Programme de colle Fractions rationnelles

Classe de MPSI

Lycée du Parc

Exercice 1 (X)

Soit P un polynôme de $\mathbb{C}[X]$ n'admettant que des racines simples non nulles x_1, \ldots, x_n . Montrer que $\sum_{k=1}^n \frac{1}{x_k P'(x_k)} = -\frac{1}{P(0)}$. Que vaut $\sum_{k=1}^n \frac{1}{P'(x_k)}$?

Exercice 2 (Inégalité de Bernstein – X)

1) Soit $n \in \mathbb{N}^*$ et z_1, \ldots, z_n les racines de $X^n + 1$. Montrer que, pour tout polynôme P de $\mathbb{C}_n[X]$ on a

$$XP'(X) = \frac{n}{2}P(X) + \frac{2}{n}\sum_{k=1}^{n} \frac{z_k P(z_k X)}{(z_k - 1)^2}$$

2) Si $P \in \mathbb{C}[X]$ on pose $||P|| = \sup_{|z|=1} |P(z)|$. Montrer que pour tout $P \in \mathbb{C}_n[X]$ on a $||P'|| \leqslant n ||P||$.

Solution. Par linéarité, on peut supposer $P = X^{\ell}$.

Exercice 3 (X)

- 1) Déterminer les automorphismes de la K-algèbre K[X].
- 2) Déterminer les automorphismes de la K-algèbre K(X).

Solution.

- 1) Si $\Phi(X) = P$, alors $\Phi(Q) = Q \circ P$. L'injectivité et la surjectivité de Φ imposent qu'il existe Q tel que $Q \circ P = X$, et que P n'est pas constant. Donc, pour des raisons de degré, P = aX + b avec $a \neq 0$. Réciproquement (etc).
- 2) De même, $\Phi(X) = F = \frac{A}{B}$ irréductible. Soit $G = \frac{P}{Q}$ irréductible. On a $\Phi(G) = G \circ F$. Soit $G = \Phi^{-1}(X)$,

$$\sum_{k=0} p^p a_k \frac{A^k}{B^k} = P \circ F = X(Q \circ F) = X \sum_{k=0}^q b_k \frac{A^k}{B^k}$$

Exercice 4

1) Montrer que pour tout $n \ge 0$, il existe un unique $A_n \in \mathbb{C}[X]$ tel que

$$X^n + \frac{1}{X^n} = A_n \left(X + \frac{1}{X} \right)$$

Décomposer en éléments simples $R_n = \frac{1}{A_n}$.

2) Montrer que pour
$$x \neq \frac{2k+1}{2n}\pi$$
, $k \in \mathbb{Z}$, $\frac{1}{\cos nx} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{(-1)^k \sin \frac{2k+1}{2n}\pi}{\cos x - \cos \frac{2k+1}{2n}\pi}$

Solution.

1) $A_0 = 2$ et $A_1 = X$. On trouve une relation de récurrence :

$$(X + \frac{1}{X})(X^{n-1} + \frac{1}{X^{n-1}}) = X^n + \frac{1}{X^n} + X^{n-2} + \frac{1}{X^{n-2}}$$

Donc $XA_{n-1}(X+1/X) = A_n(X+1/X) + A_{n-2}(X+1/X)$. Ainsi, $A_n = XA_{n-1} - A_{n-2}$ convient.

Unicité : si B_n et A_n conviennent, comme X+1/X prend une infinité de valeurs sur \mathbb{C} , $B_n(X+1/X) = A_n(X+1/X)$ entraı̂ne $B_n = A_n$.

On remarque que $\deg A_n=n$ et A_n a la parité de n. Soit $n\geqslant 2$.

Posons $z_k = e^{i\frac{2k+1}{2n}\pi}$, pour $0 \le k \le 2$. Par construction z_k est racine de $X^{2n} = -1$, i.e. solution de $X^n + 1/X^n = 0$. Donc $A_n(z_k + 1/z_k) = 0$. De plus $x_k = z_k + 1/z_k = 2\cos\frac{2k+1}{2n}\pi$.

Ce sont des zéros distincts de A_n , de degré n, il y en a n, donc ce sont les seuls. Ainsi,

$$R_n(X) = \sum_{k=0}^{n-1} \frac{1}{A'(x_k)(X - x_k)}$$

En dérivant l'égalité définissant A_n , il vient $A'_n(z_k) = n \frac{z_k^n - z_k^{-n}}{z_k - z_k^{-1}} = n \frac{2i(-1)^k}{2i\sin\frac{2k+1}{2n}\pi}$.

2) $P_n = \frac{1}{2}A_n(2X)$ est le polynôme de Tchebychev de degré $n: P_n(\cos x) = \cos nx$.

Exercice 5 (ddl)

Montrer qu'il n'existe pas de fraction rationnelle F telle que $F^2 = X$. Indication : Regarder le degré

Exercice 6 (ddl)

Soit $F \in \mathbb{K}(X)$ de représentant irréductible P/Q.

Montrer que F est paire si, et seulement si, P et Q sont tous deux pairs ou impairs.

Solution. Montrer que Q(-X)|Q(X).

Exercice 7 (ddl)

Soient $n \in \mathbb{N}^{\star}$ et $\omega = e^{i\frac{2\pi}{n}}$.

a) Soit $P \in \mathbb{C}[X]$ un polynôme vérifiant $P(\omega X) = P(X)$.

Montrer qu'il existe un polynôme $Q \in \mathbb{C}[X]$ tel que $P(X) = Q(X^n)$.

b) En déduire la réduction au même dénominateur de la fraction rationnelle

$$F = \sum_{k=0}^{n-1} \frac{X + \omega^k}{X - \omega^k}$$

Exercice 8 (ddl)

Effectuer la décomposition en éléments simples des fractions rationnelles suivantes :

a)
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
 b) $\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$ c) $\frac{1}{X(X - 1)^2}$ d) $\frac{2X}{X^2 + 1}$ e) $\frac{1}{X^2 + X + 1}$ f) $\frac{4}{(X^2 + 1)^2}$ g) $\frac{3X - 1}{X^2(X + 1)^2}$ h) $\frac{1}{X^4 + X^2 + 1}$ i) $\frac{3}{(X^3 - 1)^2}$

Exercice 9 (ddl)

Soit

$$F = \frac{1}{X^2 + 1} \in \mathbb{C}(X)$$

- a) En réalisant la DES de F, exprimer $F^{(n)}$.
- b) Montrer qu'il existe $P_n \in \mathbb{R}_n[X]$ tel que

$$F^{(n)} = \frac{P_n}{(X^2 + 1)^{n+1}}$$

c) Déterminer les zéros de P_n .

Solution. Pour $k \in \{1, ..., n\}$, $x_k = \cot(k\pi/(n+1))$ est racine de P_n , qui est de degré n.

Exercice 10 (ddl)

Soit $P \in \mathbb{C}[X]$ un polynôme scindé à racines simples : x_1, \ldots, x_n .

- a) Former la DES de P''/P.
- b) En déduire que

$$\sum_{k=1}^{n} \frac{P''(x_k)}{P'(x_k)} = 0$$

Solution. b) deg(P''/P) < -1.