Exercice 1

Soit $E = \mathscr{C}^0([0,1],\mathbb{R})$ et $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction continue. Pour tout $f \in E$, on pose

$$\forall x \in [0,1]$$
 $T(f)(x) = \int_0^1 \varphi(x-t)f(t) dt$

Montrer que T est un endomorphisme de E.

Exercice 2

Soit $E = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$. Pour tout $f \in E$, on pose

$$\forall x \in \mathbb{R}$$
 $u(f)(x) = \int_0^x \cos(x - t) f(t) dt$

1) Montrer que u est un endomorphisme de E.

(Indication: Décomposer cos(x-t) pour se ramener à une intégrale sans paramètre).

- 2) L'endomorphisme u est-il surjectif?
- 3) Montrer que u est injective (Indication : $dériver\ u(f)$).

Exercice 3

Soit $E = \mathscr{C}^{\infty}(I, \mathbb{R})$, où I est un intervalle de \mathbb{R} .

- 1) Montrer que la dérivation est un endomorphisme de E.
- 2) Soit $(f_0, \ldots, f_n) \in E^n$ des fonctions fixées. Montrer que l'application suivante est un endomorphisme

$$\forall y \in E$$
 $\varphi(y) = y^{(n)} f_n + \dots + y' f_1 + y f_0$

3) En déduire que les solutions d'une équation différentielle linéaire $y^{(n)}f_n + \cdots + y'f_1 + yf_0 = 0$ forment un sous-espace vectoriel.

Exercice 4

Soit E un K-espace vectoriel, et $u \in \mathcal{L}(E)$ fixé. Montrer que l'application $\varphi : \mathbb{K}[X] \to \mathcal{L}(E)$ définie par

$$P = a_n X^n + \dots + a_1 X + a_0 \longmapsto a_n u^n + \dots + a_1 u + a_0 \operatorname{id}_E$$

est un morphisme de K-algèbre. On notera désormais $\varphi(P) = P(u)$.

Exercice 5

Soit \mathscr{P} l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} , et \mathscr{I} l'ensemble des fonctions impaires. Montrer que ce sont des sous-espaces vectoriels de $\mathscr{F}(\mathbb{R},\mathbb{R})$, et que

$$\mathscr{F}(\mathbb{R},\mathbb{R})=\mathscr{P}\oplus\mathscr{I}$$

Exercice 6

Soit E un K-espace vectoriel, et $f, g \in \mathcal{L}(E)^2$. Démontrer les équivalences suivantes

1)
$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0\}$$
 2) $\operatorname{Im}(g \circ f) = \operatorname{Im} g \iff \operatorname{Ker} g + \operatorname{Im} f = E$

2)
$$\operatorname{Im}(g \circ f) = \operatorname{Im} g \iff \operatorname{Ker} g + \operatorname{Im} f = E$$

Exercice 7

Montrer que $E_1 = \{(a, a, a) | a \in \mathbb{R}\}$ et $E_2 = \{(x, y, z) | x + y + z = 0\}$ sont supplémentaires dans \mathbb{R}^3 .

Exercice 8

Montrer que les familles suivantes sont libres :

1)
$$(A^k)_{0 \le k \le 2}$$
 où $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 2) $\left(\frac{1}{X - a}\right)_{a \in \mathbb{R}} \operatorname{dans} \mathbb{R}(X)$

3)
$$(f_a)_{a \in \mathbb{R}_+}$$
 où $\forall x \in \mathbb{R}, f_a(x) = \cos(ax)$.

4)
$$(f_a)_{a\in\mathbb{R}}$$
 où $\forall x\in\mathbb{R}, f_a(x)=e^{ax}$.

Exercice 9

Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Montrer que $g(\operatorname{Ker} f) \subset \operatorname{Ker} f$ et $g(\operatorname{Im} f) \subset \operatorname{Im} f$. (On dit alors que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par g).

Exercice 10

Soit $(a,b) \in \mathbb{R}^2$ fixé, distincts. Pour tout $k \in \{0,\ldots,n\}$, on note $P_k(X) = (X-a)^k(X-b)^{n-k}$. Montrer que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Exercice 11 (interpolation de Lagrange)

Soit $n \ge 0$ et $(a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$ deux à deux distincts.

- 1) Montrer que l'application $\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ définie par $\varphi(P) = (P(a_0), \dots, P(a_n))$ est linéaire. Déterminer son noyau et son image.
- 2) En déduire que, pour tout $(b_0, \ldots, b_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme P tel que $P(a_i) = b_i \ \forall i$.
- 3) Déterminer explicitement les polynômes L_i tels que $L_i(a_j) = \delta_{i,j}$.
- 4) Montrer que $(L_i)_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$. Quelle est la base duale des L_i ? En déduire les coordonnées d'un polynôme Q quelconque dans cette base.

Exercice 12

Soit $f \in \mathcal{L}(E, E')$ et H un supplémentaire de Ker f dans E.

- 1) Montrer que l'application $\tilde{f}: H \to f(E)$ définie par $\tilde{f}(x) = f(x)$ est un isomorphisme (<u>Indication</u>: on pourra commencer par montrer l'injectivité, puis montrer la surjectivité, et la linéarité).
- 2) On suppose désormais E et E' de dimensions finies respectives n et p. Trouver des bases \mathscr{B} et \mathscr{B}' de E et E' pour que la matrice de f dans ces bases soit le plus simple possible.

