑓𝐵 is associated with the matrix 𝑄𝛿 . From this
observation and the composition rule outlined in the previous section,
it results that:

𝑓𝑋𝑛
= ℎ(𝑄1𝑄

𝑛−1
𝛿 , ⋅)

It can be checked that this expression corresponds to 𝑛 cycles, with
𝑛 − 1 dilutions by a factor 𝛿, since there is no dilution before the first
cycle.

This leads to the survival probability of the lineage spawned by an
ancestral cell, at the end of cycle 𝑛:

𝑠𝑛 = 1 − 𝑓𝑋𝑛
(0) = 1 − ℎ(𝑄1𝑄

𝑛−1
𝛿 , 0) □

Proof of Proposition 2 — Long Term Survival Probability. Let us
look for the fixed points of 𝑓𝐵 :

𝑓𝐵(𝑠) = 𝑠 ⇔ (𝑝 − 1 + 𝛿(1 − 𝑞))𝑠 + 1 − 𝛿(1 − 𝑞) = 𝑠((𝑝 − 1)𝑠 + 1)

⇔ (𝑠 − 1)((𝑝 − 1)𝑠 − 𝛿(1 − 𝑞) − 1) = 0

⇔ 𝑠 =
𝛿(1 − 𝑞) − 1

𝑝 − 1
or 𝑠 = 1

𝑓𝐵(𝑠)−𝑠 is a second order polynomial for 𝑠 meaning that 𝑓𝐵 has at most
wo fixed points. One of them is 1, in accordance with the definition of
haracteristic functions. The other is 𝑠∗, with:
∗ < 1 ⇔ 𝑝 < 𝛿(1 − 𝑞).

Since 𝑓𝐵 is continuous, 𝑓𝐵(𝑠) ≥ 𝑠 for all 𝑠 ∈ [0,min(𝑠∗, 1)] and
min(𝑠∗, 1) is a fixed point of 𝑓𝐵 , the sequence 𝑢𝑛 = 𝑓𝐵(𝑢𝑛−1) with
𝑢0 = ℎ(𝑄1, 0) ∈ [0, 1] converges to min(𝑠∗, 1), that is, to 1 if 𝑝 > 𝛿(1 − 𝑞)
and to 𝑠∗ otherwise.

• In Subcritical regime, 𝑝 < 𝛿(1 − 𝑞) ⇔ 𝑒−𝑟𝑇 < 𝛿, is always false
since 𝑒−𝑟𝑇 > 1 and 𝛿 ≤ 1.

• In Critical regime, 𝑝 < 𝛿(1 − 𝑞) ⇔ 1
1+𝑏𝑇 < 𝛿

(

1 − 𝑏𝑇
1+𝑏𝑇

)

= 𝛿 1
1+𝑏𝑇 ,

is always false since 𝛿 ≤ 1.
• In Supercritical regime, 𝑝 < 𝛿(1 − 𝑞) ⇔ 𝑒−𝑟𝑇 < 𝛿,

Thus, 𝑠∗ > 1 except if 𝑏 > 𝑑 and 𝛿 > 𝑒−𝑟𝑇 . In this case,

∞ = 1 − ℎ(𝑄1, 𝑠
∗)

=
𝑝 − 𝛿(1 − 𝑞)
𝛿(𝑝 − 1)

=
𝑟(𝛿 − 𝑒−𝑟𝑇 )

□

𝛿𝑏(1 − 𝑒−𝑟𝑇 )
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𝑠

T
c

𝐹

C

Proof of Proposition 5 — Critical survival Probability. Let 𝑟 = 𝑏−𝑑,
𝑟 > 0, we use the expression of 𝑝 and 𝑞 from the proof of Proposition 1
and let 𝛿 = 𝑒−𝑟𝑇 . Then, the probability of extinction of the branching
process is:

𝑞 =
𝑑(1 − 𝛿)
𝑏 − 𝑑𝛿

The parameter of the geometric distribution of the number of cells,
conditional on non extinction, is:

𝑝 = 𝑟𝛿
𝑏 − 𝑑𝛿

Thus, it is possible to rewrite 𝑄1 and 𝑄𝛿 like this:

𝑄1 =
1

𝑏 − 𝛿𝑑

[

𝛿𝑏 − 𝑑 𝑑(1 − 𝛿)
𝑏(𝛿 − 1) 𝑏 − 𝛿𝑑

]

∶= 1
𝑏 − 𝛿𝑑

𝑄1

𝑄𝛿 =
1

𝑏 − 𝛿𝑑

[

2𝛿𝑏 − 𝛿𝑑 − 𝑏 𝑏(1 − 𝛿)
𝑏(𝛿 − 1) 𝑏 − 𝛿𝑑

]

∶= 1
𝑏 − 𝛿𝑑

𝑄𝛿

By induction, we can show that:

∗
𝑛 = 1 − ℎ(𝑄1𝑄

𝑛−1
𝛿 , 0) = 1 −

(𝑄1𝑄𝑛−1
𝛿 )01

(𝑄1𝑄𝑛−1
𝛿 )11

= 1 −
𝑄1𝑄𝑛−1

𝛿 01

𝑄1𝑄𝑛−1
𝛿 11

= 𝑏 − 𝑑
𝑏𝑛 − 𝛿(𝑏(𝑛 − 1) + 𝑑)

= 𝑟
𝑏𝑛(1 − 𝛿) + 𝛿𝑟

□

Coalescent point processes

Proof of Proposition 6 — Coalescent tree. First, we recall the
Proposition 7 from Lambert and Stadler (2013):

