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ABSTRACT. We give a mathematical interpretation of the dualities between type A Argyres-
Douglas theories recently obtained by Beem, Martone, Sacchi, Singh and Stedman, building
on work of Xie. Using the fact that, via the wild nonabelian Hodge correspondence, the data
defining such a theory amount to singularity data for irregular connections on P! of a specific
form, we show that these dualities can all be realized as compositions of two types of more
basic operations acting on such irregular connections: the Fourier transform and a Mo&bius
transformation exchanging zero and infinity. The proof relies on the stationary phase formula
giving explicit expressions for the the singularity data of the Fourier transform. We also clarify
the relation between the quivers describing the 3d mirrors of type A Argyres-Douglas theories
and the nonabelian Hodge diagrams defined in work of Boalch-Yamakawa and of the author: the
3d mirror corresponds to the unique nonabelian Hodge diagram with no negative edges/loops
among those of singularity data in the corresponding orbit under basic operations.
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1. INTRODUCTION

1.1. Background and motivation. The goal of this work is to investigate the links between
the classification problems for two different types of objects: moduli spaces of irregular connec-
tions on P!, and type A Argyres-Douglas theories.

1.1.1. Moduli spaces in 2d gauge theory. Moduli spaces of irregular connections on complex al-
gebraic curves are very rich mathematical objects. One aspect that makes them particularly
interesting is that they are just one side (the de Rham side) of a larger picture. Indeed, as
differentiable manifolds, they are isomorphic to moduli spaces for other types of objects defined
on algebraic curves: meromorphic Higgs bundles (the Dolbeault side), via the irregular version
of the nonabelian Hodge correspondence [54, 10]; and generalized monodromy data, known as
Stokes data (the Betti side) via the irregular Riemann-Hilbert correspondence. The Betti moduli
spaces are called wild character varieties since they generalize the usual character varieties, i.e.
the moduli spaces of representations of the fundamental group of the underlying Riemann sur-
face. Furthermore, these nonabelian Hodge spaces admit hyperkahler and symplectic structures,
and they are phase spaces for (isospectral and isomonodromic) integrable systems, encompass-
ing many systems of interest in mathematical physics, such as all Painlevé equations (see for
instance [15] for a survey.)

To obtain such a moduli space, one has to specify some initial data. They take the form
of an irregular curve with boundary data: this means a tuple ¥ = (X,a,0,C), where ¥ is a

smooth complex projective curve (the base curve on which connections are considered), a =
1
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{a1,...,a,} C ¥ is a finite set of points in ¥ (the singularities of the connections), and the
pair (©,C) encodes the types of the singularities of the connections at the points a;. More
precisely, on the Betti side, the irregular curve (3,a,®) determines a wild character variety
Mp(¥,a, ®), which admits an algebraic Poisson structure [13, 17]. Then any choice of boundary
data determines a symplectic leaf Mp(X,a,0,C) of Mp(3,a,®). Here we will be concerned
about the symplectic versions of wild character varieties.

In genus zero, for ¥ = P!, it turns out that there exist some highly non-trivial isomorphisms
between moduli spaces corresponding to connections with different ranks, number of singulari-
ties and pole orders. At the level of the corresponding integrable systems, this is reflected by the
fact that they admit several Laz representations. This raises the question of the classification of
such moduli spaces.

1.1.2. Towards a classification in genus zero: diagrams and Fourier transform. A circle of ideas
that has played an important role in making progress towards this problem is that moduli spaces
of irregular connections on P! are closely related to quiver varieties. An important motivation for
this line of thought has been the work of Okamoto [53], who showed in the 90s that the Painlevé
equations admit symmetry groups that are Weyl groups for some affine Dynkin diagrams.

In the case of regular singularities, works of Nakajima and Crawley-Boevey have established
that moduli spaces of connections with regular singularities on trivial bundles on P! are isomor-
phic to quiver varieties associated to star-shaped quivers [51, 27]. These results have then been
extended by Boalch and Hiroe-Yamakawa to certain irregular cases, involving one (unramified)
irregular singularity together with regular singularities [11, 12, 43]: the corresponding moduli
spaces of irregular connections on trivial bundles on P! are isomorphic to quiver varieties for
so-called supernova quivers. The moduli spaces corresponding to the Painlevé equations with
number VI, V, IV, and II fit into this framework, and the quivers that appear are exactly the
Dynkin diagrams found by Okamoto. In the simply-laced case, i.e. when the irregular singular-
ity is a pole of order at most 3, remarkably, this gives a clean graphical way to identify many
isomorphisms between different moduli spaces of irregular connections: the same simply-laced
supernova quiver can be obtained from connections with different ranks and number of singular-
ities, and these different ‘readings’ of the quiver correspond to isomorphisms between the moduli
spaces [12, 14].

Most such isomorphisms are induced by a class of basic operations on irregular connections
on P!, including notably the Fourier transform (or Laplace, or Fourier-Laplace transform). It
acts in a complicated way, changing the number of singularities, the ranks, and the types of
singularities (for instance it transforms a connection with regular singularities into one with an
irregular singularity at infinity). Other types of basic operations include Mébius transformations
(changes of global coordinate on P!), and twists (tensoring by a given rank one connection). In
particular, it was shown by Deligne and Arinkin [30, 5], extending work of Katz [45], that these
operations allow to obtain a complete classification of moduli spaces of irregular connections of
P! in the rigid case, i.e. when the moduli space is reduced to a point. Some simple non-rigid
irregular cases have been recently considered by the author [33].

More recently, this picture has been partially generalized to connections on P! with arbitrary
singularities by Boalch-Yamakawa as well as the author [18, 31, 32]: it is possible to associate
a diagram (i.e. a generalized graph, with possibly negative edge/loop multiplicities) to any
irregular connection on P!, in such a way that the diagram is invariant under Fourier transform,
so that we will have several readings of it, as in the simply-laced case, which are again expected
to correspond to isomorphisms between the corresponding wild character varieties'. However,
the diagrams are not invariant under Md&bius transformations, due to the fact that they depend
on the choice of point at infinity on the Riemann sphere. This framework applies in particular
to the moduli spaces associated to the remaining Painlevé equations.

n general finding explicit isomorphisms of wild character varieties induced by the Fourier transform is a
difficult problem [48, 49, 50]. Some explicit isomorphisms are known in certain cases [6, 56, 14, 35, 44, 34].
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1.1.3. Classification of type A Argyres-Douglas theories. On the other hand, understanding the
landscape of superconformal quantum field theories in 4 dimensions with A/ = 2 supersymmetry
has been an active area of research in theoretical physics. Among those, several classes of theories
of interest can be constructed from the initial data of a Riemann surface with punctures and
some singularity data there, i.e. essentially from an irregular curve with boundary data in our
language.

A first class of such theories consists of theories of class S, introduced by Gaiotto, Moore, and
Neitzke [38]. They are defined by compactifying a 6d A" = (2,0) superconformal field theory on
a Riemann surface with punctures. The corresponding Hitchin system plays an important role
in the study of these theories: the Seiberg-Witten curve corresponds to the spectral curve, the
base of the Hitchin system is the Coulomb branch of the 4d theory, and the Dolbeault moduli
space corresponds to the Coulomb branch of the theory compactified on a circle [52]. Another
rich class of 4d N' = 2 SCFTs is given by the Argyres-Douglas theories [3]. By definition, they
are theories where Coulomb branch operators have fractional scaling dimensions. Many of them
can be constructed by taking some limits of class S theories, and as a consequence can be defined
from the datum of a Riemann surface with punctures of a particular form [59]. They have been
studied extensively in the last decade, see e.g. [24, 58, 57, 28, 9, 61].

An important aspect of the study of quantum field theories has been to identify dualities
between various theories, and 4d N/ = 2 theories have been a fertile ground for this search.
Specifically, in this work, we will be interested in a class of dualities for type A Argyres-Douglas
theories recently found by Beem, Martone, Sacchi, Singh, and Stedman [7], providing a wide-
ranging generalization of some previously known particular cases. For that class of theories, the
initial data take the form of irregular Higgs bundles on P!, with an irregular (typically ramified)
singularity at infinity, and a regular singularity at zero.

1.1.4. Relating the classifications. Given that the initial data for both Argyres-Douglas theories
coming from class S and wild nonabelian Hodge spaces take the form of a Riemann surface with
some singularity data, it is not surprising that various aspects of their respective study turn
out to be related. There are indeed many known instances where mathematical objects related
to 2d gauge theory play a prominent role in the study of some 4d N = 2 theories, besides the
Hitchin system. For example, the Painlevé equations, which correspond to some of the simplest
nontrivial examples of nonabelian Hodge spaces, have been related to certain N/ = 2 theories,
including Argyres-Douglas ones [20, 21, 41]. The star-shaped quivers, the supernova quivers, as
well as some of the more recent twisted wild nonbelian diagrams encoding certain moduli spaces
of connections on P!, also have a physics interpretation, as the quivers describing the 3d mirrors
of some class S and Argyres-Douglas theories [8, 59, 29, 60].

One can thus expect that the dictionary between the two pictures can be extended further:
it is natural to conjecture that isomorphisms between moduli spaces of connections on P!, and
in particular the Fourier transform, should be related to dualities between class S or Argyres-
Douglas theories. Relations between the Fourier transform of irregular connections and dualities
between some quantum field theories have already been investigated by Luu [46, 47], in the
different context of minimal model 2d quantum gravity (see also the recent work by Alameddine,
Marchal and Hayford [2] on the relation between minimal models and the Painlevé I hierarchy.)

In the Argyres-Douglas context, one can readily observe that some known dualities match
with the Fourier transform of irregular connections, under the natural identification of initial
data given by the wild nonabelian Hodge correspondence: for instance the well-known duality
between the (Ay_1, Ax_1) and (Ax_1, Ay_1) theories [25] amounts to the same transformation
of the parameters k, N as the Fourier transform applied to connections on P! with an irregular
singularity at co such that all Stokes circles have slope % Similarly, the irregular realizations
for class S theories discussed in [59, §6.3.1] correspond to a particular case of the so-called
Harnad duality [1, 42, 62], which is an avatar of the Fourier transform.

1.2. Main results: Argyres-Douglas dualities from operations on connections.
In this work, we show that this correpondence between isomorphisms on both sides holds in
a much more general context: we can interpret all dualities between type A Argyres-Douglas
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theories found in [7] in terms of compositions of basic operations on irregular connections on
P!, namely of the Fourier transform, a Mébius transformation exchanging zero and infinity, and
some twists. This gives a simple derivation of the dualities, and a further consistency check: in
particular this should imply that the corresponding nonabelian Hodge spaces are isomorphic.
From a purely mathematical point of view, our results essentially give a classification of wild
nonabelian Hodge spaces of a specific form under basic operations, i.e. they can be seen as
another case study of a non-rigid Katz-Deligne-Arinkin algorithm.