Exercice 13 (factorisation — PT 2010, A III)

Soient E, F et G trois espaces vectoriels de dimension finie, $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(E,G)$. Le but de l'exercice est de montrer que

$$\operatorname{Ker}(u) \subset \operatorname{Ker}(v) \iff \exists w \in \mathscr{L}(F,G) \quad v = w \circ u$$

- 1) On suppose qu'il existe $w \in \mathcal{L}(F,G)$ telle que $v = w \circ u$. Montrer que $\mathrm{Ker}(u) \subset \mathrm{Ker}(v)$.
- 2) On suppose $\operatorname{Ker}(u) \subset \operatorname{Ker}(v)$. De plus, on note $\dim E = n$, $\dim(\operatorname{Ker} u) = n p$ et $\dim F = r$.
 - a) Justifier qu'il existe une base (e_1, \ldots, e_n) de E telle que (e_{p+1}, \ldots, e_n) soit une base de Ker u. Quelle est alors la dimension de Im u?
 - b) Pour tout $1 \le i \le p$, on pose $f_i = u(e_i)$. Montrer que la famille $(f_i)_{1 \le i \le p}$ est une base de Im u.
 - c) On complète la famille précédente en une base $(f_i)_{1 \le i \le r}$ de F. Construire $w \in \mathcal{L}(F, G)$ telle que $v = w \circ u$.

Exercice 14 (dual du précédent)

Soient E, F et G trois espaces vectoriels de dimension finie n, r et s; $u \in \mathcal{L}(F, E)$ et $v \in \mathcal{L}(G, E)$. Le but de l'exercice est de montrer que

$$\operatorname{Im}(v) \subset \operatorname{Im}(u) \Longleftrightarrow \exists w \in \mathscr{L}(G, F) \quad v = u \circ w$$

- 1) On suppose qu'il existe $w \in \mathcal{L}(G, F)$ telle que $v = u \circ w$. Montrer que $\operatorname{Im}(v) \subset \operatorname{Im}(u)$.
- 2) On suppose $\operatorname{Im}(v) \subset \operatorname{Im}(u)$. De plus, on note $\dim(\operatorname{Im} v) = p$ et $\operatorname{Im} u = q$.
 - a) Justifier qu'il existe une base (e_1, \ldots, e_n) de E telle que (e_1, \ldots, e_p) soit une base de Im v, et que (e_1, \ldots, e_q) soit une base de Im u.
 - **b)** Montrer que pour tout $1 \le i \le p$, il existe $g_i \in G$ tel que $v(g_i) = e_i$. Montrer que (g_1, \ldots, g_p) est libre. On la complète en une base de G.
 - c) Construire de même une base (f_1, \ldots, f_r) de F telle que, pour tout $1 \leq i \leq q$, $u(f_i) = e_i$.
 - d) Construire $w \in \mathcal{L}(G, F)$ telle que $v = u \circ w$.

Exercice 15

Soit p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q + q \circ p = 0$. Donner un exemple.

Exercice 16 (centre de $\mathcal{L}(E)$ — PT 2009, A partie B)

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ qui commute avec tous les endomorphismes de E, c'est-à-dire

$$\forall g \in \mathcal{L}(E)$$
 $f \circ g = g \circ f$

- 1) Soit $u \in E \{0\}$. Montrer que la droite vectorielle Vect (u) possède un supplémentaire dans E que l'on notera H_u . On précisera la dimension de H_u .
- 2) Montrer qu'il existe un scalaire λ_u tel que $f(u) = \lambda_u u$. (<u>Indication</u>: utiliser le projecteur p_u sur Vect (u) parallèlement à H_u).
- 3) Soit $v \in E$ non colinéaire au vecteur u. On note λ_v le scalaire tel que $f(v) = \lambda_v v$. Montrer que $\lambda_u = \lambda_v$.
- 4) Reprendre la question précédente lorsque v est non nul et colinéaire au vecteur u.
- 5) En déduire quels sont les endomorphismes de E qui commutent avec tous les endomorphismes de E.

Exercice 17

Soit $E = \mathbb{R}_2[X]$. On définit trois formes linéaires φ_1 , φ_2 et φ_3 par

$$\varphi_1(P) = \int_0^1 P(t) dt$$
 $\varphi_2(P) = \int_0^1 t P(t) dt$ $\varphi_3(P) = \int_0^1 t^2 P(t) dt$

Déterminer de quelle base elles forment la base duale. Décomposer $\psi: P \mapsto \int_0^1 t^3 P(t) \, dt$ dans cette base.

Exercice 18 (PT 2009, A extraits)

Soit E un \mathbb{R} -espace vectoriel de dimension 2, et $\mathscr{B} = (e_1, e_2)$ une base de E fixée. On considère l'application linéaire f ayant pour matrice, dans la base \mathscr{B} ,

$$M = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$$

- 1) Montrer que f est un projecteur. (Quel est son rang?)
- 2) Déterminer le noyau et l'image de f.

Exercice 19 (idem)

Soit E un \mathbb{R} -espace vectoriel de dimension 3, et $\mathscr{B}=(e_1,e_2,e_3)$ une base de E fixée. Soit D la droite engendrée par $\varepsilon_1=e_1+3e_2-e_3$ et P le plan engendrée par les vecteurs $\varepsilon_2=e_1-e_3$ et $\varepsilon_3=2e_1-e_2$.