‘‘Start with a CPP tree with inverse tail distribution 𝐹 . Add extra
mass extinctions with survival probabilities 𝜖1,… 𝜖𝑘 at times 𝑇 −𝑠1 >
⋯ > 𝑇 −𝑠𝑘 (where 𝑠1 > 0 and 𝑠𝑘 < 𝑇 ). Then, conditional on survival,
the reconstructed tree of the phylogenetic tree obtained after the
passage of mass extinctions is again a coalescent point process with
inverse tail distribution 𝐹𝜖 given by

𝐹𝜖(𝑡) = 𝜖1 … 𝜖𝑚𝐹 (𝑡) +
𝑚
∑

𝑗=1
(1 − 𝜖𝑗 )𝜖1 … 𝜖𝑗−1𝐹 (𝑠𝑗 ),

𝑡 ∈ [𝑠𝑚, 𝑠𝑚+1], 𝑚 ∈ {0, 1,… , 𝑘},

where 𝑠0 ∶= 0 and 𝑠𝑘+1 = 𝑇 (empty sum is zero, empty product is
1)’’.

Consider the CPP of the population just before the 𝑛th cycle of
dilution. The population experienced 𝑛 − 1 bottlenecks at times 𝑡1 =
(𝑛 − 1)𝑇 ,… , 𝑡𝑛−2 = 2𝑇 , 𝑡𝑛−1 = 𝑇 .

Let 𝐹 be the scale function of the CPP without bottlenecks. Using
Proposition 7 in Lambert and Stadler (2013) with 𝜖𝑖 = 𝛿 and 𝑠𝑗 = 𝑗𝑇 ,
it is possible to write 𝐹 as:

𝐹 (𝑡) = 𝛿𝑘𝐹 (𝑡) + (1 − 𝛿)
𝑘
∑

𝑗=1
𝛿𝑗−1𝐹 (𝑗𝑇 ), 𝑡 ∈ [𝑘𝑇 , (𝑘+1)𝑇 ], 𝑘 ∈ {0, 1,… , 𝑛},

If the sampling at the last cycle is taken into account, the scale function
becomes 𝐹 :

𝐹 (𝑡) = 1 − 𝛿 + 𝛿𝐹 (𝑡)

he expression of 𝐹 is known for the most common birth–death pro-
esses:

Parameters Scale function
Pure Birth 0 = 𝑑 < 𝑏 𝐹 (𝑡) = 𝑒𝑏𝑡

Non-critical 0 < 𝑑 ≠ 𝑏 > 0 𝐹 (𝑡) = 𝑏
𝑟 (𝑒

𝑟𝑡 − 1) + 1

Critical 0 < 𝑑 = 𝑏 𝐹 (𝑡) = 𝑏𝑡 + 1
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Non-critical case Let 𝑟 ∶= 𝑏 − 𝑑 ≠ 0, 𝑏 > 0, 𝑑 ≥ 0, 𝑘 ∈ {0,… , 𝑛}, 𝑠 < 𝑇 :

𝐹 (𝑘𝑇 + 𝑠) = 𝛿𝑘
[

1 − 𝑏
𝑟
+ 𝑒𝑟(𝑘𝑇+𝑠) 𝑏

𝑟

]

+ (1 − 𝛿)
𝑘
∑

𝑗=1
𝛿𝑗−1

[

𝑒𝑟𝑗𝑇 𝑏
𝑟
+ 1 − 𝑏

𝑟

]

= 𝛿𝑘
(

1 − 𝑏
𝑟

)

+ 𝑏
𝑟
𝑒𝑟𝑠(𝛿𝑒𝑟𝑇 )𝑘

+ (1 − 𝛿)

[

(

1 − 𝑏
𝑟

)

𝑘−1
∑

𝑗=0
𝛿𝑗 + 𝑏

𝑟
𝑒𝑟𝑇

𝑘−1
∑

𝑗=0
(𝛿𝑒𝑟𝑇 )𝑗

]

= 𝛿𝑘
(

1 − 𝑏
𝑟

)

+ 𝑏
𝑟
𝑒𝑟𝑠(𝛿𝑒𝑟𝑇 )𝑘 +

(

1 − 𝑏
𝑟

)

(1 − 𝛿𝑘)

+
𝑏(1 − 𝛿)

𝑟
𝑒𝑟𝑇

𝑘−1
∑

𝑗=0
(𝛿𝑒𝑟𝑇 )𝑗 (Geometric series, 𝛿 ≠ 1)

= 1 + 𝑏
𝑟

[

𝑒𝑟𝑠(𝛿𝑒𝑟𝑇 )𝑘 − 1 + (1 − 𝛿)𝑒𝑟𝑇
𝑘−1
∑

𝑗=0
(𝛿𝑒𝑟𝑇 )𝑗

]

If 𝛿 ≠ 𝛿∗ then,

𝐹 (𝑘𝑇 + 𝑠) = 1 + 𝑏
𝑟

[

𝑒𝑟𝑠(𝛿𝑒𝑟𝑇 )𝑘 − 1 + (1 − 𝛿)𝑒𝑟𝑇
1 − (𝛿𝑒𝑟𝑇 )𝑘

1 − 𝛿𝑒𝑟𝑇

]

(Geometric series, 𝛿∗𝑒𝑟𝑇 ≠ 1)

Otherwise, if 𝛿 = 𝛿∗ = 𝑒−𝑟𝑇 ,

(𝑘𝑇 + 𝑠) = 1 + 𝑏
𝑟
(

𝑒𝑟𝑠 − 1 + 𝑘(𝑒𝑟𝑇 − 1)
)

ritical case 𝑏 = 𝑑 ≠ 0

𝐹 (𝑘𝑇 + 𝑠) =𝛿𝑘(𝑏(𝑘𝑇 + 𝑠) + 1) + (1 − 𝛿)
𝑘
∑

𝑗=1
𝛿𝑗−1(𝑏𝑗𝑇 + 1)