The proof relies on the stationary phase formula [48, 37, 55, 40] which provides a way to

determine explicitly the singularity data of the Fourier transform of an irregular connection on
P

1.2.1. Irregular curves with boundary data of (generalized) AD-A type. The first step is to
translate the data defining a type A Argyres-Douglas into singularity data for certain irreg-
ular connections on P!, i.e. in our language a genus zero irregular curve with boundary data
3 = (P1,a,0,C). Since in the framework of [7], the Argyres-Douglas theories are defined in
terms of some irregular Higgs bundles on P!, the corresponding connections are obtained by the
wild nonabelian Hodge correspondence [10]. We will say that the irregular curves with boundary
data that arise in this way are of standard AD-A type. However, to account for the intermediate
steps appearing when realizing the dualities of [7] as a composition of simple operations, we will
have to consider slightly more general irregular curves with boundary data: we will say that
those are of generalized AD-A type.

The basic features of these data are as follows (see §2 for the detailed definitions). Recall
that a global irregular class © is a collection of Stokes circles {(g;) encoding the exponential
terms e? appearing in the horizontal sections of the connection around its singularities, counted
with multiplicities, and the boundary data C consists of a collection of conjugacy classes C,,
encoding the formal monodromies of the connections.

An irregular curve with boundary data X of generalized AD-A type has underlying curve P!,
a regular singularity at zero and an irregular one singularity at co. At the irregular singularity,
the wild Stokes circles all have the same slope k. In the general case, the local irregular class at
infinity also has a regular part; the type I case corresponds to the case where this regular part is
not present. In particular, 3 depends on a quadruple of relevant parameters 7 = (m, k, Cp, Cxo)
that we call the AD-A parameter of X. Here:

e m > 1 is an integer, the number of wild Stokes circles of 3.

e k € Q-0 is the slope of each of the m wild Stokes circles. If we write & = 7, with s,r
coprime, s is the irregularity of the Stokes circles, and r their ramification order.

e Cy C GLy(C) is the conjugacy class of the (formal) monodromy at zero. The integer N
corresponds to the rank of the connections.

e Coo C GLN_1(C) is the conjugacy class of the regular part of the formal monodromy
at infinity.

In the standard case, Cp is unipotent, corresponding to a Young diagram [Y], and C is regular
semisimple (of rank zero in the type I case), so the relevant parameters just consist of a triple
T = (m,k,[Y]), that we call a reduced AD-A parameter. The corresponding Argyres-Douglas
theory is Dg(ﬁ[N, [Y]), with p = ms, b = mr, N = rk(Y), in the notations of [7] (see Fig. 2 for
a more complete dictionary between notations).

1.2.2. Elementary AD-A operations. The second step is to observe that some simple composi-
tions of basic operations preserve the set of irregular curves with boundary data of generalized
AD-A type.

Let F' be the Fourier transform and M the Mobius transformaion z — 1/z exchanging 0 and
oo on PL. In the type I case these elementary AD-A operations are F itself and the compositions
Ft := FM, F~ := MF. In the general case, we have to consider variants F,,F, F, where
o € C*, obtained by conjugating the type I ones by a Kummer twist T, (see §o). If X is
an irregular curve with boundary data of generalized AD-A type, depending on the slope k
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not all these elementary operations transform 3 into an irregular curve with boundary data of
generalized AD-A type; when this is the case we say that that operation is allowed.

Our first main result is an explicit description of the transformation of parameters induced
by allowed elementary AD-A operations. It type I, we have:

Theorem 1.1 (Prop. 4.3). Let X be an irreqular curve with boundary data of generalized type
I AD-A type, with parameter T = (m,k,[Y°],[Y>°]). Then, if O is an allowed elementary
AD-A-operation on T, the irregular curve with boundary data O -X is of generalized AD-A type.

Furthermore, in each case, we have the following explicit expression for the parameter O - T
of O - X, where [7(Y)] denotes the Young digram obtained from [Y] by deleting its first column,
and h1(Y') denotes the height of the first column of [Y]:

(1) If k > 1, then the irreqular curve with boundary data F -3 is of generalized type I AD-A
type, with parameter

(1.1) F-T= (m, %, [ms — h1 (YY), Y™, [T(Yo)]>
(2) The irregular curve with boundary data Ft. 3% is of generalized type I AD-A type, with
parameter
~ s
1.2 Ft.T = — — h1(Y®), Y], r(Y®®
(12) T = (s = (v, Y0 7(v))

(3) If k < 1, the irregular curve with boundary data F~ % is of generalized type I AD-A
type, with parameter

(1.3) F~ T = <m,

S

YO s 1 (V0), Y

There is a similar statement in the general case, see Prop. 5.9.

In brief, elementary AD-A transformations preserve the irregularity s, but change the rami-
fication order r of the wild Stokes circles at infinity, and they change the Young diagrams [Y]
and [Y°°] by removing the first column of one of them (which one depends on the case), and
transferring the ‘complement’ to ms of that column to the other diagram, cf Fig. 1.

n S

FicURE 1. Effect of an elementary AD-A operation on the Young diagrams of
a type I AD-A parameter T = (m, k, [Y°],[Y>°]): it removes the column of one
of the diagrams (represented in blue), and add its ‘complement’ to the other
diagram (represented). Which one of [Y°], [Y>] is the blue/red diagram depends
on the case.

This allows us to determine explicitly the structure of the ‘orbit’ O(T) of a generalized AD-A
parameter 7 under elementary operations, see Fig. 3 and Fig. 4.

1.2.3. Recovering the Argyres-Douglas dualities. The three types of dualities found in [7], given
by equations (1.2), (1.3) and (1.4) in loc. cit., can then be interpreted as compositions of
elementary AD-A operations:

Theorem 1.2 (Prop. 4.7, 4.8, 5.13). Let X be an irregular curve with boundary data of standard
AD-A type, with reduced parameter 7 = (m,k,[Y]). Let us write k = % > 1, with s, coprime.

o Assume that 7 1is of type I. For any integer 1 > 0, (FJF)Z - 32 is also of standard type 1
AD-A type, with reduced parameter

(1.4) (F)' 7 = (o ) Y1)

ls+r
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o Assume that 7 is of type I. Let L be the number of columns of [Y], and let us write

r=ks+p, with1 < p<s—1. Assume that s > 1 and Ls > r, i.e. L > K.
Then the irreqular curve with boundary data (ﬁ”‘)(L_l)F - X is also of type I AD-A
type, with reduced parameter
\L—1—k —\K _ § c
(1.5) (FT) F(F™) -9—<m,LS_T,[Y]>

where [Y€] is defined as follows: if hy > --- > hp are the heights of the columns of
[Y] from left to right, then [Y°] has L columns with heights from left to right given by
(ms —hp)>--->(ms— hy).

o Assume we are in the non type I case. Let T = (m,k,Cy,Cx), be a non-reduced parameter
associated to T . Let k = tk(Cy) — rm = 1k(Cx), and Bi,..., B, be the eigenvalues of
Coo- Then f’g; . "Fﬁt -2 has a parameter of the form

N S 5 /
(1.6) FroFLT (W%Ks+rx%&}>

where { } denotes the trivial (rank 0) conjugacy class, the nilpotent part of C), only
depends on 7, and is given by the Young diagram

(1.7) [(ms — 1)", Y.

Indeed, via the dictionary of Fig. 2, the transformations of the parameters match with the
dualities of loc. cit.

The situation can be understood nicely in terms of the structure of the orbit O(7T) given by
Fig. 3 (for s > 1): the first duality amounts to following [/ times a red arrow starting from 7, the
second one amounts to following L times a blue arrow, and the third one to following k times
a red arrow (twisting by eigenvalues of the conjugacy class at infinity). In particular, for the
second duality, we can understand explicitly the parameters corresponding to the intermediate
steps, see Fig 5: the Young diagram [Y] is transferred to the complement [Y €] one column at a
time. Note that we can also interpret why extra hypermultiplets appear for the third duality in
loc. cit., see Remark 5.14.

1.2.4. 8d mirrors as nonabelian Hodge diagrams. Finally, we clarify the relation between the
quivers describing the 3d mirrors of type A Argyres-Douglas theories and the wild nonabelian
Hodge diagrams introduced in [18, 31] in the twisted case. These works introduce a construction
which to any irregular connection (E, V) on P! associates a diagram I'(E, V), and (given a choice
of marking), a dimension vector d for I'(E, V). In the standard AD-A case, the diagram and
the dimension vector only depend on the reduced parameter 7.

We find that the 3d mirrors are indeed nonabelian Hodge diagrams, but there is an important
subtlely: given a reduced AD-A parameter 7, the 3d mirror is in general not the diagram
(7). The problem is that when k& < 1 the diagram I'(7) is ‘bad’, since it has negative
edges and loops. However, if we consider the diagrams I'(7”) where 77 is in the orbit O(T) of
T under elementary AD-A operations, we can find a ‘good’ diagram with nonnegative edges.
Remarkably, this diagram is essentially unique, and corresponds precisely to the 3d mirrors
found in the physics literature:

Theorem 1.3 (Prop. 6.6, 6.9, 6.10, 6.13). Let .7 be a reduced AD-A parameter. Then there
exists a unique nonabelian diagram T of the form T(T") for T' € O(T) with no negative edges
nor loops, and minimal number of edges, that we denote by I'y (7). Furthermore, the quiver
describing the 3d mirror of the Argyres-Douglas theory defined by T is 'y (T) (with its uniquely
defined dimension vector).

In terms of Fig. 3, the diagram is the one of the elements 7, 7~ with slope ¥’ > 1 in the
orbit O(T). In particular, this sheds lights on the fact that the 3d mirror quivers feature two
legs although the initial data consist of a single nontrivial conjugacy class: the parameter 7
corresponds to an intermediate step of the duality (1.5) so part of the Young diagram of the
conjugacy class has been transferred to the second leg (cf Fig. 5.)
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Outlook. This work raises several questions about possible further relations between various
aspects of the study of some 4d N/ = 2 theories, and moduli spaces of irregular connections
on P!. One can for instance wonder whether some other dualities obtained in the physics
literature might be interpreted in a similar way. Furthermore, in our approach we determine
the nonnegative diagrams, i.e. the 3d mirror quivers, by using the Fourier transform and the
stationary phase formula, while in the physics approach, when the regular puncture at zero is
non maximal, they are obtained using some quiver algorithms such as the decay and fission
algorithm [23, 22]. It would thus be interesting to understand better the relation between the
quiver algorithms and the Fourier transform.

Structure of the article. The article is organized as follows. In section 2, we define the
irregular curves with boundary of AD-A. In section 3, we discuss the Fourier transform and the
stationary phase formula for irregular curves with boundary data of AD-A type. In section 4,
we establish our main results in the type I case. In section 5 we introduce Kummer twists and
deal with the general case. Finally in section 6 we show that an irregular curve with boundary
data of AD-A type defines a unique minimal nonnegative nonabelian Hodge diagram, which
coincides with the 3d mirrors of the corresponding type A Argyres-Douglas theory.

Acknowledgements. I thank P. Boalch and A. Bourget for pointing to me the article [7]. I
am funded by the PNRR Grant CF 44/14.11.2022, “Cohomological Hall Algebras of Smooth
Surfaces and Applications”

2. IRREGULAR CURVES WITH BOUNDARY DATA AND TYPE A ARGYRES-DOUGLAS THEORIES

In this section, we recall the notion of irregular curves with boundary data (see e.g [19, 16]
for more details), and discuss the form of those corresponding to the data defining a type A
Argyres-Douglas theory.