- 1) Déterminer la matrice M, dans la base \mathcal{B} , du projecteur sur P parallèlement à D.
- 2) Donner la matrice M' de p dans \mathscr{B}' , la matrice de passage P de \mathscr{B} à \mathscr{B}' , et la formule de changement de base.

Exercice 20

Calculer le rang des matrices suivantes. Noyau et Images de C et D.

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -2 & 1 & 5 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 3 \end{pmatrix} \ B = \begin{pmatrix} 1 & -2 & 1 & 3 & -1 \\ 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & -1 & -2 & 3 \end{pmatrix} \ C = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 2 \end{pmatrix} \ D = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -2 & 1 & -1 \\ 0 & 2 & -2 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix}$$

Exercice 21 Montrer que
$$F = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \middle| \begin{array}{l} x_1 + 2x_2 - x_3 + 3x_4 + x_5 & = & 0 \\ x_2 + x_3 - 2x_4 + 2x_5 & = & 0 \\ 2x_1 + x_2 - 5x_3 - 4x_5 & = & 0 \end{array} \right\}$$
 est un sous-espace vectoriel

de \mathbb{R}^5 . Donner une base, en déduire la dimension

Exercice 22

Soit $f \in \mathcal{L}(\mathbb{R}^2)$ ayant pour matrice, dans la base canonique, $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Déterminer le noyau et l'image de f. Que remarque-t-on? En déduire f^2 .

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ ayant pour matrice, dans la base canonique,

$$M = \begin{pmatrix} 2 & 1 & 0 \\ -4 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Déterminer le noyau, le rang et l'image de f. Construire $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ une base du noyau, complétée en une base de l'image puis en une base de \mathbb{R}^3 . Donner la matrice M' de f dans cette base, et la matrice de passage.

Exercice 24 (exemple de décomposition LU — PT 2006 A)

On considère les matrices

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \text{et} \qquad A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 2 & 1 & 6 \end{pmatrix}$$

- 1) Calculer l'inverse de L.
- 2) Déterminer une matrice U triangulaire supérieure telle que A = LU. En déduire A^{-1} .

La décomposition LU permet de calculer rapidement l'inverse d'une matrice A, dans le but par exemple de résoudre un système du type Ax = b.

Exercice 25

Soit $\mathcal{S}_n(\mathbb{K})$ l'ensemble des matrices carrées symétriques de taille n et $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices carrée antisymétriques (${}^tM=-M$) de taille n. Montrer que

$$\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$$

Exercice 26

Soit E_n l'ensemble des polynômes homogènes $P \in \mathbb{R}[X,Y]$ de degré n. Un polynôme est dit homogène de degré n s'il est la somme de monômes de degré total n.

- 1) Montrer que E_n est un \mathbb{R} -espace vectoriel. En donner une base et sa dimension.
- 2) Construire deux isomorphismes « naturels » entre $\mathbb{R}_n[X]$ et E_n .
- 3) Montrer que l'application $\Delta: P \mapsto \frac{\partial^2 P}{\partial X^2} + \frac{\partial^2 P}{\partial Y^2}$ est linéaire de E_n dans E_{n-2} .

Exercice 27 Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et u défini par u(M) = AM pour tout $M \in \mathcal{M}_2(\mathbb{R})$.

- 1) Montrer que u est un endomorphisme. Noyau et image de u.
- 2) Déterminer la matrice de u dans la base $(E_{1,1}, E_{2,1}, E_{1,2}, E_{2,2})$ de $\mathcal{M}_2(\mathbb{R})$.
- 3) Écrire la matrice de $u_A: M \mapsto AM$ lorsque A est une matrice quelconque.
- 4) Dans le cas où A est quelconque, montrer que u_A laisse stable $Vect(E_{1,1}, E_{2,1})$ et $Vect(E_{1,2}, E_{2,2})$.

Exercice 28

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, et $u \in \mathcal{L}(E)$. Soit E_1 et E_2 deux sous-espaces vectoriels de E stables par u tels que $E = E_1 \oplus E_2$.

Montrer qu'il existe une base \mathcal{B} de E tel que la matrice de u dans cette base soit diagonale blocs, c'est-à-dire

$$\operatorname{Mat}(u, \mathscr{B}) = \left(\begin{array}{c|c} M_1 & 0 \\ \hline 0 & M_2 \end{array}\right) \quad \text{avec} \quad M_1 \in \mathscr{M}_p(\mathbb{K}) \quad \text{et} \quad M_2 \in \mathscr{M}_q(\mathbb{K})$$

Exercice 29

Soit $A \in \mathscr{M}_n(\mathbb{K})$.

- 1) On suppose que $A^2 3A + I_n = 0$. Montrer que A est inversible et donner son inverse.
- 2) Soit $P \in \mathbb{K}[X]$. CNS sur P pour que P(A) = 0 entraı̂ne A inversible. Donner son inverse dans ce cas.

Soit A et $B \in \mathcal{S}_n(\mathbb{K})$. Montrer que $AB \in \mathcal{S}_n(\mathbb{K}) \iff AB = BA$.