=𝛿𝑘(𝑏(𝑘𝑇 + 𝑠) + 1) + (1 − 𝛿)
𝑘−1
∑

𝑗=0
𝛿𝑗 (𝑏(𝑗 + 1)𝑇 + 1)

=𝛿𝑘(𝑏(𝑘𝑇 + 𝑠) + 1) + (1 − 𝛿)

[

(1 + 𝑏𝑇 )
𝑘−1
∑

𝑗=0
𝛿𝑗 + 𝑏𝑇

𝑘−1
∑

𝑗=0
𝑗𝛿𝑗

]

=𝛿𝑘(𝑏(𝑘𝑇 + 𝑠) + 1) + (1 − 𝛿𝑘)(1 + 𝑏𝑇 )

+ (1 − 𝛿)𝑏𝑇
𝑘−1
∑

𝑗=0
𝑗𝛿𝑗 (Geometric series, 𝛿 ≠ 1)

=𝛿𝑘𝑏(𝑇 (𝑘 − 1) + 𝑠) + 1 + 𝑏𝑇 + (1 − 𝛿)𝑏𝑇
𝑘−1
∑

𝑗=0
𝑗𝛿𝑗

=1 + 𝛿𝑘𝑏(𝑇 (𝑘 − 1) + 𝑠) + 𝑏𝑇

[

1 + (1 − 𝛿)
𝑘−1
∑

𝑗=0
𝑗𝛿𝑗

]

=1 + 𝑏
𝑇 − 𝑠𝛿𝑘+1 − (𝑇 − 𝑠)𝛿𝑘

1 − 𝛿
(𝛿 ≠ 1) □

Proof of Proposition 7 — Length of the Coalescent Tree. Let 𝑀𝑛 be
the expected number of mutations within the serial transfer experiment
at the end of the 𝑛th cycle. Let also 𝑇 be the duration of the growth
phase and 𝛿 = 𝛿∗ be the dilution factor. Suppose that the first cycle is
seeded with a single ancestral cell. The initial lineage survives to cycle
𝑛 with probability 𝑠∗𝑛 (since 𝛿 = 𝛿∗, see Proposition 5).

Each extant lineage after 𝑛 cycles spawns an independent coalescent
tree with expected length 𝐿𝑛. Moreover, mutations are accumulated
following a Poisson point process on the tree with intensity 𝜃. Hence,
the expected number of mutations accumulated on one tree is 𝜃𝐿𝑛.

Thus,

𝑀𝑛 = 𝜃𝑠∗𝑛𝐿𝑛.

Let us now compute 𝐿𝑛.
Let {𝐻𝑖𝑗 , (𝑖, 𝑗) ∈ N2} be a set of i.i.d. random variables following the

same law as 𝐻 , defined by its inverse tail distribution 𝐹 (𝑡) = 1
P(𝐻>𝑡) .

Let 𝜏𝑛 be a CPP with branches 𝐻 stopped at 𝑛𝑇 . Let 𝑁(𝜏𝑛) be the
number of leaves of the random tree 𝜏𝑛. The length of the tree (𝜏𝑛) is
the random variable:

(𝜏𝑛) = 𝑛𝑇 +
𝑁(𝜏𝑛)−1
∑

𝑗=1
𝐻𝑗 ,

where 𝑛𝑇 is the length of the spine and 𝐻𝑗 are the length of the other
𝑁(𝜏 ) − 1 branches.
𝑛
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Its expected value is:

𝐿𝑛 = E((𝜏𝑛)) = 𝑛𝑇 + (E(𝑁(𝜏𝑛)) − 1)E(𝐻|𝐻 < 𝑛𝑇 )

Number of leaves: 𝑁(𝜏𝑛) is a geometric random variable:

P(𝑁(𝜏𝑛) = 𝑘) = 𝑃 (𝐻 > 𝑛𝑇 )𝑃 (𝐻 ≤ 𝑛𝑇 )𝑘−1 = 1
𝐹 (𝑛𝑇 )

(

1 − 1
𝐹 (𝑛𝑇 )

)𝑘−1

(18)

Indeed, if 𝑘 is the index of the first 𝐻𝑖 such that 𝐻𝑖 > 𝑛𝑇 , there are
𝑘 − 1 branches, plus the spine, for a total of 𝑘 leaves.

Thus, the expected number of leaves of 𝜏𝑛, is:

E(𝑁(𝜏𝑛)) = 𝐹 (𝑛𝑇 ). (19)

Note that

E(𝑁(𝜏𝑛) − 1) = 𝐹 (𝑛𝑇 ) − 1 =
1 − 1

𝐹 (𝑛𝑇 )
1

𝐹 (𝑛𝑇 )

=
P(𝐻 < 𝑛𝑇 )
P(𝐻 > 𝑛𝑇 )

,

so we get

𝐿𝑛 = 𝑛𝑇 +
P(𝐻 < 𝑛𝑇 )
P(𝐻 > 𝑛𝑇 )

E(𝐻|𝐻 < 𝑛𝑇 )

Length of branches:
We recall that for a positive r.v. 𝑋, E(𝑋) = ∫ +∞

0 P(𝑋 > 𝑥)𝑑𝑥.
We can rescale the tail-distribution to take into account the condi-

tioning:

P(𝐻 > 𝑥|𝐻 < 𝑦) =

{

0 if 𝑥 > 𝑦,
P(𝐻>𝑥)−P(𝐻>𝑦)

P(𝐻<𝑦) otherwise.
(20)