2.1. Irregular curves with boundary data. Let ¥ a smooth complex projective curve (here
we will only be interested in ¥ = P!).

2.1.1. Stokes circles. Let a € 3. Let ¢, : ia — 2 be the real oriented blow-up of X at a. The
preimage ¢, !(a) =: 9, is a circle parametrizing directions around a. Let z, be a local coordinate
on X in a neighbourbood of a vanishing at a.

Definition 2.1. The (local) ezponential local system at a is the local system of sets (i.e. the
covering space) Z, — 0, whose local sections are germs of functions on germs of sectors, of the
form

(2.1) g= bzt
k=1

where 7 > 1 is an integer, and b; € C fori =1,...,s.

Such a section q of 7, determines several numbers:

e The smallest possible integer r > 1 such that ¢ can be written in this way is the ramifi-
cation order ¢, denoted by Ram(q) (in particular for ¢ = 0 we have Ram(q) = 1).

e The degree s of ¢ as a polynomial in zq 1/ " with » = Ram(q), is the irregularity of q,
denoted by Irr(q).

e The quotient k = s/r € Q¢ is then called the slope of g, and denoted by Slope(q) (for
g = 0 we set Slope(q) = 0).

Definition 2.2. A Stokes circle at a is a connected component of the topological space Z, i.e.
an element of 7y(Z,).

Given a local section ¢ of Z, as above, we denote by (g) its connected component in Z,. It
is homeomorphic to a circle, hence the terminology. The corresponding subcover (¢) — 9, has
/r

finite degree r (this corresponds to the fact that there are r determinations of the root zalt in

any direction).
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More concretely, the set of Stokes circles at a is in bijection with the set of orbits of polynomials
> r—1 brza M i Za U Swithout constant term, under the cyclic Galois action permuting the
determinations of the r-th root of z, generated by z4 1 e 2im/ "Za 1/ "

We call the Stokes circle (0) at a the tame circle at a, and refer to other ones as wild Stokes
circles.

2.1.2. Local irreqular classes and boundary data. An irregular class is a collection of Stokes
circles with multiplicities:

Definition 2.3. Let a € P'. A (local) irregular class at a is a multiset of Stokes circles at a,
i.e. a formal sum
p

(2.2) Oa =Y _ nilq),
i=1
where (g;) € m0(Z,) are pairwise distinct Stokes circles, and n; € Z>1, for i € {1,...,p}.
The rank of the irregular class ©, is the integer

P
(2.3) rk(0,) = an Ram(g;).
i=1
Definition 2.4. Let ©, = >-?_, n;(¢;) be an irregular class at a. A boundary datum C, for 6,
is the datum of a conjugacy class
C<Qi>a C GL,,(C),
for each i € {1,...,p}.

The well-known Turritin-Levelt theorem implies that any connection V. on the formal punc-
tured disc D) := Spec(C((z4))) canonically determines a pair (4,C,) where O, is an irregular
class at a and C, is a boundary datum for ©,. The connection has a regular singularity at a if
©, = N(0), and an irregular singularity otherwise.

2.1.3. Global case.
Definition 2.5. Let N > 1 be an integer.

e A rank N irregular curve is a triple (2,a,®), where ¥ is a smooth complex projective
curve, a = {ai,...ay} is a finite set of points on ¥, and ® = (O, ..., O,, ) is the datum
of an irregular class ©,, of rank N at each a;.

e A rank N irregular curve with boundary data is a quadruple (£, a, ®,C), where (X, a, ©)

is an irregular curve, and C = (Cq,, ..., Ca, ), where C,, is a boundary datum for ©,, for
each i € {1,...,n}.
If ¥ is a complex projective curve, a = {aj,...,a,} C X a finite set of points on X, an

algebraic connection (E, V) of rank N on ¥X° := ¥\ a canonically determines a rank N irregular
curve, as well as boundary data, by considering its restriction to the formal punctured disk
around each a; and taking the local formal data (0,,,Cq,) at a;.

By the work of Boalch and Boalch-Yamakawa [13, 17], any irregular curve (X, a, ®) determines
a (possibly empty) wild character variety Mp(3,a,0). Via the irregular Riemann-Hilbert
correspondence, it parametrizes isomorphism classes of irregular connections (E, V) on ¥° with
irregular class ©,, at a;.

Furthermore, the variety Mp (X, a, ®) has an algebraic Poisson structure, and its symplectic
leaves correspond to fixing boundary data C for the irregular curve (X,a,®). We denote by
Mp(X,a,0,C) the symplectic wild character varieties obtained in this way.

Remark 2.6. We say that an irregular curve with boundary data 3 is effective if there exists
an irreducible connection (E,V) with data ¥. In the rest of the article, irregular curves with
boundary data will always be assumed effective.

Notation 2.7. For our purposes here, we will only consider the genus zero case, i.e. ¥ = P!,
and it will be convenient at times to use slightly different (but clearly equivalent) points of view
on genus zero irregular curves with boundary data:
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e We defined a global irregular class @ both as a collection (O, ,...,0,,) of irregular
classes at different points on P'. We can also view it as a multiset of Stokes circles
allowed to lie above different points of P!, i.e. a formal sum

p
(2.4) © = nilg),
i—1

where (g;) is a Stokes circle at some point 7({(g;)) = a; in P, i.e. a connected component
of the global exponential local system Z := U,¢cp1Z, (for convenience we will sometimes
write Stokes circles as (q)q, with a subscript indicating the corresponding singularity,
sometimes without subscript.)

e Similarly, we can view the pair (©,C) as a collection

(©.0) = {({a).Cian) | i € {10}

of pairs (<QZ>7C<%>)
Furthermore, the singularity locus a is determined by the global irregular class ®, so an irregular
curve with boundary data is actually determined by the pair (©,C). By a slight abuse of
language, we will thus sometimes view a genus zero irregular curves with boundary data as a
pair (©,C), with (g;) a Stokes circle, and C(,,y a conjugacy class for i € {1,...,p}.

A last point: associating boundary data C to a connection (E,V) depends on a choice of
orientation of P! (if we reverse the orientation we get the inverse conjugacy classes). Here it
will be convenient to adopt the following convention: for a # oo we use the standard orientation
on P! to define C,, but for a = oo we take the reverse orientation. This amounts to having the
chosen orientation at each a € P! corresponding to the standard orientation on the complex
plane, using the local coordinate z, defined by z, := 2 — a for a # oo, and z, := 27! for a = oo
(where z denotes the standard global coordinate on Al.)

2.2. Type A Argyres-Douglas case. In the framework of [7], the initial data required to
define a type A Argyres-Douglas theory consist of a Higgs bundle on P! with an irregular
pole at oo, a regular pole at 0, and prescribed form at the irregular singularity. Via the wild
nonabelian Hodge correspondence of [10], this amounts on the de Rham side to connections
whose irregular curves with boundary data are of a specific form.

2.2.1. Most general form. For our purposes here, it will be necessary to consider slightly more
general irregular curves that those obtained in this way, for the following reason. We want to
show that the dualities between type A Argyres-Douglas theories derived in [7] correspond a
composition of simple operations on irregular connections on P!. The point is that when applying
these operations successively, at the intermediate steps, the irregular curves with boundary data
will not correspond any more to a Higgs bundle of the form considered in loc. cit. (concretely
the conjugacy classes can become more general).

This motivates the following definition, which encompasses all irregular curves with boundary
data that we will encounter:

Definition 2.8. Let ¥ = (P!, a,®,C) be a genus zero irregular curve with boundary data, and
N =rk(X). We say that X is of generalized AD-A type if

e a = {0,00};
e the singularity at 0 is regular, i.e. ©g = N(0)g.
e the irregular class at infinity is of the form
(2-5) O = <Q1>oo +ooet <Qm>oo + (N - mr)<0>o<>7

where (q1)co, - -+, (gm)oo are pairwise distinct Stokes circles with the same ramification
order 7 > 1, same slope k = & > 0 with s, 7 coprime, such that the Galois orbits of their
leading terms are pairwise distinct, i.e. for i € {1,...,m} we have

(2.6) = byd",
=1
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with b € C for I € {1,...,s}, bis # 0, and and b}, # b, for distinct i, j € {1,...,m}.

In brief, there are two singularities: an irregular one at co, a regular one at 0, and we assume
that the nonzero Stokes circles at the irregular singularity are all of multiplicity 1, and have the
same slope k.

Definition 2.9. If 3 is as in Def. 2.8, we say that the tuple
(2.7) T = (m, k,Ci0y0,Cl0)o)
is the parameter of X.

Notation 2.10. To simplify notations, since we will the conjugacy classes associated to the
tame circles at 0 and oo are the only ones playing an important role, we will write Cy, Coo
instead of Cgy,, Cp)., respectively.

oo

Notation 2.11. Using the Jordan normal form, a conjugacy class C C GL,(C) is determined
by the datum of its (pairwise distinct) eigenvalues Aj,..., A, € C* and of the Young diagram
Y\, encoding the nilpotent part of its restriction to the characteristic subspace associated to \;
for each i € {1,...,p}. We will then write

C={(0 Va5 s Y3,
In particular, a unipotent conjucacy class C is of the form C = {(1,[Y])} for some Young diagram
Y.
For the conjugacy classes Cp,Cx in a generalized AD-A parameter T, we will write

Co = {(an, [Y3,]). - (o, Y21},
Coo = { (B0, [Y57D, -+, (B, [Y5 D}

where aq,...,ar € C* are the eigenvalues of Cy, and YSZ,, for i € {1,...,k}, the corresponding
Young diagrams, and similarly £1,...,5; € C* are the eigenvalues of Co,, and Yoj, for j €
{1,...,1}, the corresponding Young diagrams.

2.2.2. Particular cases. We now introduce some particular subtypes of irregular curves with
boundary data of generalized AD-A, type, obtained by requiring Cp and C, to be of a specific
form.

Definition 2.12. Let X be an irregular curve with boundary data of generalized AD-A type,
and T = (m, k,Cp,Cs) its parameter. Then we say that:
e X is of standard AD-A type if:
— Cp is unipotent, and
— Cx is either of rank 0, or a regular semisimple conjugacy class, with pairwise distinct
eigenvalues all different from 1.
e 3 is of standard type I AD-A type if:
— Cp is unipotent, and
— Cs is of rank 0.
e X is of generalized type I AD-A type if:
— Cp is unipotent, and
— Co is either of rank 0, or unipotent.
If 3 is of standard (possibly type I) AD-A type, the conjugacy class Cy is of the form Cy =
{(1,[Y])}, for some Young diagram Y. We call the triple .7 := (m, k, [Y']) the reduced parameter
of X.