Exercice 31 (*)

1) Soit P et $Q \in \mathbb{C}_n[X]$. Montrer que, si P et Q ont une racine commune, alors

$$\exists (U, V) \in \mathbb{C}_{n-1}[X]$$
 $UP + VQ = 0$ et $(U, V) \neq (0, 0)$

On admettra la réciproque.

- 2) Soit P et $Q \in \mathbb{C}_2[X]$ fixés et u défini par u(U,V) = UP + VQ pour tout $(U,V) \in \mathbb{C}_1[X]^2$.
 - a) Montrer que $u \in \mathcal{L}(\mathbb{C}_1[X]^2, \mathbb{C}_3[X])$. Écrire la matrice de u relativement aux bases canoniques de $\mathbb{C}_1[X]^2$ et $\mathbb{C}_3[X]$.
 - b) En déduire une CNS pour que P et Q aient une racine commune. Décrire le cas particulier Q = P'.

Exercice 32 (Matrices nilpotentes)

1) Si N est nilpotente d'indice p, rappeler la formule donnant l'inverse de $I_n - N$. Montrer l'inversibilité et calculer l'inverse de

$$A = \begin{pmatrix} 1 & -a & 0 & \cdots & 0 \\ 0 & 1 & -a & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & -a \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \quad \text{avec} \quad a \in \mathbb{R}$$

2) Soit $N \in \mathcal{M}_n(\mathbb{R})$ nilpotente d'indice 2. Calculer $(I_n + N)^k$ pour tout $k \in \mathbb{N}^*$. En déduire B^{100} avec $B = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$.

Exercice 33

Soit $F: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ une forme bilinéaire (c'est-à-dire que $x \mapsto F(x,y)$ et $y \mapsto F(x,y)$ sont linéaires). Notons (e_1, e_2) la base canonique de \mathbb{R}^2 .

- 1) Pour tout $x = (a, b) \in \mathbb{R}^2$ et tout $y = (c, d) \in \mathbb{R}^2$, exprimer F(x, y) en fonction de a, b, c, d et les $F(e_i, e_j)$.
- 2) On suppose que F est alternée. Simplifier l'expression obtenue à la question 1. Que constate-t-on? Quelle est la dimension du \mathbb{R} -espace vectoriel $\mathscr{A}_2(\mathbb{R}^2,\mathbb{R})$ des formes 2-linéaires alternées sur \mathbb{R}^2 ?

Exercice 34

Calculer les déterminants des matrices suivantes, sous la forme la plus factorisée possible :

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 4 & 0 & 3 & 1 \\ -1 & 2 & -3 & 0 \\ 1 & 6 & -1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \\ 4 & 4 & 4 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & \cos a & \cos 2a \\ 1 & \cos b & \cos 2b \\ 1 & \cos c & \cos 2c \end{pmatrix} \qquad (a_{i,j})_{1 \leqslant i,j \leqslant n} = (ij)_{1 \leqslant i,j \leqslant n}$$

Exercice 35

Soit $M \in \mathcal{M}_n(\mathbb{R})$ antisymétrique (c'est-à-dire $^tM = -M$). Montrer que n impaire entraı̂ne M non inversible.

Exercice 36

Soit A, B et C des matrices de $\mathcal{M}_n(\mathbb{R})$. Montrer que

$$\det\begin{pmatrix} A & B \\ C & A+C-B \end{pmatrix} = \det(A+C)\det(A-B)$$

Exercice 37

Calculer les déterminants des matrices suivantes sous la forme la plus factorisée possible :

$$A - \lambda I_3 = \begin{pmatrix} 1 - \lambda & 2 & 0 \\ 2 & 4 - \lambda & 0 \\ 4 & 8 & 3 - \lambda \end{pmatrix} \qquad B - \lambda I_3 = \begin{pmatrix} -\lambda & 1 & 1 \\ 1 & 2 - \lambda & -1 \\ -1 & 1 & 2 - \lambda \end{pmatrix}$$

Exercice 38

Déterminer le polynôme caractéristique, les valeurs propres, les sous-espaces propres de la matrice

$$M = \begin{pmatrix} -5 & -8 & 4\\ 0 & 3 & 0\\ -8 & -8 & 7 \end{pmatrix}$$

Si f est l'endomorphisme de \mathbb{R}^3 de matrice M dans la base canonique, donner une base \mathscr{B}' de vecteurs propres, la matrice de f dans cette base, et la matrice de changement de base. Déterminer la matrice de f^k dans la base \mathscr{B}' puis dans la base canonique.

Exercice 39 $\begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ est diagonalisable : Calculer le polynôme caractéristique et donner une matrice diagonale semblable à } M sans calculer les sous-espaces propres.}$

Exercice 40

Calculer le polynôme caractéristique et les sous-espaces propres des matrices suivantes et diagonaliser, lorsque c'est possible, ces matrices :

$$A = \begin{pmatrix} -2 & 1 & 1 \\ 8 & 1 & -5 \\ 4 & 3 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 5 & -1 \\ 1 & 3 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Exercice 41 (PT 2008, B partie I)

Soit $\varphi \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique de \mathbb{R}^3 est donnée par

$$A_{\varphi} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1) Calculer le polynôme caractéristique de la matrice A_{φ} . Déterminer les valeurs propres de cette matrice. Quelle est la dimension des sous-espaces propres? À quelle matrice diagonale est-elle semblable?
- 2) Déterminer une base (c_1, c_2, c_3) de vecteurs propres de φ .
- 3) On pose $D_1 = \text{Vect}(c_1)$. Montrer que D_1 est stable par φ .
- 4) On pose $P_1 = \text{Vect}(c_2, c_3)$. Montrer que P_1 est stable par φ .