Thus,

(𝐻|𝐻 < 𝑛𝑇 ) = ∫

𝑛𝑇

0
P(𝐻 > 𝑥|𝐻 < 𝑛𝑇 )𝑑𝑥

= ∫

𝑛𝑇

0

P(𝐻 > 𝑥) − P(𝐻 > 𝑛𝑇 )
P(𝐻 < 𝑛𝑇 )

𝑑𝑥

= 1
P(𝐻 < 𝑛𝑇 )

[

∫

𝑛𝑇

0

𝑑𝑥
𝐹 (𝑥)

− 𝑛𝑇
𝐹 (𝑛𝑇 )

]

(

By definition, P(𝐻 > 𝑥) =∶ 1
𝐹 (𝑥)

)

,

so that

𝐿𝑛 = 𝑛𝑇 +
P(𝐻 < 𝑛𝑇 )
P(𝐻 > 𝑛𝑇 )

E(𝐻|𝐻 < 𝑛𝑇 )

= 𝑛𝑇 + 𝐹 (𝑛𝑇 )
[

∫

𝑛𝑇

0

𝑑𝑥
𝐹 (𝑥)

− 𝑛𝑇
𝐹 (𝑛𝑇 )

]

= 𝐹 (𝑛𝑇 )∫

𝑛𝑇

0

𝑑𝑥
𝐹 (𝑥)

(21)

Moreover, ∀𝑘 ∈ N and ∀𝑠 ∈ R, 𝑠 < 𝑇 :

𝐹 (𝑘𝑇 + 𝑠) = 1 + 𝑏
𝑟
(𝑘(𝑒𝑟𝑇 − 1) + 𝑒𝑟𝑠 − 1),

o that
(𝑘+1)𝑇

𝑘𝑇

𝑑𝑥
𝐹 (𝑥)

= ∫

𝑇

0

1
1 + 𝑏

𝑟 (𝑘(𝑒
𝑟𝑇 − 1) + 𝑒𝑟𝑠 − 1)

𝑑𝑠

=
𝑟𝑇 − log

(

𝑘(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

(𝑘+1)(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

)

𝑏𝑘(𝑒𝑟𝑇 − 1) − 𝑑

Finally, we get:

𝑛 =
(

1 + 𝑏
𝑟
𝑛(𝑒𝑟𝑇 − 1)

)

𝑛
∑

𝑘=0

𝑟𝑇 − log
(

𝑘(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

(𝑘+1)(𝑒𝑟𝑇 −1)+ 𝑟
𝑏

)

𝑏𝑘(𝑒𝑟𝑇 − 1) − 𝑑
□ (22)

roof of Proposition 8 — Mutation Frequency Spectrum. We now
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urn to a more detailed account of the mutation distribution.
Fixed and segregating mutations
Mutations compared to the ancestral type are either fixed (shared

y all individuals) or segregating (not shared by all individuals). Thus,
e have:
𝑓
𝑛 +𝑀𝑠

𝑛 = 𝑀𝑛

Fixed mutations are the ones found between the root of the coales-
ent tree (𝑡 = 𝑛𝑇 ) and the first branching. Let 𝑌 be the random variable
ncoding this length. We have 𝑌 = 𝑛𝑇 −𝑋 with 𝑋 the random variable
ncoding the height of the first branching. Thus,
𝑓
𝑛 = 𝜃𝑠𝑛E(𝑌 ) = 𝜃𝑠𝑛(𝑛𝑇 − E(𝑋)),

here 𝜃 is the mutation rate, 𝑠𝑛 is the probability that the lineage
pawned by one of the ancestral cells is still extant at the end of the
th cycle.

Now we compute E(𝑋). Let 𝐻1...𝐻𝑁(𝜏𝑛)−1 be the branch lengths
f the CPP stopped at 𝑛𝑇 . The variables (𝐻𝑖) are independent and
dentically distributed as 𝐻 , conditioned to be smaller than 𝑛𝑇 . X is
he maximum of those values:

∶= max
{

𝐻1,𝐻2...𝐻𝑁(𝜏𝑛)−1

}

.

Note that the first branching cannot be higher than the length of
he spine. Thus, P(𝑋 > 𝑛𝑇 ) = 0. Otherwise:

(𝑋 > 𝑠) = 1 − 𝑃 (𝑋 < 𝑠)

= 1 −
∞
∑

𝑘=1
P(𝑁(𝜏𝑛) = 𝑘)P(𝑋 < 𝑠|𝑁(𝜏𝑛) = 𝑘)

(Total probability)

= 1 −
∞
∑

𝑘=1
P(𝑁(𝜏𝑛) = 𝑘)P(𝐻 < 𝑠|𝐻 < 𝑛𝑇 )𝑘−1

(𝑋is the max of (𝐻𝑖) i.i.d.)

= 1 −
∞
∑

𝑘=1

1
𝐹 (𝑛𝑇 )

(

1 − 1
𝐹 (𝑛𝑇 )

)𝑘−1 ⎛
⎜

⎜

⎝

1 −
1

𝐹 (𝑠) −
1

𝐹 (𝑛𝑇 )

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

𝑘−1

(Eqs. (18) and (20)).

= 1 −
∞
∑

𝑘=1

1
𝐹 (𝑛𝑇 )

(

1 − 1
𝐹 (𝑛𝑇 )

)𝑘−1 ⎛
⎜

⎜

⎝

1 − 1
𝐹 (𝑠)

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

𝑘−1

= 1 − 1
𝐹 (𝑛𝑇 )

∞
∑

𝑘=0

(

1 − 1
𝐹 (𝑠)

)𝑘

= 1 − 1
𝐹 (𝑛𝑇 )

1
1 − 1 + 1

𝐹 (𝑠)

(Geometric series)

= 1 −
𝐹 (𝑠)
𝐹 (𝑛𝑇 )

Again, we recall that for a positive r.v. 𝑋, E(𝑋) = ∫ +∞
0 P(𝑋 > 𝑥)𝑑𝑥.

hus,

(𝑋) = ∫

𝑛𝑇

0
1 −

𝐹 (𝑠)
𝐹 (𝑛𝑇 )

𝑑𝑠 = 𝑛𝑇 − ∫

𝑛𝑇

0

𝐹 (𝑠)
𝐹 (𝑛𝑇 )

𝑑𝑠.

