Programme de colle Dérivation

Classe de MPSI

Lycée du Parc

Exercice 1

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = x + 2x^3 \sin\left(\frac{1}{x^2}\right)$ pour $x \neq 0$.

Étudier la dérivabilité de f, la continuité de f'.

Exercice 2

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \exp\left(-\frac{1}{x^2}\right)$ si x > 0 et f(x) = 0 si $x \le 0$.

- 1) Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R}^* . Calculer f' sur \mathbb{R}^* , en déduire que f est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2) On se place sur $]0,+\infty[$. Montrer par récurrence que, pour tout $n\in\mathbb{N},\,f^{(n)},\,$ la dérivée n-ième de f, est de la forme $P_n(1/x) \exp\left(-\frac{1}{x^2}\right)$, où P_n est un polynôme. (sans hypothèse sur deg P_n).
- 3) En déduire que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- 4) Des fonctions \mathscr{C}^{∞} à support dans un segment.
 - a) Soit [a,b] un segment. Montrer qu'il existe une fonction g de classe \mathscr{C}^{∞} sur \mathbb{R} telle que g est nulle hors de a, b, g > 0 sur a, b.
 - b) Soit $\varepsilon > 0$. Montrer que l'on peut trouver q vérifiant les hypothèses précédentes et de plus q = 1sur $[a + \varepsilon, b - \varepsilon]$. Indication: Penser aux primitives.
- 5) Le but de cette question est de trouver des fonctions qui admettent un DL mais ne sont pas \mathscr{C}^1 .
 - a) Montrer que $f(x) = o(x^n)$ en x = 0 pour tout $n \in \mathbb{N}$.
 - b) Construire une fonction g qui admet un DL en 0 à l'ordre n pour tout n et qui n'est pas \mathscr{C}^1 . <u>Indication</u>: On pourra s'inspirer de la fonction de l'exercice 1.

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable en 0 telle que $\forall x \ f(\frac{x}{2}) = \frac{1}{2}f(x)$. Montrer que $\exists \lambda \in \mathbb{R} / \forall x \in \mathbb{R} \ f(x) = \lambda x$.

Solution. On peut supposer f'(0) = 0, quitte à poser g(x) = f(x) - f'(0)x. Par conséquent, lorsque $n \to +\infty$, $f(x)/x = f(x2^{-n})/(x2^{-n}) \longrightarrow f'(0) = 0.$

Exercice 4

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathscr{C}^2 , telle que f(a)=f(b)=0. Montrer que

$$\forall x \in [a, b] \quad \exists c_x \in]a, b[\quad f(x) = \frac{(x - a)(x - b)}{2} f''(c_x)$$

Solution. Rolle + Rolle.

Exercice 5

Soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$ convexe telle que f' > 0, et f(a) < 0, f(b) > 0. Notons α l'unique racine de f(x) = 0.

Posons
$$u_0 = b$$
 et $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$

Montrer que, pour tout $n \in \mathbb{N}$, $0 \leqslant u_n - \alpha \leqslant \frac{1}{c}(c(b-a))^{2^n}$

Exercice 6 (ddl)

 $Après\ avoir\ déterminer\ le\ domaine\ d'existence,\ calculer\ les\ dérivées\ des\ fonctions\ suivantes:$

a)
$$x \mapsto x^x b$$
) $x \mapsto (chx)^x c$) $x \mapsto ln |x|$

Exercice 7 (ddl)

Soit f une fonction définie sur un intervalle I et a un point de I qui n'en soit pas une extrémité. Si le rapport

$$\frac{1}{2h}\left(f(a+h) - f(a-h)\right)$$

admet une limite finie quand h tend vers 0, celle-ci est appelée dérivée symétrique de f en a.

- a) Montrer que, si f est dérivable à droite et à gauche en a, elle admet une dérivée symétrique en a.
- b) Que dire de la réciproque? <u>Indication</u>: On pourra regarder $x \mapsto \sqrt{|x|}$.

Exercice 8 (ddl)

Calculer de deux façons la dérivée n-ème de $x \mapsto x^{2n}$.

En déduire une expression de

$$\sum_{k=0}^{n} \binom{n}{k}^2$$

Exercice 9 (ddl)

Déterminer toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$$

Exercice 10 (ddl - Centrale MP)

Déterminer les fonctions $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ vérifiant

$$f \circ f = f$$

Solution. Dériver : f'(x) = f'(x)f'(f(x)). En remplaçant x par f(x), il vient

$$f'(f(x)) = f'(f(x))^2$$

Donc par continuité (TVI, etc) de $f' \circ f$, $f' \circ f = 0$ ou $f' \circ f = 1$.

Si f'(f(x)) = 0, alors (première égalité) f'(x) = 0 et f =cste.

Si f'(f(x)) = 1, on montre que f(x) = x + C puis = x sur un intervalle I = Im f dont on montre qu'il ne peut pas être borné.

Exercice 11 (ddl)

[Règle de L'Hôpital]

Soient $f, g: [a, b] \to \mathbb{R}$ deux fonctions dérivables. On suppose que

$$\forall x \in [a, b], g'(x) \neq 0$$

- a) Montrer que $g(a) \neq g(b)$.
- b) Montrer qu'il existe $c \in [a, b[$ tel que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Exercice 12 (ddl – X MP)

Soit $f: [0,1] \to \mathbb{R}$ dérivable. On suppose de $f(x) \to \ell$ et $xf'(x) \to \ell'$ quand $x \to 0$.

Que dire de ℓ' ?

Indication: $\ell' = 0$. Raisonner par l'absurde, en appliquant le TAF entre x et 2x.