Exercice 42 (PT 2007, A partie C)

On définit l'application Φ de $\mathbb{R}_n[X]$ dans lui-même par :

$$\forall P \in \mathbb{R}_n[X] \qquad \Phi(P) = (X^2 - 1)P'' + XP'$$

- 1) Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Pour tout $k \in \{0, ..., n\}$, déterminer $\Phi(X^k)$. En déduire Ker Φ .
- 3) Déterminer la matrice de Φ dans la base canonique $(1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$. Calculer la trace de Φ .
- 4) Quelles sont les valeurs propres de Φ ? L'endomorphisme est-il diagonalisable?
- 5) Déterminer les sous-espaces propres de Φ . Indication : penser aux polynômes de Tchebychev.

Exercice 43 (PT 2008, B partie II)

Soit $f, g \in \mathcal{L}(\mathbb{R}^3)$ dont les matrices dans la base canonique de \mathbb{R}^3 sont respectivement

$$A_f = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \text{et} \qquad A_g = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que les matrices A_f et A_g sont diagonalisables (pour 5/2: sans calculs).
- 2) Vérifier que les endomorphismes f et g commutent.
- 3) Déterminer tous les vecteurs propres de f associés à la valeur propre 1. Vérifier que ces vecteurs sont aussi vecteurs propres de g.
- 4) Déterminer le sous-espace propre de f associé à la valeur propre -1. Vérifier que ce sous-espace est stable par g.
- 5) Construire une base $\mathscr{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de diagonalisation commune à f et g.

Plus généralement, si f et g commutent et sont diagonalisables (resp trigonalisables), alors ils sont diagonalisables dans une même base.

Exercice 44 La matrice $A = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 9 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ est-elle diagonalisable?

- 1) Diagonaliser A, donner la matrice de passage et son inverse.
- 2) Déterminer toutes les matrices M' telles que $M'^2 = D$, où D est la matrice diagonale obtenue en 1.
- 3) En déduire toutes les matrices M telles que $M^2 = A$.

Exercice 45

Montrer qu'une somme (puis un produit) de matrices diagonalisables n'est pas forcément diagonalisable. On pourra chercher des matrices 2×2 triangulaires.

Exercice 46 (*)

Soient E un \mathbb{K} -espace vectoriel muni d'une base \mathscr{B} , $f \in \mathscr{L}(E)$ et H un hyperplan.

- 1) Déterminer la dimension du sous-espace vectoriel $\{u \in E^*/u(H) = \{0\}\}$. (<u>Indication</u> : regarder Ker u)
- 2) Montrer que si H a pour équation u(x) = 0 alors H est stable par f si, et seulement si, $u \circ f$ est colinéaire à u.
- 3) E est désormais de dimension finie n. Soient A et L les matrices dans \mathscr{B} de f et u. Montrer que H est stable par f si, et seulement si, tL est vecteur propre de tA
- 4) Déterminer les plans stables par

$$A = \left(\begin{array}{rrr} 3 & -2 & -4 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{array}\right)$$

Exercice 47

Soit $\varphi : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = {}^t M$. Valeurs propres, sous-espaces propres (<u>Indication</u>: calculer φ^2). L'endomorphisme φ est-il diagonalisable? Trace de φ . Quelle est la nature géométrique de φ ?

Exercice 48 (PT 2010, partie I)
On pose $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 \end{pmatrix}$, u_A l'endomorphisme de $\mathscr{M}_2(\mathbb{R})$ défini par $u_A(M) = AM$, et $B = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ 1) La matrice A est-elle diagonalisable?

- 2) La matrice B est-elle diagonalisable? Si oui, préciser une base de vecteurs propres.
- **3)** On pose:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- a) Vérifier que la famille $\mathscr{E} = (E_{11}, E_{12}, E_{21}, E_{22})$ est une base de $\mathscr{M}_2(\mathbb{R})$.
- b) Calculer $u_A(E_{ij})$ pour tout $1 \le i, j \le 2$. Donner la matrice de u_A dans la base \mathscr{E} .
- c) L'endomorphisme u_A est-il diagonalisable? Si oui, préciser ses valeurs propres et une base de vecteurs propres de u_A (on rappelle qu'ici un vecteur propre sera une matrice de $\mathscr{M}_2(\mathbb{R})$).

Soient $E = \ell^{\infty}(\mathbb{R}) \subset \mathbb{R}^{\mathbb{N}}$ l'espace des suites réelles bornées et $\Delta : E \to E$ l'endomorphisme défini par

$$\Delta(u)_n = u_{n+1} - u_n$$

Déterminer les valeurs propres de Δ .

Exercice 50

Soit \mathscr{E} le système d'équations différentielles

$$\begin{cases} x' = 5x + y - z & x(0) = -1 \\ y' = 2x + 4y - 2z & \text{avec} & y(0) = 2 \\ z' = x - y + 3z & z(0) = 0 \end{cases}$$

- 1) Écrire le système sous forme matricielle X' = AX et diagonaliser A.
- 2) Dans la base de vecteurs propres obtenue, résoudre le système d'équations différentielles $X'_1 = DX_1$.
- 3) En déduire les solutions X de $\mathscr E$ à l'aide de la matrice de passage.

