Devoir de Mathématiques numéro 4

Exercice 1

On admettra les résultats de l'exercice 2 du DL 2 sur les polynômes de Tchebychev On définit les applications L et N de $\mathbb{R}[X]$ vers \mathbb{R}_+ par :

$$\forall P \in \mathbb{R}[X], \ P(x) = \sum_{k=0}^{n} a_k x^k, \quad L(P) = \sup_{t \in [-1,1]} |P(t)| \quad ; \quad N(P) = \max_{0 \le k \le n} |a_k|$$

On considère enfin l'application φ de $\mathbb{R}[X]^2$ vers \mathbb{R} définie par :

$$\forall (P,Q) \in \mathbb{R}[X]^2 \quad \varphi(P,Q) = \int_0^{\pi} P(\cos\theta)Q(\cos\theta) \,d\theta$$

1) Soient P et Q deux polynômes et $\lambda \in \mathbb{R}$; montrer les propriétés suivantes :

$$\begin{array}{lll} L(P)=0 \Longleftrightarrow P=0 & ; & L(\lambda P)=|\lambda|L(P) & ; & L(P+Q)\leqslant L(P)+L(Q) \\ N(P)=0 \Longleftrightarrow P=0 & ; & N(\lambda P)=|\lambda|N(P) & ; & N(P+Q)\leqslant N(P)+N(Q) \end{array}$$

- 2) Montrer que $\gamma_n = n + 1$ vérifie : $\forall P \in \mathbb{R}_n[X]$ $L(P) \leqslant \gamma_n N(P)$
- 3) Donner un exemple de polynôme $Q \in \mathbb{R}_n[X]$ tel que $L(Q) = \gamma_n N(Q)$. Que peut-on en déduire?
- 4) Calculer $L(T_n)$.
- 5) Montrer que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 6) Soit n et m deux entiers naturels distincts. Calculer $\varphi(T_n, T_n)$ et $\varphi(T_n, T_m)$.
- 7) Soit $P \in \mathbb{R}_n[X]$, montrer qu'il existe un unique (n+1)-uplet $(\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ tel que $P = \sum_{k=0}^n \alpha_k T_k$ Vérifier alors que, pour tout entier $k \in \{0, \dots, n\}$, on a $|\alpha_k| \leq 2L(P)$
- 8) Dans cette question, l'entier n est strictement positif. Montrer que $N(T_{n+1}) \leq 2N(T_n) + N(T_{n-1})$
- **9)** On pose $q = 1 + \sqrt{2}$. Montrer que $\forall n \in \mathbb{N} \ N(T_n) \leqslant q^n$
- **10)** En déduire que l'on a $\forall P \in \mathbb{R}_n[X] \ N(P) \leq q^{n+1} \sqrt{2} L(P)$

Exercice 2

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$, muni d'un produit scalaire $<\cdot,\cdot>$, ce qui lui confère une structurer d'espace euclidien. On rappelle que la norme euclidienne associée, notée $\|\cdot\|$, est définie par :

$$\forall x \in E, \qquad ||x|| = \sqrt{\langle x, x \rangle}$$

On note $\mathcal{M}_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices réelles carrées de taille n.

Si F est un sous-espace vectoriel de E, on note F^{\perp} son orthogonal, et on appelle projecteur orthogonal sur F, noté p_F le projecteur sur F, parallèlement à F^{\perp} . Enfin, si x est un vecteur de E, la distance euclidienne de x à F, notée d(x, F) est le réel : $d(x, F) = \inf\{||x - y|| \mid y \in F\}$.

- 1) Théorème de la projection orthogonale : soit F un sous-espace vectoriel de E et x un vecteur de E. Rappeler sans démonstration, la formule permettant de calculer d(x, F) à l'aide du vecteur $p_F(x)$.
- 2) Cas des hyperplans : soit u un vecteur non nul de E et H l'hyperplan de E orthogonal à u, c'est à dire $H = (\text{Vect } \{u\})^{\perp}$. Exprimer pour $x \in E$, la distance d(x, H) en fonction de (x, u) et de ||u||.

DL

3) Une application : dans cette question uniquement, $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique : si A et B sont dans $\mathcal{M}_n(\mathbb{R})$, en notant Tr la trace,

$$\langle A, B \rangle = \operatorname{Tr}(^t A B)$$

4

Enfin on note H l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont la trace est nulle.

- a) Justifier que H est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ et déterminer H^{\perp} .
- b) Si M est une matrice de $\mathcal{M}_n(\mathbb{R})$, déterminer la distance d(M, H).