Thus, the expected number of fixed mutations is:

𝑀𝑓
𝑛 = 𝜃𝑠𝑛[𝑛𝑇 − E(𝑋)] = 𝜃𝑠𝑛 ∫

𝑛𝑇

0

𝐹 (𝑠)
𝐹 (𝑛𝑇 )

𝑑𝑠

Finally, the expected number of segregating mutations within the
droplet is the total number of mutations (𝑀𝑛) minus the number of
fixed mutations:

𝑀𝑠
𝑛 = 𝑀𝑛 −𝑀𝑓

𝑛

= 𝜃𝑠𝑛 ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

−
𝐹 (𝑠)
𝐹 (𝑛𝑇 )

𝑑𝑠
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Full spectrum For a sample of 𝑣 individuals in a CPP stopped
t time 𝑛𝑇 , Theorem 2.2 in Lambert (2009) gives the expression of
(𝑆𝑣(𝑢)) the expected number of mutant sites that are carried by exactly
≤ 𝑢 ≤ 𝑣 − 1 individuals.

(𝑆𝑣(𝑢)) = 𝜃 ∫

𝑛𝑇

0

(

1 − 1
𝑊 (𝑥)

)𝑢−1 (𝑣 − 𝑢 − 1
𝑊 (𝑥)2

+ 2
𝑊 (𝑥)

)

𝑑𝑥, (23)

with 𝑊 the inverse tail distribution of the branch length in the stopped
CPP. 𝑊 is expressed, for 𝑥 < 𝑛𝑇 , as a rescaling of 𝐹 :

𝑊 (𝑥) = 1
P(𝐻 > 𝑥|𝐻 < 𝑛𝑇 )

=
1 − 1

𝐹 (𝑛𝑇 )
1

𝐹 (𝑥) −
1

𝐹 (𝑛𝑇 )

. (24)

The expected value of 𝑆𝑣(𝑢) converges towards a limit (Lambert,
2009) when the sample size increases, provided E(𝐻|𝐻 < 𝑛𝑇 ) < ∞,
which is the case here, since the CPP is stopped at 𝑛𝑇 .

lim
𝑣→∞

𝑣−1E(𝑆𝑣(𝑢)) = 𝜃 ∫

𝑛𝑇

0

(

1 − 1
𝑊 (𝑥)

)𝑢−1 1
𝑊 (𝑥)2

𝑑𝑥 (25)

Thus,

𝑎𝑢 = lim
𝑣→∞

𝑣−1E(𝑆𝑣(𝑢)) = 𝜃 ∫

𝑛𝑇

0

⎛

⎜

⎜

⎝

1 −
1

𝐹 (𝑥)
− 1

𝐹 (𝑛𝑇 )

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

𝑢−1
⎛

⎜

⎜

⎝

1
𝐹 (𝑥)

− 1
𝐹 (𝑛𝑇 )

1 − 1
𝐹 (𝑛𝑇 )

⎞

⎟

⎟

⎠

2

𝑑𝑥 □

(26)

plit droplets

roof of Proposition 9 — Survival Probability (2 drops). Let
ells within droplets in serial transfer be modelled by a linear birth–
eath process with constant parameters 𝑏 and 𝑑, subject to periodic
ottlenecks 𝛿 every duration 𝑇 for 𝑚+𝑛 cycles. However, consider that
t cycle 𝑚, 𝑘 droplets are produced (instead of one), and then each new
roplet submitted independently to the serial transfer procedure for the
emaining 𝑛 cycles. We call this situation (𝑘, 𝑚, 𝑛)-split droplets.

We recall from the proof of Proposition 1 (p. 36) that the generating
unction of the Linear Markov Branching Process at time 𝑇 that is
tarted with one individual with probability 𝜀 or with zero particles
ith probability 1− 𝜀 is the linear fractional function 𝑠 ↦ ℎ(𝑄𝜀, 𝑠) with

he expression of 𝑄𝜀 given by Eq. (3).
Let 𝑠𝑘,𝑚,𝑛, the probability that a lineage spawned by a single cell is

ot extinct at the end of the (𝑛+𝑚)th cycle of (𝑘, 𝑚, 𝑛)-split droplets. In
his situation, the cells survive surely before the first cycle (𝜀 = 1), then
urvive the dilution with probability 𝛿 before the cycles 2, 3,…(𝑚− 1),
hen survive with probability 𝑘𝛿 before cycle 𝑚, and finally survive with
robability 𝛿 again before cycles (𝑚 + 1), (𝑚 + 2),… , (𝑚 + 𝑛).