Exercice 51 (inspiré de ATS 2010) Soit E un espace vectoriel de dimension 3 de base $\mathscr{B} = (e_1, e_2, e_3)$ et $f \in \mathscr{L}(E)$ de matrice $A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$

- dans la base \mathscr{B} .
 - 1) Déterminer les valeurs propres et les sous-espaces propres de f, l'endomorphisme f est-il diagonalisable?
 - 2) On note e'_1 un vecteur propre pour la plus grande des deux valeurs propres, et e'_2 un vecteur propre pour l'autre valeur propre. Vérifier que $\mathscr{B}' = (e'_1, e'_2, e_3)$ est une base de E. Donner la matrice T de l'application f dans la base \mathscr{B}' ,
 - 3) Calculer T^n pour $n \in \mathbb{N}^*$. Calculer T^{-1} , puis T^n pour $n \in \mathbb{Z}$.
 - 4) En déduire A^n pour $n \in \mathbb{Z}$.

Exercice 52 Soit
$$S$$
 le système
$$\begin{cases} x_{n+1} = 2x_n - y_n + z_n \\ y_{n+1} = y_n + z_n \\ z_{n+1} = -x_n + y_n + z_n \end{cases}$$
 avec $(x_0, y_0, z_0) \in \mathbb{R}^3$ fixés

- 1) Écrire le système sous forme matricielle $X_{n+1} = AX_n$. Exprimer X_n en fonction de A, de X_0 et de n.
- 2) À l'aide des résultats de l'exercice 51, exprimer x_n , y_n et z_n en fonction de x_0 , y_0 , z_0 et de n.

Exercice 53 (suites récurrentes linéaires)

Le but de cet exercice est de retrouver les résultats généraux sur les suites récurrentes linéaires d'ordre 2.

1) Soit $(a,b,c) \in \mathbb{C}^3$ tel que $a \neq 0$. On cherche à décrire l'ensemble E_0 des suites (u_n) vérifiant

$$\forall n \in \mathbb{N} \qquad au_{n+2} + bu_{n+1} + cu_n = 0$$

- a) Montrer que ces suites forment un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ de dimension 2.
- b) En posant $v_n=u_{n+1}$, écrire un système $X_{n+1}=AX_n$, où la matrice $A\in \mathscr{M}_2(\mathbb{C})$ dépend de a,b et c.
- c) Étude de A: Déterminer le polynôme caractéristique de A. Est-ce que A peut-être diagonalisable avec une seule valeur propre? Décrire les deux situations possibles, en donnant un critère.
- d) Cas $\Delta \neq 0$: en posant $P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$ la matrice de passage, montrer que

$$u_n = \alpha r_1^n + \beta r_2^n$$

où α et β dépendent des conditions initiales.

e) Cas $\Delta = 0$. On admet que A est semblable à $\begin{pmatrix} r & 1 \\ 0 & r \end{pmatrix}$. Trouver une formule du même type qu'à la question précédente.

- 2) Soit $d \in \mathbb{C}$, trouver l'ensemble E des suites (u_n) vérifiant $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = d$
- 3) Cas pratique : $u_0 = 1$, $u_1 = -2$ et $u_{n+2} 3u_{n+1} + 2u_n = 1$ pour tout $n \in \mathbb{N}$.

Exercice 54

Soit $E = \mathcal{M}_n(\mathbb{R})$ muni de $\langle A, B \rangle = \operatorname{Tr}({}^t AB)$.

1) Montrer que $\langle A, B \rangle = \text{Tr}(^tAB)$ défini un produit scalaire sur E. Expliciter ce produit scalaire en fonction des coefficients de A et B, en déduire une base orthonormée.

2) Soit
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$$
, montrer que $\left| \sum_{i=1}^n \sum_{j=1}^n a_{ij} \right| \leqslant n \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$

3) Montrer que $\mathscr{S}_n(\mathbb{R})$ (les matrices symétriques) et $\mathscr{A}_n(\mathbb{R})$ (les matrices antisymétriques) sont orthogonaux.

Exercice 55 (Schmidt)

Orthonormaliser par Schmidt les bases suivantes de \mathbb{R}^3 : ((1,1,1),(1,1,0),(1,0,0)) et ((1,0,0),(1,1,0),(1,1,1))

Exercice 56 (orthogonal d'un sous-espace vectoriel, projection)

Soit $E = \mathbb{R}^2$ euclidien canonique, $\mathscr{B} = (e_1, e_2)$ la base canonique; et F = Vect((1, 2)). (faire un dessin)

- 1) Donner l'équation de F^{\perp} , puis une base de F^{\perp} . En déduire une base orthonormée $\mathscr{B}'=(e'_1,e'_2)$ de $E=F\oplus F^{\perp}$ compatible avec la somme directe.
- 2) Soit p_F la projection orthogonale sur F. Donner la matrice de p_F dans \mathscr{B}' , puis dans \mathscr{B} . Pour tout $x \in E$ donner l'expression de $p_F(x)$ en fonction de x et e'_1 , sans passer par les matrices que l'on vient d'obtenir.
- **3)** Distance d((1,1), F).

Exercice 57

Soit $E = \mathbb{R}^4$ euclidien canonique, \mathscr{B} la base canonique.

