Semaine 18 18 février 2008

1 Programme de Colles : Fractions rationnelles.

1.1 Corps des fractions de $\mathbb{K}[X]$.

On admet que tout anneau commutatif intègre est sous-anneau d'un corps. Construction du corps des fractions $\mathbb{K}(X)$. Ecriture irréductible d'une fraction rationnelle, degré, zéros et pôles. Définition et calcul de la partie entière et d'une partie polaire relative à un pôle d'une fraction rationnelle.

1.2 Décomposition en éléments simples.

Décomposition d'une partie polaire. Décomposition en éléments simples lorsque le dénominateur est scindé. Calcul de la partie polaire relative à un pôle simple ou double.

Notion de décomposition en éléments simples dans $\mathbb{R}(X)$.

1.3 Exemples et applications.

Calculs de dérivées, primitives ou sommes à l'aide de décomposition en éléments simples.

2 Petits

Exercice 1

Soit A_1, \ldots, A_n des réels non nuls et soit $a_1 < a_2 < \cdots < a_n$ des réels. Prouver que

$$f(x) = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_n}{x - a_n}$$

n'admet que des zéros réels dans les deux cas suivants :

- 1. $A_i > 0$ pour $i \le n 1$.
- 2. $A_i > 0$ pour $i \neq k$ et $A_1 + \dots + A_n < 0$.

Solution. p43

Exercice 2

Mettre la fraction rationnelle suivante sous la forme P/Q. On note μ_n l'ensemble des racines n-ièmes de l'unité.

 $\sum_{\omega \in \mu_n} \frac{\omega X + 1}{1 + \omega X + \omega^2 X^2}$

Solution. p50

Exercice 3

D'Alembert?

Solution. \Box

T .	4
Exercice	4

Décomposer en éléments simples sur $\mathbb C$ la fraction rationnelle $\frac{P}{X^n-1}$ où $P\in \mathbb C[X]$ de degré $\leq n-1$.

Solution.

$$\frac{1}{n} \sum \omega^k \frac{P(\omega^k)}{X - \omega^k}$$

Exercice 5

Décomposer $\frac{1}{X(X^2+1)^2}$ sur \mathbb{R} .

Solution. Utiliser la parité, des limites, etc.

Exercice 6

Dérivée *n*-ième de $F(x) = \frac{1}{x^2+1}$.

Solution.

Exercice 7 Calcul de $\sum n \ge 2\frac{1}{n^3-n}$.

Solution.

Exercice 8

$$\sum_{k=1}^{n} \frac{k}{1+k+k^2} = \frac{1}{2} \frac{n(n+1)}{1+n+n^2}$$

Solution.

Seb p46/47kholles 96MPSI exo
17 $\,$

- 3 Gros
- **Impairs** 4