The motivation for these definitions is that the standard, and standard type I cases correspond
via the wild nonabelian Hodge correspondence to the Higgs bundles providing the initial data
for the type A Argyres-Douglas theories considered in [7], namely:

e A type A Argyres-Douglas theory in the terminology of loc. cit. corresponds to an
irregular curve with boundary data of standard AD-A type.

e A type A Argyres-Douglas theory of type I in the terminology of loc. cit. corresponds
to an irregular curve with boundary data of standard type I AD-A type.
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FIGURE 2. Dictionary between parameters for type A Argyres-Douglas theories
in the notations of [7] and the parameter of the irregular curve with boundary
data of standard AD-A type (possibly type I) in our notation here, in both
directions. The unipotent conjugacy class Cy is given by Cy = {(1,[Y])}.

(On the other hand, the generalized type I case will appear in the intermediate steps when
realizing the AD dualities from successive application of simple operations on connections in the
type I case.)

More precisely, the dictionary between our notations and those of [7] for the parameters
defining the AD theories is as follows: the AD theory denoted by Dg(slN, [Y]) corresponds to
irregular curves of standard (possibly type I) type, with the reduced parameter 7 = (m, k, [Y])
related to the parameters used in loc. cit. as indicated in the tables of Fig. 2 below.

Let us briefly discuss how to see this from the form of the irregular Higgs bundles playing the
role of initial data for Argyres-Douglas theories given in [7, §2.1].

To this end, let us first recall how to determine the irregular curve with boundary data of
the connection determined by a given irregular Higgs bundle via the wild nonabelian Hodge
correspondence of [10] (actually the case that we need is more general than the untwisted one
discussed in full detail in loc. cit, but things remain true in the twisted case as well, see also
[26, 36]).

Consider a meromorphic Higgs bundle (E,®) on 3, and let a be a pole of the Higgs field
®. Let z be a local coordinate on ¥ at a. We assume that (E, ®) is ‘good’ in the sense of [15,

Remark 6], i.e. locally, after passing to a cyclic cover i.e. setting w := 2/ for some integer
r > 1, in some trivialization the Higgs field ® has a local model of the form
T. T, T
(2.8) < Z—_tll +-- 4 —22 + 1) dw + holomorphic terms
w w w
where T1,...,Tsy1 are constant N by N matrices, with T3, ..., Ts;1 diagonal.

By the wild nonabelian Hodge correspondence, (E, ®) defines a (parabolic) connection (E’, V),
admitting a local model of the form

A A A
(2.9) ( sty 2y 1) dw + holomorphic terms,
wstl w?  w
where A1, ..., Agy1 are constant N by N matrices, with Ao, ..., Ag1q diagonal, where the ma-

trices A; and 7T; are related as follows (from Thm. 0.1 and the remarks on the nilpotent parts
in [10]):

e A, =2T; for i > 2.

e The eigenvalues of Ay, T1 and the parabolic weights on the connection and Higgs bundle

sides are related by Simpson’s table.
e The nilpotent parts of A; and 77 are the same.

Now, the corresponding irregular class O, is obtained as follows: define the irregular type Q of
the local model by

As+1 A2
(2.10) sz( +~-+w2> dw,

ws+1
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with

~

qN

where §; € wC[w™!] for i € {1,...,N}. Here the exponential factors §; are not necessarily
distinct; up to reordering the local basis we can write without loss of generality

Q:diag(&l?"'7&17"')&]67"'7(7/6)
N————— N———
n1 times ng times

with ¢; € w™'Clw™?] for i € {1,...,k} with the g for i € {1,...,k} now pairwise distinct.

Now, since (E’, V) is meromorphic in z, if a Puiseux polar part ¢ € z~%/"C[z~1/"] is present in
Q@ with multiplicity n, then so are all its Galois conjugates (with the same multiplicity). Denoting
by (¢1)a;- - -, (@p)a the Stokes circles corresponding to the distinct Galois orbits appearing in @,
and n;, for i € {1,...,p} the corresponding multiplicities, we obtain a well-defined irregular
class

p
@a = Z ni<q¢>aa
i=1

Finally, the boundary datum C, for ©, is determined by the residue A;, as follows. Using
meromorphic gauge transformations, we can assume that A; is in the centralizer of Q, i.e. is a
block diagonal matrix

Ay
(2.11) A =
Ay

with A; a constant square matrix of size nj, for j € {1,...,k}. Then for i € {1,...,p} the
conjugacy class Cy,,, associated to (g;), is the conjugacy class of exp(2v/—1m Ram(g;)A,) for
any j € {1,...,k} such that (gj)a = (¢i)a-

One can then apply this to the Higgs bundles described in [7, §2.1] corresponding to the
Argyres-Douglas theory denoted by Dg(slN, [Y]) there (choosing vanishing parabolic weights for
the regular singularity at zero, and generic weights for the irregular singularity at infinity).

One obtains that the corresponding irregular curve with boundary data is of standard AD-A
type as per Def. 2.12, with parameter 7 = (m, k, Cp, C) such that m, k,Cy are given in terms of
b,p, N and [Y] by the tables in Fig. 2, and Cw is either of rank 0 (in the type I case), or generic
regular semisimple, with eigenvalues different from 1. Indeed, for the regular singularity at zero
Co, the residue A of the Higgs field is nilpotent, given by the Young diagram [Y], so the conjugacy
class Cy is the conjugacy class of exp(2v/—1mA), hence Cp is unipotent, and Co = {(1,[Y])}.

Example 2.13. Let us discuss a few simple examples:

(1) Let 7,58 > 1 be two coprime integers, with s > r. The irregular curve
(P*, 00, (z*/")oc)

corresponds to the Argyres-Douglas theory often referred to as the (451, As—,—1) theory,
denoted by Dy(sly, [N]) in [7], with ¢ = s and N =r.

Indeed, from our dictionary, that theory corresponds to irregular curves with boundary
data of standard type I AD—A type with reduced parameter .7 = (1, 4, [N]). In that
case we have Cy = {Idy}, so the corresponding connections have trivial monodromy at
0, i.e. there is only an apparent singularity there. Furthermore, the irregular class at
infinity is of the form Oy = (¢)oo, where Slope(q) = # = 2.

Some particular cases of this are related to some well-known mathematical objects:

e The case r = 2, s = 3 is related to the Airy equation y” — xy = 0, whose irregular

curve is (P!, oo, <§23/ %)) In that case the wild character variety is just a point,

reflecting the fact that the Airy equation is rigid.
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e For s = 5 and r = 2, the irregular curve X is the standard Lax representation
for the Painlevé I equation. In that case the wild character variety has a complex
dimension 2, and parametrizes solutions of Painlevé I.

(2) Consider the irregular curve

(P', 00, (A2%)oo + (112%) o)

with \,u € C*, X\ # u. It corresponds to an irregular curve with boundary data of
standard AD-A type, with reduced parameter .7 = (2,3, [2]), i.e. to the Argyres-Douglas
theory Ds(sla, [2]) in the notations of [7]. On the other, this irregular curve is none other
but the standard Lax representation for the Painlevé II equation.

3. FOURIER TRANSFORM AND MOBIUS TRANSFORMATION

3.1. Modified formal data. The basic idea is that the trivial part of (the formalization of) the
connection at the singularities at finite distance does not contribute to the Fourier transform.
Concretely, this means that to obtain the formal data of the Fourier transform, one first needs
to quotient by these trivial parts.

Definition 3.1. Let C C GL,(C) be a conjugacy class, and A € C. The truncation 7(C) of C is
the conjugacy class of Ajiy4—1) in GL;,(C), where m := rk(A — 1). (this does not depend on
the choice of A.)

This can be interpreted in terms of the corresponding Young diagrams. Let us introduce the
following definition:

Definition 3.2. Let [Y] be a Young diagram. The truncation [7(Y')] is the Young diagram
obtained from [Y] by deleting its first column, if [Y] is nonempty, or the empty Young diagram,
if [Y] is empty.

It is then straightforward to see that taking the truncation of a conjugacy class amounts to
taking the truncation of its Young diagram associated to the eigenvalue 1 (when nonemtpy):

Lemma 3.3. Let C = {(A1,[Yy,]), .-, (A, [Ya))} € GL,(C) be a conjugacy class.

o If the eigenvalues \;, for i € {1,...,p} are all different from 1, then 7(C) = C.
o Otherwise, if \j =1 for some i € {1,...,p}, then we have

T(C) = {()‘17 [YM])7 SRR (17 [T(Y)\i])? B ()‘k‘v [Y)\k])}
In particular, for a unipotent conjugacy class C = {(1,[Y])} € GLxy(C), we have 7(C) =

{(L [=(Y)D}

Another immediate observation, which will be important, is the following converse:

Lemma 3.4. A conjugacy class C C GL,(C) is fully determined by the datum of its truncation
7(C) together with its rank N, namely if we write

{0 YD s YA DY
with \; =1 for some i € {1,...,p} (with Y1 possibly empty), we have
C={(\, YD), (LA Y], s O YR D)
where h :=mn — Y7 k(YY) ).

We introduce a variant of global formal data of irregular connections on P!, obtained by
taking the truncations of the conjugacy classes of the formal monodromies of the regular parts
at finite distance.

Definition 3.5. Let (©,C) be (effective) global formal data, with

p
© = nia), €= (Capr-:Cigp);
=1
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with C(,,y a conjugacy class in GLy,(C) for i € {1,...,p}. The corresponding global modified
formal data are the pair ((:)7 é) defined by:

v v

P
@ZZmi<Qi>a C:(C<q1)""vc(qp>)’
i=1

where
e If (¢;) is a tame circle at finite distance, i.e. (¢;) = (0), with a # oo, then m; = rk(A—1)
for any A € Cy,y, and C; := 7(C;) C GLyy,, (C).
e Otherwise, m; := n; and C; =G

Notice that, if aq,...,a, are the singularities of @ at finite distance, and if we view the
modified global irregular class © as a collection ((:)al, e ,(:)an, (:)OO) of local irregular classes (we
can always include oo as a singularity, up to taking O as the trivial irregular class N(0)o),
then now in general we do not have any more the equality of ranks rk(©,,) = rk(G.) for
i € {1l,...,n}, but only the inequality

1k(0g,) < 1k(Ou).

Furthermore, since rk(0O) = rk(®), it follows from Lemma 3.4 that the non-modified irreg-
ular class © is fully determined by the modified one ©, i.e. modified and non-modified global
formal data are equivalent (cf. [4, Corollary 3.6].)

Remark 3.6. From a more conceptual point of view, the passage to modified formal data has to
do with the notion of nearby and vanishing cycles for regular holonomic D-modules and perverse
sheaves in dimension 1, cf. [4]. More precisely, given a connection (E,V) on A' \ {ay,...an},
there one can associate to it a Dyi-module M called its minimal extension (or middle extension,
or intermediate extension). Taking the non-modifed formal data amounts to considering the
formal nearby cycles of M at a;, while taking the modified formal data amounts to considering
their formal vanishing cycles.

3.2. Fourier transform. The Weyl algebra A; = C|z, 0,] is the algebra of differential operators
on the affine line A'(C). The Fourier (or Laplace, or Fourier-Laplace) transform is induced by
the automorphism of A; defined by

z = —0,,
(3.1) { 0. — =z

In turn, if M is an A;-module, its Fourier transform is defined as the A;-module M’ with the
same underlying C-vector space, and Aj-action induced by (3.1).