Posons $v_1 = (1, 2, -1, 1), v_2 = (0, 3, 1, -1)$ et $F = \text{Vect}(v_1, v_2)$.

- 1) a) Donner un système d'équations de F^{\perp} , puis une base orthonormée de F^{\perp} . Peut-on en déduire un système d'équations de F?
 - b) En déduire une base orthonormée $\mathscr{B}'=(e_i')_{1\leqslant i\leqslant 4}$ de $E=F\oplus F^\perp$ compatible avec la somme directe.
- 2) Soit p_F la projection orthogonale sur F. Pour tout $x \in E$ donner l'expression de $p_F(x)$ en fonction de x et les e'_i , puis en déduire la matrice de p_F dans \mathscr{B} .
- 3) Distance d((1,0,0,1), F).

Exercice 58 (PT 2009 A)

Soit E un \mathbb{R} -espace vectoriel euclidien, et $p \in \mathcal{L}(E)$ un projecteur.

Montrer que p est un projecteur orthogonal si et seulement si $\forall x \in E \|p(x)\| \leq \|x\|$.

Exercice 59 (Oral CCP 2010)

On considère l'espace vectoriel $E = \text{Vect}(f_1, f_2, f_3, f_4, f_5)$ avec

$$f_1: x \mapsto 1/\sqrt{2}, \qquad f_2 = \cos, f_3 = \sin, \qquad f_4: x \mapsto \cos(2x) \qquad \text{et} \qquad f_5: x \mapsto \sin(2x)$$

On appelle F le sous-espace vectoriel $Vect(f_1, f_2, f_3)$.

1) Montrer que si $h:[a,b]\to\mathbb{R}$ est continue et positive,

$$\int_{a}^{b} h(t) \, \mathrm{d}t = 0 \Rightarrow h = 0$$

2) Montrer que

$$(f,g) \mapsto \langle f,g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$$

est un produit scalaire sur $\mathscr{C}^0_{2\pi}(\mathbb{R},\mathbb{R})$, l'espace des fonctions continues 2π -périodiques.

- 3) Montrer que $\langle f_4, f_5 \rangle = 0$ et que f_4 et f_5 sont de norme égale à 1.
- 4) On considère que (f_1, \ldots, f_5) est une base orthonormée de E. Déterminer l'orthogonal de F dans E.

En utilisant l'inégalité de Cauchy-Schwarz, majorer $I=\int_0^1 \sqrt{t} \mathrm{e}^{-t} \,\mathrm{d}t.$

Exercice 61

Soit I un intervalle fixé de \mathbb{R} . Soit E l'ensemble des fonction continues sur I à valeurs dans \mathbb{R} telles que f^2 soit intégrable sur I.

- 1) Montrer que E est un espace vectoriel.
- 2) On admet que $\langle f, g \rangle = \int_{I} fg$ est un produit scalaire. Montrer que $\int_{0}^{+\infty} \frac{e^{-t/2}}{\sqrt{1+t^2}} dt \leqslant \sqrt{\frac{\pi}{2}}$.

Exercice 62 (Polynômes de Hermite)

Soit
$$E = \mathbb{R}[X]$$
. Pour tout $P, Q \in \mathbb{R}[X]^2$, on pose $(P|Q) = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2/2} dt$.

- 1) Montrer que $(\cdot|\cdot)$ est un produit scalaire sur E. Orthogonaliser la base $(1,X,X^2)$ de $\mathbb{R}_2[X]$.
- 2) En déduire la projection de X^3 sur $\mathbb{R}_2[X]$. Calculer $\inf_{(a,b)\in\mathbb{R}^2}\int_{-\infty}^{+\infty}(t^2-at-b)^2e^{-t^2/2}\,\mathrm{d}t$.

Exercice 63

Soit E un espace préhilbertien, dont on note $\langle \cdot, \cdot \rangle$ le produit scalaire.

Soit $(y_1, y_2) \in E^2$ tels que $\forall x \in E < x, y_1 > = < x, y_2 >$. Montrer que $y_1 = y_2$.

Remarque : cette propriété est importante, en particulier lorsque $y_2 = 0$. Il faut savoir l'écrire en termes matriciels.

Exercice 64 (Méthode des moindres carrés)

Dans cet exercice, on identifie \mathbb{R}^p et $\mathcal{M}_{p,1}(\mathbb{R})$, c'est-à-dire le vecteur (x_1,\ldots,x_p) et la matrice colonne $\{x_1,\ldots,x_p\}$ et la matrice colonne $\{x_1,\ldots,x_p\}$ Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathbb{R}^n$ fixés, on s'intéresse au système suivant, où $X \in \mathbb{R}^p$.

$$AX = B \tag{1}$$

Le système (1) n'a une solution X_0 que si $B \in \text{Im } A$ (cf. le cours sur les systèmes). Pour $B \in \mathbb{R}^n$ quelconque, on généralise la notion de solution du système (1):

Définition :
$$X_0$$
 est une pseudo-solution du système $(1) \iff ||AX_0 - B|| = \inf_{X \in \mathbb{R}^p} ||AX - B||$.