By using the composition rule established in the proof of Proposi-
ion 1, the survival probability can be computed using the following
inear fractional function:

𝑘,𝑚,𝑛 = 1 − ℎ(𝑄1𝑄
𝑚−1
𝛿 𝑄𝑘𝛿𝑄

𝑛−1
𝛿 , 0)

t can be checked that this expression corresponds to 𝑚 + 𝑛 cycles, one
ilution with a factor 𝑘𝛿 and (𝑚 + 𝑛 − 2) dilutions with a factor 𝛿. □

roof of Proposition 10 — Total Diversity (2 drops). Let 𝑀𝑘,𝑚,𝑛
e the expected number of unique mutations accumulated in a lineage
t cycle 𝑛 + 𝑚 after the splitting of the initial droplet at cycle 𝑚 into
= 1, 2…

⌊

1
𝛿

⌋

droplets. Then:

𝑀𝑘,𝑚,𝑛 = 𝜃𝑠𝑚𝐿𝑘,𝑚,𝑛,

ith 𝐿𝑘,𝑚,𝑛 the expected length of the coalescent tree of the population
conditional on survival) whose expression we will establish.

Let 𝑘,𝑚,𝑛 be the random variable encoding the length of the co-
lescent tree spawned by a single cell at cycle 𝑚 + 𝑛, submitted to a
ottleneck 𝛿 every 𝑇 unit of time, where at cycle 𝑚, the population was
105

iluted into 𝑘 droplets instead of one, conditional on non extinction.
The length of this tree, conditioned on non extinction, is the sum of
the length of the stump tree † (i.e., the tree before the 𝑚th cycle) and
the length of the corolla 𝑐 (i.e., all the trees spawned by the lineages
that are extant after the dilution at cycle 𝑚).

First, the stump tree is a CPP stopped at 𝑇𝑚 and sampled accord-
ingly. Indeed, all the branches extant in 𝑇𝑚 are not necessarily still
extant in the present at time 𝑇 (𝑚 + 𝑛).

Let us define 𝜋𝑘,𝑛 the probability that a branch extant at time 𝑇𝑚
ill still be extant at time 𝑇 (𝑚+ 𝑛). It is the product of the probability

hat the lineage be sampled in the split (𝑘𝛿), and that it survives after
he split (𝑠𝑛):

𝑘,𝑛 = 𝑘𝛿𝑠𝑛 (27)

We recall the Proposition 2 from Lambert and Stadler (2013):

‘‘The genealogy of a Bernoulli(p)-sample taken from a CPP with
inverse tail distribution 𝐹 is a CPP with typical node depth denoted
𝐻𝑝 with inverse tail distribution 𝐹𝑝 given by 𝐹𝑝(𝑡) = 1 − 𝑝 + 𝑝𝐹 (𝑡)’’.

The stump tree is a CPP with inverse tail distribution 𝐹 , stopped at
ime 𝑇𝑚 and submitted to a Bernoulli sampling 𝜋𝑘,𝑛. Thus, it is a CPP
ith inverse tail distribution:
† ∶= 1 − 𝜋𝑘,𝑛 + 𝜋𝑘,𝑛𝐹 ,

ccording to Proposition 2 from Lambert and Stadler (2013). Its ex-
ected length, 𝐿†, is (according to Eq. (21)):

(†) = 𝐿† = ∫

𝑚𝑇

0

𝐹 †(𝑚𝑇 )
𝐹 †(𝑠)

𝑑𝑠

oreover, the expected number of leaves of the stump tree is (accord-
ng to Eq. (19)):

(𝑁(†)) = 𝐹 †(𝑚𝑇 ).

dditionally, each leaf of the stump tree at time 𝑇𝑚 gives rise to a CPP
f expected length 𝐿𝑛 (according to Eq. (21)):

(𝑛) = 𝐿𝑛 = ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠,

hus, the expected length of the corolla is:

(𝑐 ) = E(𝑁(†))E(𝑛) = 𝐹 †(𝑚𝑇 )𝐿𝑛. (28)

Finally, the expected length of the full tree is:

𝑘,𝑚,𝑛 =E(𝑘,𝑚,𝑛)

=E(†) + E(𝑐 )

=𝐿† + 𝐹 †(𝑚𝑇 )𝐿𝑛

=∫

𝑚𝑇

0

𝐹 †(𝑚𝑇 )
𝐹 †(𝑠)

𝑑𝑠 + 𝐹 †(𝑚𝑇 )∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠

=𝐹 †(𝑚𝑇 )
[

∫

𝑚𝑇

0

1
𝐹 †(𝑠)

𝑑𝑠 + ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠
]

This leads to the final expression:

𝑀𝑘,𝑚,𝑛 = 𝜃𝑠𝑚𝐹
†(𝑚𝑇 )

[

∫

𝑚𝑇

0

1
𝐹 †(𝑠)

𝑑𝑠 + ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑠)

𝑑𝑠
]

□

roof of Proposition 11 — Private Mutations - Split Droplet. Let
single droplet be split into 𝑘 = 1…

⌊

1
𝛿

⌋

at cycle 𝑚. Let 𝑀 ′
𝑘,𝑚,𝑛 be

he expected number of mutations that are private to any of the 𝑘
roplets when observed at cycle 𝑛+𝑚. To correctly enumerate all these
utations, we must add (as illustrated in Fig. 19) the ones that happen

n the stump tree (before 𝑚) and in the corolla (after 𝑚):
′
𝑘,𝑚,𝑛 = 𝑘,𝑚,𝑛

⏟⏟⏟
stump

+ 𝑘,𝑚,𝑛
⏟⏟⏟
corolla

Corolla
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All the mutations that happen in the corolla are private to a single
droplet.

The expected number of mutations that happen in the corolla is
proportional to the expected length of the corolla forest 𝑐 (given
y Eq. (28)), multiplied by the mutation rate. Thus,

𝑘,𝑚,𝑛 = 𝜃𝑠𝑚E(𝑐 ) = 𝜃𝑠𝑚𝐹
†(𝑚𝑇 )𝐿𝑛

Stump Tree
Mutations that happen in the stump tree can be carried by cell

lineages present in one or several droplets (as explained in Fig. 19).
Let 𝑘,𝑚,𝑛 be the expected number of mutations occurring in the

stump tree (i.e., before cycle 𝑚) that are only carried by cells that are
ound in a single droplet. This number is proportional to the mutation
ate 𝜃. Let us compute this value.