Due to the fact that algebraic connections on Zariski open subsets of P!(C) are closely related
to Aj-modules (cf. Remark 3.6), up to some caveats this also induces a well-defined operation on
connections: if (F, V) is an irreducible connection on a Zariski open set U that is not a rank one
connection with just a pole of order 2 at infinity, there is a well-defined irreducible connection
(E',V') on a Zariski open subset U’ of P! that we call the Fourier transform of (E, V), and
denote by F' - (E, V).

The Fourier transform acts in a very nontrivial way, typically changing the rank, number of
singularities, and pole orders of the connections. On the Betti side, it is known in some cases
how to explicitly determine the Stokes data of the Fourier transform in terms of those of the
initial connection, but in general it is a difficult problem.

However, at the level of formal data, the action of the Fourier transform is well-understood:
the stationary phase formula [48, 39, 37, 55, 40] implies that the formal data of the Fourier
transform F' - (E, V) are fully determined by those of (E, V):

Theorem 3.7. There exists a well-defined self-bijection of the set of effective formal data of
connections on P!, that we call the formal Fourier transform, and will also denote by F, such
that if (E,V) has formal data (©,C), then F' - (E,V) has formal data F - (©,C).

Furthermore, the formal Fourier transform has the following form: there is a self-bijection of
the set mo(Z) of all Stokes circles (over all points in P1), that we will denote also by F, such that
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if (©,C) are the modified formal data associated to (®,C), the modified formal data associated
to F- (©,C) are given by:

(3.2) Fo(8,8)={(F{a), (-D"@¢y,) i {1,....p}}.
Moreover, the bijection F' on Stokes circles is given explicitly by a Legendre transform.

Concretely, this implies that to determine the formal data of the Fourier transform, one
proceeds in three steps, as follows:
(1) Pass to the modified formal data
(2) Take the Legendre transform to obtain the modified formal data of the Fourier transform
(3) Pass to the corresponding the non-modified formal data
For our purposes here, it will not be necessary to discuss in detail the Legendre transform for
all types of Stokes circles.

Lemma 3.8. For Stokes circles at zero and infinity, we have:

o F-(0) = (0)e

o - {0)o = (0)os

o If (q) is a Stokes circle at zero, of slope k = % # 0, then F - (q) is a Stokes circle at oo
of slope kiﬂ =t

o If (q) is a Stokes circle at oo of slope k = > > 1, then F - (q) is a Stokes circle at oo of

slope%:ﬁ>l.

o If (q) is a Stokes circle at co of slope k = 2 < 1, then F - (q) is a Stokes circle at 0 of
slope ﬁ =

r—s’
Proof. This follows from the stationary phase formula, using the explicit form of the Legendre
transform. O

3.3. Mobius transformation. We now briefly discuss the Mébius transformation M exchang-
ing 0 and co. Let ¢ : P! — P! the automorphism of P! defined by z %

Definition 3.9. Let (E,V) be a connection on a Zariski open subset U of P!. We define
M - (E, V) as the connection . (FE,V) on ¢(U).

Concretely, applying M just amounts to do the change of coordinate on P! given by 2’ = %
In turn, it is straightforward to see that, if (g) is a Stokes circle at a € P!, there is a well-defined
Stokes circle M - (¢) at ¢(a), obtained as the connected component of the polar part of p.(q).
Moreover M - (q) has the same ramification order, irregularity and slope as (g).

The formal data of M - (E, V) are related to those of (E, V) as follows:

Lemma 3.10. Let (E,V) be a connection on a Zariski open subset of P!, with irregular curve
with boundary data ¥ = (P',a,®,C). Then the irreqular curve with boundary data of M - (E, V)
only depends on 3, and is given by

M- := (P!, p(a), M- (©,C))
where, for (©,C) = {((qi>,C<qi>) ‘ i€ {1,...,p}}, we set

M- (0,¢):={(M-(@),Cyy) | i€ {1,....0}}

4. ARGYRES-DOUGLAS DUALITIES FROM OPERATIONS ON CONNECTIONS IN TYPE I

4.1. Elementary AD dualities in type I. We are ready to study the transformation of
irregular curves with boundary data of generalized type I AD-A type under compositions of F
and M.

In general, not any composition of M and F will preserve the property of being an irregular
curve with boundary data of generalized type I AD-A type. For this reason, we introduce some
elementary compositions for which this will be the case.
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Definition 4.1. The type I elementary AD-A-operations are the following operations on irreg-
ular curves with boundary data on P!:

e the Fourier transform F;

e the composition Ft := FM:;

e the composition F~:= MF.

Definition 4.2. Let O € {F,F* Ft} be an elementary type I AD-A-operation, and T =
(m, k, [Y9],[Y>°]) a generalized type I AD-A parameter. We say that 7 is an allowed operation
on 7 in the following cases:

(1) O=F and k > 1;

(2) O =F™;

(3) O=F and k < 1.

Our first main observation is that irregular curves with boundary data that are of gener-
alized type I AD-A type remain so under allowed elementary AD-A-operations, justifying our
terminology.

Proposition 4.3. Let 3 be an irreqular curve with boundary data of generalized type I AD-
A type, with parameter T = (m,k,[Y°],[Y°]). Then, if O is an allowed elementary AD-A-
operation on T, the irregular curve with boundary data O - 3 is of generalized AD-A type.
Furthermore, in each case, we have the following explicit expression for the parameter O - T
of O-%:
(1) If k > 1, then the irreqular curve with boundary data F -3 is of generalized type I AD-A
type, with parameter

(@) FT = (= s = I (V) Y51, (V)]
2) The irreqular curve with boundary data F+ - % is of generalized type I AD-A type, with
( 9 Y 9 yp yp
parameter
+ . — S . 00 0 00
(42) Fre = (m, = s = (V). Y, 7(v™)

(3) If k < 1, the irregular curve with boundary data F~ % is of generalized type I AD-A
type, with parameter

(4.3) T = (m YO, [ms — b (YO, Y°°]>

r—s

Notice that in every case, the pattern is as follows: applying one elementary step removes the
first column of one of the Young diagrams [Y°] [Y"*°], and adds the ‘complement’ of that column
to the other Young tableau. Which one of [Y"] and [Y*°] decreases depends on the elementary
operation.

Proof. This follows quite directly from the stationary phase formula, applied to irregular curves
with boundary data of generalized AD-A type. Let us give the details.

By definition, an irregular curve with boundary data ¥ = (©,C) of generalized type I AD-A
type with parameter 7 corresponds to a global irregular class of the form

© = (q1)oo + -+ (@)oo + 12(0)c (0)oc + N{0)o,

where N = 1k(©) = 1k(Y?), ny). = rk(Y>), and the boundary data include the conjugacy
classes C(py,, = {(1, [Y*])} C GLn,__(C) and Cyg), = {(1, [Y9)} € GLy(C). In particular we
have the relation

N =mr+ngq.,-

Let us discuss the first case. Assume k > 1. The modified formal data (©,C) associated to
3 = (0O,C) feature the modified global irregular class

v

© = (@1)00 + s {Gm)oo + n(0>oo<0>oo + No(0)o,
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where Ny = tk(7(Cg)) = N —hy(Y?), and include the modified conjugacy classes é<0>0 =7(Cpy) =

{(1, [7(Y2)])}, and é<0>w = Coo- The modified formal data ((:)’,é,) associated to F' - 3 are thus
given by the modified irregular class

O = (@)oo + - - - (Gim)oo + 1(0). (00 + No(0)ec
where ¢; is of slope - for i € {1,...,m}, and ¢ includes the conjugacy classes
Cloy, = Coo
Cloy.. = Co =7(Co).
In particular, the rank of the Fourier transform F' -3 is given by
N' =1k(F - ) =m(s —r) + Nog = ms +rk(Y>) — hy (Y?)
Finally, the global formal data (®’,C’) of F'-X are the corresponding non-modified formal data:

they are obtained from (é’ , é/) by replacing the unipotent conjugacy class C = {(1,[Y>°])}
by C' = {(1,[h,Y*°])}, where h = N’ — tk(Y>®°) = ms — h1(Y"), so we obtam the desired
result

Let us now discuss the second case. First, applying the Md&bius transformation M has the
effect on X of exchanging the roles of 0 and oo, hence the formal data (®,C) of M - X are of
the form

O=(g)+t..., (gm>0 +10) . (0)0 + N(0) 0

and the conjugacy classes Cy, = Coo; C(g),, = Co. Next, the modified formal data (Q, é)
associated to (@, C) satisfy

v

O =g+ --,{g, )o+n(0)0+ N(0)o,

with (g,) of slope 2 for i € {1,...,m}, n' = 1k(7(Cxx)), é<0)0 = 7(Cx), and é<0>00 = Cp. It follows
that the formal data (E:)’,é/) of FM - % are of the form

O = (g))oo + -+ (€)oo + 1 (0) + N{0)o,

with g; of slope ;3 for i € {1,...,m}, and Cvgmoo = 7(Cs0), and Cvz())O = Cp. In particular, the

rank N’ of F'M - X is given by

N =m(r+s) + rk(Cvz())oo) =m(r+s) +1k(7(Coo)) = ms + k(YY) — hy (V™).
Finally, the formal data (©',C’) = FM - X are the corresponding non-modified formal data:
there are obtained by replacing Cvém = Cy by C = {(1,[h, Y]}, with h = N’ — 1k(Y?) =
ms — h1(Y°°), which yields the desired result.

Let us discuss the third case. Assume k < 1. The modified formal data (,C) associated to
¥ = (0,C) feature the modified global irregular class

O = (q1)oc + - - -+ {Gm) oo + 10y (0)se + No(0)o,

where Ny = rk(7(Co)), and the modified conjugacy classes é<0) = 7(Co) = {(1,[7(Y2)])}, and

C<0> = Coo. The modified formal data (©,C) associated to F - = are given by the modified
irregular class

v

O =(q)0+ (g o+ np. 0o+ No(0)oo

where ¢, is of slope = for i € {1,...,m}, and C includes the conjugacy classes
Q(O)O = Coo
Cl0)oe = Cl0)o = 7(Co)-

In particular, the rank of the Fourier transform F' - 3 is given by

N' =1k(F-%) = Ny = rk(Y") — hy (Y?).
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Next, the global formal data (©,C) of F' - ¥ are the corresponding non-modified formal data:
they are obtained from (®,C) by replacing the unipotent conjugacy class Cioy, by Ciyy =
{(17 [ha Yloo]}a where

h=N'—1k(©y) = N — (m(r — s) + rk(Y>®)) = ms — hy (Y?).

Finally, the (non-modified) irregular class of M F - X is obtained from (@, C) by exchanging the
roles 0 and oo, which gives the desired result. O

4.2. Orbits under elementary transformations. Let us now study what happens when
applying a composition of allowed elementary operations.

Definition 4.4. Let X be an irregular curve with boundary data of generalized type I AD-A
type. We define O(X) of all irregular curves with boundary data of generalized type I AD-A type
of the form Oy ...O; - X, where k > 1, and for each i € {1,...,k}, O; is an allowed elementary
type I AD-operation on O;_1 - O1 - 2.