- 1) Rappeler l'expression de $\langle X, Y \rangle$, où X et $Y \in \mathbb{R}^k$ sont des vecteurs colonnes.
- 2) Montrer qu'il existe au moins une pseudo-solution X_0 au système (1). Indication: Commencer par construire $Y_0 \in \text{Im } A \text{ tel que } ||Y_0 - B|| = \inf_{Y \in \text{Im } A} ||Y - B|| = d(B, \text{Im } A).$
- 3) Décrire l'ensemble \mathscr{S} des pseudo-solutions de (1). On note désormais X une pseudo-solution de (1).
- 4) Montrer que X est une pseudo-solution si et seulement si ${}^tAAX = {}^tAB$. Indication: Que peut-on dire de $\langle AX', B - AX \rangle$, où $X' \in \mathbb{R}^p$ est quelconque?
- 5) On suppose que rg A = p. Montrer que A est injective (on identifie A et l'application linéaire associée), puis que ${}^{t}AA$ est inversible. (<u>Indication</u>: Montrer que ${}^{t}AA$ est injective) Montrer que (1) a une unique pseudo-solution, que l'on déterminera.
- 6) Déterminer les pseudo-solutions du système $\begin{cases} x y = -0.9 \\ x + y = 3.2 \\ x = 1.1 \\ 2x + y = 4.1 \end{cases}$
- 7) Dans \mathbb{R}^2 , on fixe n points $(M_k(x_k, y_k))_{1 \le k \le n}$ n'ayant pas tous la même abscisse.
 - a) Si \mathscr{D} est une droite affine d'équation $y = \alpha x + \beta$, on note H_k le projeté de M_k sur \mathscr{D} parallèlement au vecteur (0,1). Exprimer les coordonnées de H_k en fonction de α , β et x_k .

b) Montrer qu'il existe une unique droite \mathscr{D} qui minimise $\sum_k M_k H_k^2$, et calculer α et β . (c'est la « droite des moindres carrés »).

Exercice 65

On donne les points suivants dans le plan :

$$M_1(-3,2)$$
 $M_2(-1,1)$ $M_3(0,1)$ $M_4(1,2)$ $M_5(2,3)$ $M_6(4,7)$

Trouver la parabole d'équation $y = ax^2 + bx + c$ approchant au mieux au sens des moindres carrés ce nuages de points. <u>Indication</u>: Commencer par identifier ce qu'on cherche, puis poser le système AX = B. Ensuite, utiliser les formules de l'exercice 64.

Exercice 66

Soit E un espace préhilbertien, dont on note $\langle \cdot, \cdot \rangle$ le produit scalaire.

Soit f, g deux fonctions de E dans E telles que $\forall (x, y) \in E^2 < x, f(y) > = < g(x), y >$. Montrer que f et g sont linéaires.

Exercice 67 (De l'endomorphisme à la matrice)

- 1) Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la rotation d'angle $\pi/3$ et d'axe Vect ((1,1,1))
- 2) Soit $a \in \mathbb{R}^3$ unitaire et $f \in \mathcal{L}(\mathbb{R}^3)$ défini par $f(x) = a \land x + \langle a, x \rangle a$. Reconnaître f.

Exercice 68

Soit E euclidien et $f \in \mathcal{L}(E)$ dont la matrice M dans une base orthonormée est symétrique et orthogonale. Qu'est-ce que f?

Exercice 69 (De la matrice à l'endomorphisme)

Montrer que les endomorphismes $f_i \in \mathcal{L}(\mathbb{R}^3)$ associés aux matrices suivantes (dans la base canonique) sont orthogonaux.

$$M_1 = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \qquad M_2 = \frac{1}{4} \begin{pmatrix} -2 & -\sqrt{6} & \sqrt{6} \\ \sqrt{6} & 1 & 3 \\ -\sqrt{6} & 3 & 1 \end{pmatrix} \qquad M_3 = \frac{1}{3} \begin{pmatrix} 1 & 1 - \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & 1 & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}$$

Décrire les éléments propres. Si c'est une rotation, déterminer l'axe et l'angle. Calculer M_3^{481} .

Exercice 70 (suite du 62)

Montrer que u(P) = P'' + XP' est un endomorphisme symétrique de E.

Exercice 71 (PT 2008, B partie IV)

Soit E un espace euclidien, $a \in E$ unitaire, et $\alpha \in \mathbb{R}^*$. Pour tout $x \in E$ on pose $f(x) = x + \alpha < x, a > a$.

- 1) Vérifier que f est un endomorphisme symétrique de E.
- 2) Montrer que a est un vecteur propre de f.
- 3) Montrer que 1 est une valeur propre de f. Quel est le sous-espace propre associé?
- 4) Pour quelles valeurs de α f est-il une isométrie? Caractériser dans ce cas cet endomorphisme.

Exercice 72 Soit $M = (a_{ij}) \in \mathscr{O}_n(\mathbb{R})$. Montrer que $\forall i, j \mid |a_{ij}| \leq 1$ et $\left| \sum_{ij} a_{ij} \right| \leq n$.

<u>Indication</u>: Pour la première inégalité, revenir à la définition d'un endomorphisme orthogonal.

Exercice 73

- 1) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $S = {}^t AA$ est une matrice symétrique dont toutes les valeurs propres $\lambda_1, \ldots, \lambda_n$ sont positives.
- 2) Réciproquement : soit $S \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique dont toutes les valeurs propres sont positives. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que $S = {}^t AA$. Dans quel cas A est-elle inversible?