The stump tree is a Coalescent Point Process stopped at 𝑚𝑇 , with
nverse tail distribution 𝐹 , sampled with probability 𝜋𝑘,𝑛 = 𝑘𝛿𝑠𝑛 at time
𝑇 . Thus, it has an inverse tail distribution 𝐹 † = 1− 𝜋𝑘,𝑛 + 𝜋𝑘,𝑛𝐹 . If the

tump is not extinct (i.e., with probability 𝑠𝑚) it has a number of leaves
(†) that follows a geometric distribution with parameter 1

𝐹 †(𝑚𝑇 ) .
Consider a mutation that occurred in the stump tree, and let 𝐶 be

the random variable encoding the number of leaves of the stump tree
that bear this mutation. This variable follows a probability distribution
given in Theorem 2.2 of Lambert (2009).

Finally, if 𝐶 = 𝑗, the probability that all the 𝑗 individuals carrying
the focal mutation at the time of the split are sampled in the same
droplet is 1

𝑘𝑗−1
.

Hence, by the formula of total probabilities :

𝑘,𝑚,𝑛 = 𝜃𝑠𝑚
∑

𝑖≥1
P(𝑁(†) = 𝑖)

𝑖
∑

𝑗=1
P(𝐶 = 𝑗) 1

𝑘𝑗−1
(29)

Let

𝑊 †(𝑠) ∶= [1 − 1∕𝐹 †(𝑚𝑇 )]∕[1∕𝐹 †(𝑠) − 1∕𝐹 †(𝑚𝑇 )]

and for 𝓁 ≥ 0, let

𝐺𝓁(𝑥) ∶=
𝓁 − 1
𝑊 †(𝑥)2

+ 2
𝑊 †(𝑥)

if 𝓁 > 0, whereas 𝐺0(𝑥) ∶= 1. Then,

𝑘,𝑚,𝑛 =𝜃𝑠𝑚
∑

𝑖≥1

1
𝐹 †(𝑚𝑇 )

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖−1

×
𝑖

∑

𝑗=1
∫

𝑚𝑇

0
𝑑𝑥

(

1 − 1
𝑊 †(𝑥)

)𝑗−1
𝐺𝑖−𝑗 (𝑥)

1
𝑘𝑗−1

=
𝜃𝑠𝑚

𝐹 †(𝑚𝑇 ) ∫

𝑚𝑇

0
𝑑𝑥

∑

𝑗≥1

(

1 − 1
𝑊 †(𝑥)

)𝑗−1 1
𝑘𝑗−1

×
∑

𝑖≥𝑗

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖−1
𝐺𝑖−𝑗 (𝑥)

=
𝜃𝑠𝑚

𝐹 †(𝑚𝑇 ) ∫

𝑚𝑇

0
𝑑𝑥

∑

𝑗≥1

(

1 − 1
𝑊 †(𝑥)

)𝑗−1 1
𝑘𝑗−1

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑗−1

×
∑

𝑖≥0

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖
𝐺𝑖(𝑥)

=
𝜃𝑠𝑚

𝐹 †(𝑚𝑇 ) ∫

𝑚𝑇

0
𝑑𝑥

∑

𝑗≥1

(

1 − 1
𝐹 †(𝑥)

)𝑗−1 1
𝑘𝑗−1

×
∑

𝑖≥0

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖
𝐺𝑖(𝑥)

=
𝜃𝑠𝑚

𝐹 †(𝑚𝑇 ) ∫

𝑚𝑇

0
𝑑𝑥 1

1 − 1
𝑘 + 1

𝑘𝐹 †(𝑥)

∑

𝑖≥0

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖
𝐺𝑖(𝑥)

Now we write for any 𝑖 ≥ 1
(

1 − 1
)𝑖

𝐺𝑖(𝑥) =∶ 𝐴𝑖(𝐵(𝑖 + 1) + 𝐶)
106

𝐹 †(𝑚𝑇 )
where 𝐴 = 1 − 1∕𝐹 †(𝑚𝑇 ), 𝐵 = 1∕𝑊 †(𝑥)2 and 𝐶 = 2∕𝑊 †(𝑥) − 2∕𝑊 †(𝑥)2,
o that

𝑖≥0

(

1 − 1
𝐹 †(𝑚𝑇 )

)𝑖

𝐺𝑖(𝑥) =1 +
∑

𝑖≥1
𝐴𝑖(𝐵(𝑖 + 1) + 𝐶)

=1 − 𝐵 + 𝐵
∑

𝑖≥0
(𝑖 + 1)𝐴𝑖 + 𝐶𝐴

∑

𝑖≥0
𝐴𝑖

=1 − 𝐵 + 𝐵
(1 − 𝐴)2

+ 𝐶𝐴
1 − 𝐴

=1 − 𝐵 + 𝐵𝐹 †(𝑚𝑇 )2 + 𝐶(𝐹 †(𝑚𝑇 ) − 1)

=1 +
𝐹 †(𝑚𝑇 )2 − 1

𝑊 †(𝑥)2
+

2(𝐹 †(𝑚𝑇 ) − 1)
𝑊 †(𝑥)

(

1 − 1
𝑊 †(𝑥)

)

=
(

1 − 1
𝑊 †(𝑥)

+
𝐹 †(𝑚𝑇 )
𝑊 †(𝑥)

)2

=
(

𝐹 †(𝑚𝑇 )
𝐹 †(𝑥)

)2

.