Similarly, if 7 is a generalized type I AD-A parameter we define in the same way a set O(7).

By a slight abuse of language, we will call O(X) (resp. O(T)) the orbit of X (resp. T) under
AD transformations.

Theorem 4.5. Let T = (m, k,Cy,Cs) be a generalized type I AD-A parameter. Let us write k =
&, with s, coprime, and assume that s > 1. Let r = ks+p , with k € Z>o and p € {1,...,s—1}
be the euclidean division of r by s. Then the orbit O(X) has the structure described on Fig. 3

below.

[ ]
F- > Ft F- Q Ft
wos T P
F~| |F* F- Q Ft
S ;

s+p S—p
F- E <1
S S
» = K >1
P T. s—p
Jp— F Jp—
r'=p mod s r=—p mod s

FIGURE 3. Structure of the orbit O(T), for s > 1. The vertices correspond to
the elements of the orbit, and the arrows correspond to elementary type I AD-A
operations. The blue arrows correspond to the steps where the Young diagram
coming from [Y?] decreases and the one coming from [Y*°] increases, and the red
ones to the opposite steps. On the bottom row, the Fourier transform exchanges
the Young tableaux at 0 and oco. The slopes are all of the form k' = 5, with
r" = +p mod s. The oriented arrows correspond to applying an elementary AD-
operation. The left column corresponds to the case v’ = p mod s, while the
right one corresponds to the case 7’/ = —p mod s. The bottom row corresponds
to the only two slopes satisfying &' > 1.
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In particular, the set of all slopes of elements in the orbit O(T) only depends on k, and is
given by
(4.4) O(k) = {lsj:p I € Zso,ls£p> o} .
Furthemore, we have the following:
o If s> 2, for any k' € O(k), there exists a unique element T' € O(T) with slope k'.
o Ifs=2, then:
— either (the generic case), for each k' € O(k), there exists exactly two elements
T' € O(T) with slope k';
— or (the ‘symmetric’ case) for each k' € O(k) or there exists exactly one element
T' € O(T) with slope k'

Proof. That the situation is as represented on Fig. 3 follows directly by induction from the
formulas for the transformation of the slope of the wild Stokes circles in Prop. 4.3 and Prop.
5.9, namely:

e I is allowed when 7 > 1 and induces on the slope the transformation > — =~ > 1.

e FT is always allowed and induces S <L

s+r
e 't is allowed when 2 <1 and induces then % — *—.

S

Now, if s > 2, we have p # s — p. In turn, there is a unique element 7] € O(T) of slope 2

given by 7| := (F~)* - T and a unique element 77 € O(T) of slope %, given by 77 :== F - T].

Moreover, for any k > 0, there is a unique element in (2(7-) of slope ﬁﬂ), given by ( ﬁJr)k 7,
and a unique element in O(7) of slope o, given by (FH)k. 77,

If s = 2, then necessarily p = 1 = s — p, so there are two elements 7] and T of slope 2
exchanged by the Fourier transform, given by 7} := (F~)"- T and 7 := F - T/.

Now, if 7] and 7' are different, for any k > 0, there are two elements in O(T) of slope %ﬂ,
given by F*+(77) and F*(7"). Otherwise, if 7/ = 77, then for any k > 0, there is a unique
element in O(T) of slope 527, given by F*(T]). 0

The case s = 1 is somewhat different:

Lemma 4.6. Let T = (m,k,Cy,Coo) be a generalized type I AD-A parameter, such that k = %,
with r > 1. Then for any | €> 1, there is a unique element T' € O(T) with slope %

The situation is represented on Fig. 4.

Proof. Compared to Fig. 3, in the case s = 1 one still has the &’ > 1 part of the left side of the
figure: for any [ > 1, we obtain an element 77 € O(T) with slope 1, by taking 77 = (F'*)\=" if
I>r,and T := (FN’*)T*Z, for1<i<r.

The difference with the s > 1 case is that now, at the parameter 7; = (ﬁ =)L we are at
slope 1, so it is not allowed to take the blue arrow any more. Indeed, for an irregular curve X
with boundary data with parameter 77, the wild Stokes circles are of slope 1, i.e. of the form

(Gi)oo = (a;2) o0, with a; € C* fori € {1,...,m}. In turn, the Fourier transform F-X' is no longer
of generalized AD-A type. Indeed by the stationary phase formula we have F' - (a;2)o0 = (0)q,,
so F' - ¥ has m + 2 regular singularities, at the points 0,00, a1, ..., apn. U

4.3. Dualities between standard parameters. We can now state our first main results: the
dualities of [7] in the type I case can be all expressed as compositions of elementary type I AD-A
operations F, F'", and F'*, i.e. they correspond to some particular paths in Fig. 3.

Proposition 4.7. Let 3 be an irregular curve with boundary data of standard type I AD-A
type, with reduced parameter 7 = (m,k,[Y]). Then for any integer 1 > 0, (FT)! - is also of
standard type I AD-A type, with reduced parameter

(4.5) (FH . 7 = <m, — [(ms)l,Y]>
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F—< Ft

T
F- Ft
1
—1 L4
1
2
F- <> Ft
1 .
Ti

FIGURE 4. Structure of the orbit O(T), for s = 1. At 71, applying F' yields an
irregular curve with boundary data with m + 2 regular singularities.

Proof. This follows directly by induction from applying the second part of Prop. 4.3. O

Proposition 4.8. Let X be an irregular curve with boundary data of type I AD-A type, with
reduced parameter 7 = (m,k,[Y]). Assume that k = 7 > 1, with s,r coprime, s > 1; in
particular the rank is N = r. Let L be the number of columns of Y, and let us write r = ks + p,
with 1 < p <s—1. Assume that Ls > r, i.e. L > k.

Then the irreqular curve with boundary data (FHL)(L_UF -3 is also of type I AD-A type, with
reduced parameter

+\L—1—k —\K _ S c
(4.6 (FOR 1 (E ) T = (o 1))
where the Young diagram [Y¢| is defined from [Y] as follows: if L denotes the number of columns
of [Y], and hy > --- > hy, are the heights of the columns of [Y| from left to right, then [Y €] is the
Young diagram with L columns, whose column heights from left to right are given by (ms—hp) >
o> (ms — h1) (equivalently if [Y] = [NV, ... 14], then [Y¢] = [(ms — 1)1, ..., (ms — N)¥].)

Notice that the transformation (ﬁ*)Lilf“F (F‘ ~) amounts to taking L steps given by the
blue arrows in Fig. 3, starting from 7.
We can actually give a closed formula for the parameters appearing at the intermediate steps:

Lemma 4.9. Keeping the notations of Thm. /.8, we have:
o For 0 <1<k,

F(F)'.T = S — ALY ) .
(F) T = (e i DT
e Next, after applying F':
~ S ~
F(Fi)h: . 7- = (m, E7 [Y,{J,_l], [Yli-f—l]) .
o Finally, fork +2 <1< L,

(ﬁw—&-)l—l—nF(ﬁv—)n T = (m’ S

il (1)

where, forl € {0,...,L}, [Y]] := [TY(Y)] is the Young diagram with L—1 columns, whose columns
heights from left to right are hiy; > -+ > hp, and [Y]] is the Young diagram with | columns,
whose column heights from left to right are (ms—hy) > --- > (ms—ha). In particular [Yo] = [Y],
Yol = [2], Y] = [2], [Yz] = [Y“].

ls —r’
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Proof. Once again, this follows directly by induction from Prop. 4.3. O

The process can be summarized as follows: the complete transformation, consisting in taking
L blue steps in Fig. 3, changes the Young diagram [Y] to its complement [Y¢]. At each
intermediate step, one further column of [Y] is removed, and its complement is added to the
second Young diagram, building [Y¢] one column at a time.

FIGURE 5. The duality transforming the Young diagram [Y] into its complement
[Y¢], and the corresponding intermediate steps, drawn for the example [Y] =
[5,3,22,1], m = 1, s = 7. The diagram [Y] is represented in blue on the left
part and the diagram [Y¢] is represented in red, up to reading the columns from
right to left. The right part of the figure shows an intermediate step: at each
step one column of the blue diagram is removed, and its complement is added to
the red diagram. The intermediate parameter thus features two nontrival Young
diagrams [Y;] and [Y}].

Remark 4.10. Notice that the parameters appearing at the intermediate steps all feature two
nontrivial Young diagrams, hence they are not of standard type I AD-A type, i.e. they do not
directly correspond to a type I Argyres-Douglas theory. On the other hand, all other elements in
the orbit O(T) feature a single nontrivial Young tableau, corresponding to the regular singularity
at 0, i.e. they are of standard AD-A type, and correspond to an Argyres-Douglas theory.

Moreover, all parameters of standard type I in the orbit can be obtained from 7T by a com-
position of the dualities (4.5) and (4.6).

5. GENERAL CASE

5.1. Kummer twists. We now discuss the general case, i.e. we do not assume that the conju-
gacy classes Cy and Co, are unipotent any more.

To proceed as in the type I case and use the Fourier transform to change the Young tableaux,
it will be necessary to do some shifts of the eigenvalues to reduce to the situation where 1 is an
eigenvalue. To perform such shifts, we hava to introduce another type of elementary operations
on connections, the Kummer twists.

Definition 5.1. Let A € C. The Kummer connection Iy is the rank one connection

(OAl\{O}, d— /z\dz) .

It has a regular singularity at 0 and at oo, and the conjugacy classes of its formal monodromies
are C), = Cioyo. = {a}, where a = e?™ ¢ C* (with our convention of taking the reverse
orientation for the formal monodromy at infinity), in particular up to isomorphism Ky only
depends on a. This immediately implies the following:
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Lemma 5.2. Let (E,V) be a connection on a Zariski open subset of P!, and X its irreqular
curve with boundary data. Then for X\ € C, the irreqular curve with boundary data X' of the
tensor product

(E,V)® Ky
only depends on ¥ and o = ¥,

Definition 5.3. Keeping the notations of the previous lemma, for o € C*, we define the Kummer
twist of X as T, - X := X'

Lemma 5.4. Let 3 be an irreqular curve with boundry data of generalized AD-A type, with
parameter T = (m, k,Co,Cx). Then Ty-X is an irreqular curve with boundary data of generalized
AD-A type, with parameter
T: (m,k,a Co,a Coo)

(this uses our convention of taking the reverse orientation for the formal monodromies at infin-
ity.)
Proof. This follows directly from the local models (2.9), and the relation between the conjugacy
classes and the residues (2.11). In some more detail, let (E, V) be a connection on P! with formal
data ¥. For the regular singularity at z = 0, in a local trivialization we have V = d — %dz,
with constant residue matrix Ag such that Cy is the conjugacy class of exp(2iwAg). For A € C
such that €™ = q, tensoring V by d — %dz yields

A A

d— (0 + Id) dz,
z

z

i.e. the residue is shifted by AId. The new conjugacy class associated to (0)g is thus the one of
exp(2im(Ag + A1d)), i.e. aCp.