Exercice 13 (ddl – M.-P. MP)

Soient f un \mathcal{C}^1 difféomorphisme croissant de [0,1] sur [0,1] et $n \in \mathbb{N}^*$. Montrer que l'on peut trouver une suite $(x_{k,n})_{1 \leq k \leq n}$ telle que :

$$\forall k \in \{1, \dots, n\}, \frac{k-1}{n} \leqslant f(x_{k,n}) \leqslant \frac{k}{n} \text{ et } \sum_{k=1}^{n} \frac{1}{f'(x_{k,n})} = n$$

Indication : Appliquer le TAF à f^{-1} et sommer.

Exercice 14 (ddl)

Soient $f:[a,b] \to \mathbb{R}$ de classe C^n s'annulant en $a_1 < a_2 < \ldots < a_n$. Montrer que pour chaque $x_0 \in [a,b]$, il existe $c \in [a,b[$ vérifiant

$$f(x_0) = \frac{(x_0 - a_1)(x_0 - a_2)\dots(x_0 - a_n)}{n!}f^{(n)}(c)$$

On pourra, lorsque cela est possible, introduire un réel K tel que

$$f(x_0) = \frac{(x_0 - a_1)\dots(x_0 - a_n)}{n!}K$$

et établir que la dérivée n-ième de $x \mapsto f(x) - \frac{(x - a_1) \dots (x - a_n)}{n!} K$ s'annule.

Exercice 15 (d'après ddl – M.-P. MP)

Donner l'exercice 3 avant.

Soient des réels a, b où $a \notin \{0, 1\}$. On pose h(x) = ax + b pour tout x réel. On note S l'ensemble des fonctions dérivables $f : \mathbb{R} \to \mathbb{R}$ telles que

$$f \circ f = h$$

- 1) Montrer que $S = \emptyset$ si a < 0. Indication: Étudier l'existence de points fixes pour f et f'. Désormais on suppose a > 0 (et $a \neq 1$).
- 2) Montrer que h est une homothétie; préciser son centre et son rapport.
- 3) Soit $f \in S$. Montrer que $h^{-1} \circ f \circ h = f$. En déduire une expression de f; on commencera par le cas 0 < a < 1.

Exercice 16 (ddl)

Déterminer les développements limités suivants :

1)
$$DL_3(\pi/4) \operatorname{de} \sin x$$
 2) $DL_4(1) \operatorname{de} \frac{\ln x}{x^2}$ 3) $DL_5(0) \operatorname{de} \operatorname{sh}(x) \operatorname{ch}(2x) - \operatorname{ch}(x)$

Exercice 17 (ddl)

- 1) Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .
- 2) $DL_7(0)$ de tan via parité + équa diff.

Exercice 18

- 1) Donner un développement limité à l'ordre 3 en 0 de la fonction $x\mapsto e^{\sin x}$.
- 2) Faire de même en $\frac{\pi}{4}$ pour la fonction $x \mapsto \sqrt{\tan x}$.
- 3) Donner un développement limité à l'ordre 5 en 0 de la fonction $x \mapsto (1 + \sin x)^x$

Solution.

1)
$$f(x) = 1 + x + \frac{x^2}{2} + O(x^4)$$

2)
$$g(\pi/4 + x) = 1 + x + \frac{x^2}{2} + \frac{5}{6}x^3 + O(x^4)$$

Exercice 19 (Limites)

Donner la limite en 0⁺ des expressions suivantes :

$$1) \frac{e^{\sin x} - e^{\tan x}}{\sin x - \tan x}$$

2)
$$\frac{x^{(x^x)} \ln x}{x^x - 1}$$

1)
$$\frac{e^{\sin x} - e^{\tan x}}{\sin x - \tan x}$$
 2) $\frac{x^{(x^x)} \ln x}{x^x - 1}$ 3) $\frac{(1+x)^{\frac{\ln x}{x}} - x}{x(x^x - 1)}$ 4) $(\cos x)^{\frac{1}{\tan(x^2)}}$ 5) $\frac{\operatorname{Arccos}(1-x)}{\sqrt{x}}$

4)
$$(\cos x)^{\frac{1}{\tan(x^2)}}$$

$$5) \frac{\arccos(1-x)}{\sqrt{x}}$$

Donner la limite en $+\infty$ des expressions suivantes :

$$6) \left[\left(\frac{\ln(x+1)}{\ln x} \right)^x - 1 \right] \ln x$$

7)
$$\left[e - \left(1 + \frac{1}{x}\right)^x\right]^{1/x}$$

Exercice 20 Quelle est la partie entière de $10^{(10^{(10^{(10^{(10^{(-(10^{10^{0}})})})})}) - (10^{(10^{10})})?$

Solution. Message 9259 abm.

Exercice 21 (ddl)

Former le développement asymptotique en $+\infty$ de l'expression considérée à la précision demandée :

a)
$$\sqrt{x+1}$$
 à la précision $\frac{1}{x^{3/2}}$

b)
$$x \ln(x+1) - (x+1) \ln x$$
 à la précision $\frac{1}{x^2}$

c)
$$\left(\frac{x+1}{x}\right)^x$$
 à la précision $\frac{1}{x^2}$

Exercice 22 (ddl)

Former le développement asymptotique, en $+\infty$, à la précision $1/n^2$ de

$$u_n = \frac{1}{n!} \sum_{k=0}^{n} k!$$

Exercice 23

Méthode pour augmenter la précision du DL de tan à l'aide de l'équa diff. Équivalent en 0 de $\sin(\tan x) - \tan(\sin x)$.

Exercice 24

Soit $n \in \mathbb{N}$ et $(e^x - 1)^n$

- 1) Équivalent de $(e^x 1)^n$ en 0.
- 2) À l'aide de la formule du binôme et d'un DL, montrer que

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^i = 0 \quad \forall i \in [0, n-1] \quad \text{et} \quad = n! \quad \text{pour } i = n$$