Hence we eventually get

𝑘,𝑚,𝑛 = 𝜃𝑠𝑚𝐹
†(𝑚𝑇 )∫

𝑚𝑇

0

𝑘 𝑑𝑥
𝐹 †(𝑥)(1 + (𝑘 − 1)𝐹 †(𝑥))

Conclusion
Collecting all the terms we get:

′
𝑘,𝑚,𝑛 = 𝑘,𝑚,𝑛 + 𝑘,𝑚,𝑛

= 𝜃𝑠𝑚𝐹
†(𝑚𝑇 )

[

∫

𝑚𝑇

0

𝑘𝑑𝑥
𝐹 †(𝑥)(1 + (𝑘 − 1)𝐹 †(𝑥))

+ ∫

𝑛𝑇

0

𝐹 (𝑛𝑇 )
𝐹 (𝑥)

𝑑𝑥
]

□

rtificial selection of droplets

roof of Proposition 12 — Cumulative Distribution Functions.
ime to accumulate 𝛩 mutations

Let
(

𝑒(𝑖,𝑗)𝑝𝑖𝑗

)

𝑖,𝑗∈N2
be independent exponential random variables with

arameter 𝑝𝑖𝑗 . Without droplet selection, 𝛤 is the minimum of a set of
ums of i.i.d. exponential variables:

= inf
𝑗=1…𝐷

( 𝛩
∑

𝑖=1
𝑒(𝑖,𝑗)𝜌
𝐷

)

𝑗

With droplet selection, 𝛤 ∗ is a sum of a minimum of i.i.d. expo-
nential variables, (i.e. a sum of exponential variables):

𝛤 ∗ =
𝛩
∑

𝑖=1

(

inf
𝑗=1…𝐷

𝑒(𝑖,𝑗)𝜌
𝐷

)

𝑖
=

𝛩
∑

𝑖=1
𝑒(𝑖)
∑𝐷

𝑗=1
𝜌
𝐷

=
𝛩
∑

𝑖=1
𝑒(𝑖)𝜌 ,

the cumulative distribution function of 𝛤 ∗ is the Erlang distribution
with parameters 𝛩 and 𝜌:

P(𝛤 ∗ ≤ 𝑥) = 1 − 𝑒−𝜌𝑥
(𝛩−1
∑

𝑢=0

(𝜌𝑥)𝑢

𝑢!

)

Note that it does not depend on 𝐷 any more: if the number of
droplets is in the order of one over the scaled invasion rate, the time
to accumulate 𝛩 mutations with droplet selection does not depend on
the invasion rate any more.

Without droplet selection, the cumulative distribution function of
𝛤 is:

P(𝛤 ≤ 𝑥) = 1 − P(𝛤 > 𝑥)

= 1 − P
( 𝐷
⋂

𝑗=1

[( 𝛩
∑

𝑖=1
𝑒(𝑖,𝑗)𝜌
𝐷

)

𝑗

> 𝑥

])

= 1 −

[

P
(( 𝛩

∑

𝑖=1
𝑒(𝑖,𝑗)𝜌
𝐷

)

𝑗

> 𝑥

)]𝐷

(The lineages are independent)

= 1 −

[

1 − P
(( 𝛩

∑

𝑖=1
𝑒(𝑖,𝑗)𝜌
𝐷

)

𝑗

≤ 𝑥

)]𝐷

= 1 −

[

1 − 1 + 𝑒−
𝜌
𝐷 𝑥

(𝛩−1
∑ (𝜌𝑥)𝑢

𝑢

)]𝐷

(sum of indep. exp. r.v.)

𝑢=0 𝐷 𝑢!
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= 1 −

[

𝑒−
𝜌
𝐷 𝑥

(𝛩−1
∑

𝑢=0

(𝑥𝜌)𝑢

𝐷𝑢𝑢!

)]𝐷

= 1 − 𝑒−𝜌𝑥
(𝛩−1
∑

𝑢=0

(𝜌𝑥)𝑢

𝐷𝑢𝑢!

)𝐷

Comparison of the two regimes
Let us show that 𝛤 stochastically dominates 𝛤 ∗. Denote by 𝑁∗ the

process counting the number of mutations in the selection regime. In
the parallel regime, denote by 𝑁 (𝑗) the process counting the number
of mutations in the 𝑗th lineage. We know that 𝑁∗ is a Poisson process
with intensity 𝜌, whereas the 𝑁 (𝑗) are independent Poisson processes
with common intensity 𝜌∕𝐷, so that for all 𝑡

𝑁∗
𝑡

(𝑑)
=

𝐷
∑

𝑗=1
𝑁 (𝑗)

𝑡 ≥ max
𝑗=1…𝐷

𝑁 (𝑗)
𝑡 (30)

Now note that 𝛤 ∗ is the first time when 𝑁∗ reaches 𝛩, whereas 𝛤 is
the first time when max𝑗=1…𝐷 𝑁 (𝑗) reaches 𝛩. Since the latter counting
process is stochastically smaller than the former, we get the desired
stochastic inequality.

Now by the law of large numbers, we have the a.s. convergence of
𝑁∗

𝑡 ∕𝑡 to 𝜌 and for each 𝑗, of 𝑁 (𝑗)
𝑡 ∕𝑡 to 𝜌∕𝐷, which also yields the a.s.

convergence of max𝑗=1…𝐷 𝑁 (𝑗)
𝑡 ∕𝑡 to 𝜌∕𝐷. As a consequence, as 𝛩 → ∞,

𝛤 ∗∕𝛩 converges a.s. to 1∕𝜌 and 𝛤∕𝛩 converges a.s. to 𝐷∕𝜌. This proves
that 𝛤∕𝛤 ∗ converges a.s. to 1∕𝐷. □
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