Similarly, at oo, using the local coordinate ¢ := 1/z, in a local trivialization we have V =
d — Ad(. Using the notations of (2.9) and (2.11), if A is the block in the residue A; associated
to the vanishing exponential factor ¢ = 0, C is the conjugacy class of exp(2imAy). Now,
tensoring V by d — 2dz = d — A(d( yields

d— (A + 21d> dc,

i.e. the residue A1, and in particular its block Ay, are shifted by AId, hence the new conjugacy
class of (0)o is the one of exp(2im(As + A1d)), ie. @ Coo. O

It will be convenient to introduce a variant of the truncations and extensions:

Definition 5.5. Let C C GLx(C) be a conjugacy class, « € C* and A € C.

e The a-truncation 7,(C) of C is the conjugacy class of Ajima—q1q) in GLy(C), where
m :=1k(A — aId). (this does not depend on the choice of A.)

e Let i > 0 be an integer. The a-extension ep, o(C) is the conjugacy class ' C GLy4,(C)
such that 7, (C") = C (this is well-defined).

Remark 5.6. The usual truncation 7 considered before correspond to the particular case of
Ta with a = 1. Conversely, 7, for general a can be expressed in terms of Tas follows: for any
conjugacy class C and o € C*, and N > rk(C), we have

7o(C) = a 7(a”1C).
In terms of the Jordan forms, we have the following explicit expressions:

Lemma 5.7. Let C be a conjugacy class, and o € C. We can write C = {(a1, [Ya,]), - - - (ap, Yo, ]) }
with that o = oy for some 1 € {1,...,p} (with [Y,] possibly empty). Then

7a(C) = {(an, [Ya,]), - (o [T(Ya)]), - . (ap, [Ya, ) }-
Conversely, for h > 0,
Eh,a(c) = {(a17 [YOqD? SRR (a7 [h7 YO&)])? R (ap7 [Yak])}
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5.2. Elementary transformations. We define generalizations of the type I elementary AD-A
operations, by conjugating by Kummer twists:

Definition 5.8. The elementary AD-operations are the following operations on irregular curves
with boundary data on P!:

o Fop . =T, FT,1;

o Bt :=T,FMT,;
o F7 =T FMT, 1
o T,.

In a similar way as in type I, the irregular curves with boundary data are preserved by suitable
elementary AD-A operations.

Proposition 5.9. Let X be an irregular curve with boundary data of generalized AD-A type,
with parameter T = (m, k,Co,Co0), and o € C*. Let [Y)] denote the Young diagram associated
to « in the Jordan form of Co, and h := h1(Y?) the height of its first column.

(1) If k > 1, then the irregular curve with boundary data Fy -3 is of generalized AD-A type,
with parameter

S
(5.1) BT = (m H,s(ms_h),a(coo),m(coﬁ .
(2) The irregular curve with boundary data F, ,T - X is of generalized AD-A type, with param-
eter
~ S
5.2 Fr T :=(m,——, c(ms—n)a(C ,acm).
(52) T i (€0 ()
(3) If k < 1, the irregular curve with boundary data 1507 -3 is of generalized AD-A type, with
parameter
~ S
(5.3) FooT = <m,H,Ta(co),s(ms_hm(cm)).
Proof. Up to using Lemma 3.3, the proof is the same as the one of Prop. 4.3. O

5.3. Orbits. Asin type I, we can study the orbits under compositions of elementary operations.

Definition 5.10. Let 3 be an irregular curve with boundary data of generalized AD-A type.
We define O(X) of all irregular curves with boundary data of generalized type I AD-A type of
the form Oy ...0; - 3, where k£ > 1, and for each i € {1,...,k}, O; is an allowed elementary
AD-operation on O;_1...01 - 3. If T is a generalized AD-A parameter we define in the same
way a set O(T).

We call again O(X) (resp. O(T)) the orbit of X (resp. 7) under AD-A transformations.

Proposition 5.11. Let T = (m, k,Co,Cx) be a generalized AD-A parameter. Let us write k = 7,
with s,r coprime, and assume that s > 1. Letr = ks+p , with k € Z>o and p € {1,...,s—1} be
the euclidean division of v by s. Then the set of all slopes of the wild Stokes circles of elements
in the orbit O(T) only depends on k, and is given by

(5.4) O(k) := { ‘ l € Z>o,ls+p> O} )

Is+p

Proof. Completely similar to the type I case. O

Remark 5.12. As far as the slopes are concerned, the situation of Fig. 3 remains true in the
general case. However, unlike in the type I case, there is no longer a unique element in the orbit
corresponding to each vertex of the figure, since we now have a choice of twist a at each step.
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5.4. Dualities between standard parameters. As in type I, in the general case we can
obtain more general dualities by composing elementary transformations. In particular, we can
recover in this way the third main duality given in [7], as follows:

Proposition 5.13. Let X be an irreqular curve with boundary data of standard AD-A type, with
reduced parameter J = (m, k,[Y]), parameter T = (m, k,Co,Cs), and rank N. Let K = N —rm,
and Bi,..., Bk be the eigenvalues of C. Then Fﬁt e Fgl - 3 has parameter of the form

S S 5 /
B BT = (20 ())

where { } denotes the trival (rank 0) conjugacy class, and

(55) C(,) - {(17 [Y])a (/317 [ms - 1])7 RS (/Bm [ms - 1])}
In particular, the nilpotent part of Cly only depends on 7, and is given by the Young diagram
(5.6) [(ms —1)"Y].

Proof. Using the second part of Prop. 5.9, it is straightforward to show by induction that for
le{l,...,k}, we have

Tt 4 _ 8 5l ol
FﬁlFﬁl T— (m,ls—i—r7cgl’cgl>

where for [ € {0,...,x}
G = A{(L[Y]), (Br, [ms = 1]),..., (B, [ms = 1])},
@ = {(Brrs 1), (B (1))
(in particular 65 = Coo, €x = { }, 6= = C}.) O

Remark 5.14. Notice that here C{, is not unipotent, hence the parameter F, ﬂ+ .F 5’ -T is not on
standard AD-A type, i.e. does not directly correspond to an Argyres-Douglas theory. However,
this is consistent with the results of [7] in the following way: there in §4.4 it is observed that
there is a discrepancy between the naive flavour symmetries on both sides, which requires adding
some free hypermultiplets. In our framework this corresponds to the fact that the columns of
height ms — 1 in the Young diagram [(ms — 1)", Y] of C;; do not correspond to the eigenvalue 1.

6. NONABELIAN HODGE DIAGRAMS AND 3D MIRRORS

In this section, we discuss the relation between the nonabelian Hodge diagrams associated to
irregular curves with boundary data of standard AD-A type via the construction of [18, 31], and
the quivers describing the 3d mirrors of the corresponding Argyres-Douglas theories.

More precisely, we show that if 3 is an irregular curve with boundary data of standard AD-A
type, the corresponding 3d mirror quiver is a nonabelian Hodge diagram: it is not the diagram
I'(X) associated to 3, but the unique one associated to another irregular curve with boundary
data ¥/, of generalized AD-A type, belonging to the orbit of ¥ under elementary AD operations,
having no negative edge-loops and minimal number of vertices.

6.1. Nonabelian Hodge diagrams of AD-A type. Let us briefly recall the construction of
nonabelian Hodge diagrams for irregular connections on P!. By diagram, we mean the following
generalization of a graph:

Definition 6.1 ([18]). A diagram is a pair I' = (V, B) where V is a finite set (the set of vertices)
and B = (B;j); jev is a symmetric square matrix with integer values, such that B;; is even for
any i € V. A dimension vector d for I" is an element of Z‘z/o-

For i,j € V such that ¢ # j, the integer B;; we view the integer as a (possibly negative)
number of edges between ¢ and j, and for i € V', we view BQ“' as a (possibly negative) number of
edge-loops at the vertex i.
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The main result of [31] is the following: if (E, V) is a connection on a Zariski open subset of
P!, there is an explicit way to associate to it a nonabelian Hodge diagram I'(FE, V), in such a
way that the diagram is invariant under the Fourier transform, i.e.

T(E,V)=T(F-(E,V)).

The diagram only depends on the formal data (©,C) of (E,V), and is expressed most conve-
niently in terms of its modified formal data (,C), so we write ['(E, V) = T'(©, C).

Furthermore, writing I'(E, V) = (V, B), for any choice of minimal marking (see below) of C,
we obtain a dimension vector d € Z" for I'(E, V), and the dimension of the (symplectic) wild
character variety Mp(FE, V) is given by the formula

2—(d,d),
where (-, -) is the bilinear form on Z" defined by the Cartan matrix C' := 21d —B.

Let us briefly sketch the construction: the diagram I'(©, C) consists of a core T'(©), only de-
pending on the global modified irregular classs ©, to which are glued legs encoding the conjugacy
classes in C (they corresponds to the “tails” of in the physics terminology).

The core diagram T'.(©) is constructed as follows. For any two Stokes circles (q), (¢') € m(Z)
(possibly identical), we define an integer By 1y = Bigy(q) € Z, such that B is even (we
will not recall the detailed definition here, let us just mention that the motivation is that when
(@), (q) are both at infinity, By is closely related to the number of nontrivial entries between
(q) and (¢’) in the Stokes matrices, in the explicit presentations of wild character varieties.)

Now, writing

p
O = mi(aq),
=1

with m; > 1 for ¢ € {1,...,p}, the core diagram I'.(®) is the diagram whose vertices are
identified with the Stokes circles (g;), for i € {1,...,p} and whose edge/loop multiplicities are
defined as By, (q.), for i,j € {1,...,p}.

Next, writing C = (él,...,ép), with C; C GL,,,(C), for i € {1,...,p}, the full diagram is
obtained by gluing to the vertex (g;) a leg encoding the conjugacy class Cv<qi>, foralli e {1,...,p}.
To define these legs, let us first recall the notion of marking:

Definition 6.2. Let C € GLy(C) be a conjugacy class. A marking of C is a tuple & =
(&1,...,&k), where & € C* for i € {1,...,k}, such that

(A=&)...(A=&) =0
for A eC.

We say that a marking £ = (z1,..., &) is minimal if its number of elements k is minimal. In
that case the polynomial (X — &;)...(X — &) is the minimal polynomial of C, i.e. a minimal
marking amounts to a choice of ordering of its eigenvalues, counted with multiplicity.

Definition 6.3. Let C C GLx(C) be a conjugacy class, and £ = (x1,...,&,) a marking of C.
The leg associated to (C,€) is the pair (L,d), where L is the Dynkin diagram of type A, (see
the figure below),

@ L ® -+ 06— ©O
N do ds dy

and d = (dy,...,dy) € Z" is the dimension vector for L given by

di:{N for i =1,

(6.1) tk(A=&)...(A—=&-1)) forie{2,...,w}, where A €C.

In particular, if we require the marking to be minimal, then L is fully determined by C. If
moreover C has a single eigenvalue (in particular if C is unipotent), then the dimension vector d
is also fully determined by C.



