Programme de colle: 1 paramètre, 1 equa diff 2, 1 produit scalaire

Classe de PT

Lycée La Martinière

Exercice 1

1) Montrer que l'application suivante est un produit scalaire de l'espace $E = \mathbb{R}[X]$

$$(P,Q) \mapsto \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

2) Résoudre ty'' + 2y' - ty = 0, solution particulière développable en série entière.

3) Pour
$$(x,t) \in \mathbb{R}_+ \times [0,1]$$
 on pose $g(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$ et $f(x) = \int_0^1 g(x,t) dt$.

- a) Montrer que f est définie sur \mathbb{R}_+ .
- **b)** Montrer que f est \mathscr{C}^1 sur \mathbb{R}_+ et calculer sa dérivée.

Exercice 2

1) Montrer que l'application suivante est un produit scalaire de l'espace $E=\mathscr{C}^1([a,b],\mathbb{R})$

$$(f,g) \mapsto f(a)g(a) + \int_a^b f'(t)g'(t) dt$$

2) Résoudre l'équation différentielle 2t(1-t)y'' + (3-5t)y' - y = 0 en la mettant sous la forme

$$\frac{\mathrm{d}}{\mathrm{d}t}(g(t)y' + h(t)y) = 0$$

3) (ddl)Soit f la fonction donnée par

$$f(x) = \int_0^{\pi/2} \sin^x(t) \, \mathrm{d}t$$

- a) Montrer que f est définie et positive sur $]-1, +\infty[$.
- b) Montrer que f est de classe \mathcal{C}^1 et préciser sa monotonie.
- c) Former une relation entre f(x+2) et f(x) pour tout x > -1.
- d) On pose pour x > 0,

$$\varphi(x) = x f(x) f(x-1)$$

Montrer que

$$\forall x > 0, \varphi(x+1) = \varphi(x)$$

Calculer $\varphi(n)$ pour $n \in \mathbb{N}^*$.

e) Déterminer un équivalent à f en -1^+ .

Exercice 3

1) Soit $(a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$, les a_i 2 à 2 distincts. Montrer que l'application suivante est un produit scalaire de l'espace $E = \mathbb{R}_n[X]$

$$(P,Q) \mapsto \sum_{i=0}^{n} P(a_i)Q(a_i)$$

(alternative :
$$\sum_{i=0}^{n} P^{(i)}(0)Q^{(i)}(0)$$
)

2) (ddl)On pose, pour $x \ge 0$,

$$F(x) = \int_0^{+\infty} e^{-xt} \frac{1 - \cos t}{t^2} dt$$

- a) Montrer que F est continue sur $[0, +\infty[$ et tend vers 0 en $+\infty$.
- b) Montrer que F est deux fois dérivable sur $]0, +\infty[$ et calculer F''(x).
- c) En déduire la valeur de F(0) puis la valeur de l'intégrale convergente

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$