26 JEAN DOUCOT

Now, choose a minimal marking & of C, i.e. the datum of a minimal marking &; of é((m for

%

each i € {1,...,p}. Fori € {1,...,p}, let (IL;,d;) be the leg associated to (C,),&i). We obtain
the full diagram F(C:), ¢ ), together with a dimension vector d for it, by fusing the extremity with
dimension m; of the leg (L;,d;) with the core vertex (g;), for each ¢ € {1,...,p}. Notice that
the diagram itself does not depend on the choice of marking.

To draw the diagrams in the case of irregular curves with boudary data of AD-A type that
we are interested in here, we just need the expressions for the edge/loop multiplicities By (@)
for the types of Stokes circles appearing in irregular curves with boundary data of generalized
AD-A type.

Lemma 6.4. Consider a global modified irreqular class of AD-A, type, i.e.
© = <QI>oo +... <Qm>oo + ﬁ<0>0 <0>0 + n<0>oo<0>oo~

with (q;) of slope k = > with s,r coprime fori € {1,...,m}. We have:
[ ] B<qi>oo<qi>oo = (7’ — 1)(8 - r— 1)
[ ] B<0>oo<0>oo — 0
° B<0>0<0>0 =0.
* Bl tan, =rls—r)ifiFj.
* By 0, = (5-7)
* By, ="
* Bo) .0, =1

FI1GURE 6. The core nonabelian Hodge diagram of an irregular curve with bound-
ary data of AD-A type with paremeter 7 = (m, 2,Co,Cs) with s,7 coprime
(drawn for m = 3). The core vertices are in one-to-one correspondence with the
Stokes circles (g1)oos - - -5 (¢1)o0, (0)0, (0)oo. The numbers at the middle of the
edges/loops indicate the multiplicities (when no loops are drawn the multiplicity
is zero). The full diagram is obtained by gluing to the vertex (0)g a leg encoding
7(Cp), and to (0)s a leg encoding Coo.

Proof. This just follows from the formulas for the edge/loop multiplicities in [31]. d

Notice that the core diagram has no negative edges/loops if and only if & > 1.

Lemma 6.5. If T = (m, ,Co,Co0) is an AD-A parameter, and X is an irreqular curve with

boundary data with parameter T, then the nonabelian Hodge diagram I'(X) does not depend on
3 (so we can write T'(3) =T'(T)), and is constructed as follows:

(1) take the core diagram of Fig. 6;
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(2) glue to the vertex (0)qg the leg Lo associated to 7(Co);
(3) glue to the vertex (0)s the leg Loo associated to Cx
In particular, if the conjugacy class T(Co) (resp. Cso)) has rank zero, the vertex (0)g (resp. (0)oo)
has multiplicity zero, so we remowve it.
Furthermore, a choice of minimal markings &,& of T(Cy), Coo Tespectively determines a

dimension vector d for I'(T), taking the dimensions associated to the vertices (gi)oo for i €
{1,...,m} to be 1.

In particular, in the type I case, the dimension vector d is fully determined by 7.

Proof. This follows immediately from the definition of nonabelian Hodge graphs. Indeed, de-
noting by (@ C) the modified formal data corresponding to X, in © the irregular Stokes circles

(gi)oo for i € {1,...,m} have multiplicity 1, so the correspondlng vertices have associated di-
mension 1. Furthermore in C we have C< 0o = T(Co), so the leg Ly has to be the one of the
truncation 7(Cp). O

We say that a diagram I' = (B, V) is of AD-A type if it is of the form I'(7) for some AD-A
parameter 7. Clearly, given a diagram I', one can determine whether it is of AD-A type, and
when so explicitly determine a type I AD-A parameter 7 such that I' = I'(T") (7 is unique if
s < r,and if r < s it is unique up to the simultaneous exchange s <» s —r and Lo <> L).

6.2. Nonnegative AD-A nonabelian Hodge diagrams.

6.2.1. Type I. Let us first discuss the type I case.

Proposition 6.6. Let T = (m,k,[Y°],[Y°]) be a generalized type I AD-A parameter, such
k = 2 with s,r coprime and s > 1. Then there is a unique nonabelian Hodge diagram of the
form T(T"), with T' € O(T) with no negative edge/loops that we denote by I' L (T). Explicitly,
we have

where K := |k71].

Proof. The integer x := |k™!| is the remainder in the euclidean division of r by s, i.e. we have
r =rs+ p, with 1 < p < s—1. The result follows directly from the structure of the orbit given
by Fig. 3: in any case, there are at most two elements 7’ € O(T ) with slope k' > 1, one of them
being given by (F~)%-T), and when they are exactly two such elements, they are exchanged by
F. The conclusion follows by invariance of the diagram under Fourier transform. ]

We can determine the nonnegative diagram explicitly:

Proposition 6.7. Let T = (m,k,[YY],[Y*°]) be a generalized type I AD-A parameter. Let us
write k=5, andr = ks +p withk € Z, pe {1,...,5—1}. Then we have I' (T) =T(T") with
T = <m> f’ [Y;S]’ [}7/?71/00]) )

p
where the Young diagrams [Y9], [Y?,] are defined as in Thm. 4.9. In particular if k > 1, we
have T (T) =T(T).

Proof. This is completely similar to Thm. 4.9, using the third part of Prop. 4.3. O

Remark 6.8. In the case s = 1, i.e. k = 2, then for the parameter 7' = C((F)—1.T)
the wild Stokes circles are of slope 1, i.e. of the form (¢;)e0 = (@i2)o0, With a; € C* for
i € {1,...,m}. Now, if ¥’ is an irregular curve with boundary data with parameter 7', then
F - ¥ is no longer of generalized AD-A type. Indeed by the stationary phase formula we have
F - (a;z)ooc = (0)g,, so F - X" has m + 2 regular singularities, at the points 0,00, a1, ..., ap. In
particular, 'y (7) :=T'(X) = I'(F - ¥') is a star-shaped graph.

We notice that the nonnegative diagrams correspond to the 3d mirror quivers of the corre-
sponding Argyres-Douglas theories given in the physics literature.
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Proposition 6.9. Let .7 = (m,k,[Y]) be a reduced type I AD parameter. Then in all cases
considered in 7], the quiver describing the 3d mirror of the corresponding Argyres-Douglas theory
is the nonnegative nonabelian Hodge graph I'1 (), with its uniquely defined dimension vector.

Proof. In the case k > 1 and [Y] = [1V], form Prop. 6.7 and Fig. 6, we immediately obtain the
3d mirror described on Fig. 2 in [7] (since to get the leg associated to (0)g, we have to pass to
the modified global irregular class, i.e. to [7(Y)] = [1¥71]). For k < 1 and [Y] = [17V], similarly
we obtain the type I specialization of Fig. 3 in [7] (i.e. with N —nm = 0 is the notations of loc.
cit.), using that we have the following dictionary between notations

Irreg. curve | AD theory
K f
p v
5 q
ms D

For more general Young diagrams, I'; (.7) matches with the 3d mirrors found by quiver sub-
traction. For instance for instance for the Argyres-Douglas theory Ds(sl7, [2,15]) considered in
Example 5 of [7], the corresponding reduced parameter is .7 = (1, %), from Prop. 6.7 the pa-
rameter corresponding to the minimal diagram is 7’ = (1,3,[13],[2,1]), hence 'y (7)) = I'(T")
is the 3d mirror shown in Eq. (4.9) of loc. cit. O

6.2.2. General case. Let us now discuss the general case. Here since there are several possible
choices of twist «, in general there is no unique parameter with nonnegative nonabelian Hodge
diagram. However, in the standard case corresponding to Argyres-Douglas theories, there is a
unique preferred choice leading to a nonnegative diagram with minimal number of vertices.

Proposition 6.10. Let T = (m, k,Co,Co) be a generalized AD-A parameter, such k = 3 with
s,r coprime and s > 1. Then there is a unique nonabelian Hodge diagram of the form T'(T"),
with T' € O(T), such that T'(T') has no negative edges/loops, and such that the number of
vertices of T'(T") is minimal. We denote it by T (T). Ezplicitly, we have
P(T)=T(Ta. Fo, - Fy, - T),

where k = |k~'], and any a,...c, which are chosen to be eigenvalues of Co ‘as much as
possible’, that is if (P1,...,0L1) is the list of eigenvalues of Co counted with multiplicities, i.e.
such that the number of columns in the Young diagram encoding the nilpotent part of (A —
hi1d)...(A — a,Id) is minimal.

Proof. The reasoning is similar of Prop. 6.6. The main point is that requiring the number of
vertices of T'(7”) is minimal necessitates taking the «; to be eigenvalues of Cy. This follows
directly from the following observation: by the third part Prop. 5.9, applying (}7’(; ) transforms
Co into its truncation 7,(Co), and Coo Int0 €(ms—p).a(Coo)- At the level of the corresponding
legs Ly and Lo, this has the following effect: it always adds one vertex to Lo, and for Lo, it
removes a vertex if « is an eigenvalue of Cy, and does not change Ly otherwise (in particular
this implies that T'(7”) does not depend on the choice of eigenvalue at each step). Similarly, to
have a diagram with a minimal number of vertices, the final twist F, h,. is required, so that, when

constructing the diagram, passing to the modified conjugacy class Cyp removes one further vertex
from the leg L. O

Remark 6.11. If Cp is unipotent (so in particular in the standard case), there is a unique choice
of aq,...,akt1, so the dimension vector of 'y is also uniquely determined.

This allows us to obtain an explicit formula for the minimal diagram in the standard case:

Proposition 6.12. Let 7 = (m,k,[Y]) be a standard AD-A parameter. Let us write k = 2,
and r = ks +p with k € Z, p € {1,...,s —1}. Then we have I'1(F) =T(T) with

7 - (m, % V., [V, 1N—W}) ,
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where N = rk(Y), and the Young diagrams [Y,], [Ys] are defined as in Thm. 4.9,

Proof. The reduced parameter .7 = (m, k, [Y]) corresponds to a non-reduced parameter .7 =
(m, k,Co,Coo), with Co = {1,[Y])}, and Cs of rank N — mr and regular semisimple, so with
nilpotent part given by the Young diagram [1V=™"]. Then, by Prop. 6.10, we have I'\ (T) =
['(7’) with 77 = (F~)®. Then, by induction using the third part of Prop. 4.3, we obtain
that the Young diagrams of the nilpotent parts of the conjugacy classes of T’ are [Y,] at 0 and
[V, 1V at co. 0

As in type I, in the general case, the 3d mirror quivers for type A Argyres-Douglas correspond
to the minimal diagrams:

Proposition 6.13. Let 7 = (m, k, [Y]) be a reduced AD parameter. Then in all cases considered
in [7], the quiver describing the 3d mirror of the corresponding Argyres-Douglas theory is the
minimal positive nonabelian Hodge graph I'; (), with its uniquely defined dimension vector.

Proof. In the case k > 1 and [Y] = [1VV], form Prop. 6.12 and Fig. 6, we immediately obtain
the 3d mirror described on Fig. 1 in loc. cit. For k < 1 and [Y] = [1VV], similarly we obtain
the quiver of Fig. 3 in loc. cit. Since the minimal quiver is invariant under elementary AD-A
operations, this also holds true for the cases with more general punctures discussed in §4.3 of
loc. cit. which are dual to a case with a regular puncture. O
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