Exercice 3

Exercice 5
Partie 1
On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$

- 1) Calculer le polynôme caractéristique χ_f de f.
- 2) Déterminer les sous-espaces propres de f. L'endomorphisme est-il diagonalisable?
- 3) Calculer la matrice $(A I_3)^2$ et donner une équation et la dimension de Ker $(f id_{\mathbb{R}^3})^2$.
- 4) On pose $e_2 = (1, -1, 0)$ et $e_1 = (f id_{\mathbb{R}^3})(e_2)$.
 - a) Trouver un vecteur propre e_3 de f dont la deuxième composante est égale à 1 et justifier que la famille (e_1, e_2, e_3) est une base de \mathbb{R}^3 .
 - b) Écrire la matrice B de f dans cette base et exprimer A en fonction de B.
 - c) Calculer B^n puis A^n pour tout $n \in \mathbb{N}^*$.

Partie 2

Dans cette partie, $\mathscr{B}=(e_1,e_2,e_3)$ désigne la base canonique de l'espace vectoriel \mathbb{R}^3 ; on rappelle que $e_1=(1,0,0), e_2=(0,1,0)$ et $e_3=(0,0,1)$. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -2 & 5 & 2 \\ -1 & 4 & 2 \\ 2 & -10 & -5 \end{pmatrix}$$

- a) Montrer que f n'admet qu'une seule valeur propre notée α . L'endomorphisme est-il diagonalisable?
 - b) Caractériser le sous-espace propre de f associé à la valeur propre α . Quelle est sa dimension?
 - c) On pose $\varepsilon_1 = e_1$, $\varepsilon_2 = (f \alpha \operatorname{id}_{\mathbb{R}^3})(\varepsilon_1)$ et $\varepsilon_3 = 2e_1 + e_3$.
 - i. Montrer que ε_2 et ε_3 sont des éléments de Ker $(f \alpha \operatorname{id}_{\mathbb{R}^3})$.
 - ii. Montrer que $\mathcal{B}_1 = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 .
- 2) Écrire la matrice B de f dans la base \mathcal{B}_1 , et la matrice de passage P de la base canonique à la base \mathcal{B}_1 . Calculer P^{-1} . Exprimer A à l'aide des matrices B, P et P^{-1}
- 3) On pose J = I + B où I est la matrice identité d'ordre 3.
 - a) Calculer J^2 .
 - **b)** En déduire B^k puis A^k pour tout $k \in \mathbb{N}^*$.
- 4) On considère trois fonctions u, v et w de \mathbb{R} dans \mathbb{R} , dérivables sur \mathbb{R} et vérifiant le système d'équations différentielles

(S)
$$\begin{cases} u'(t) = -2u(t) + 5v(t) + 2w(t) \\ v'(t) = -u(t) + 4v(t) + 2w(t) \\ w'(t) = 2u(t) - 10v(t) - 5w(t) \end{cases}$$

- a) Montrer que le système (S) équivaut à l'équation différentielle matricielle X'(t) = AX(t), où X(t)est un vecteur colonne que l'on précisera.
- b) Si $\varphi(t) \in \mathbb{R}^3$ a pour vecteur colonne dans la base canonique X(t), on écrit

$$\varphi(t) = x(t)\varepsilon_1 + y(t)\varepsilon_2 + z(t)\varepsilon_3$$

Donner le système (S_1) d'équations différentielles vérifiées par x, y et z.

- c) On suppose que u(0) = v(0) = 0 et que w(0) = 1; calculer alors x(0), y(0) et z(0).
- d) Résoudre (S_1) avec les conditions initiales trouvées à la question précédente.
- e) En déduire la solution de (S) vérifiant les conditions initiales u(0) = v(0) = 0 et w(0) = 1.

DL

4

Exercice 1 (Correction de la partie A)

On désigne par $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{R} .

On note $\mathbb{R}_n[X]$, $n \in \mathbb{N}$, l'espace vectoriel des polynômes de degré inférieur ou égal à n.

On identifiera un polynôme P de $\mathbb{R}[X]$ à la fonction polynomiale associée sur \mathbb{R} .

Enfin, P' et P'' désigneront respectivement les polynômes dérivés de P et P'.

Soit (T_k) la suite de polynômes définie par :

$$T_0 = 1$$
 ; $T_1 = X$; $\forall k \in \mathbb{N}^*$ $T_{k+1} = 2XT_k - T_{k-1}$

Dans tout le problème et sauf avis contraire, n désigne un entier naturel.

- 1) Déterminer les polynômes T_2 , T_3 et T_4 .
- 2) Quel est le degré de T_n et son coefficient dominant?
- 3) Étudier la parité de T_n .
- 4) Calculer $T_n(1)$, $T_n(-1)$ et $T_n(0)$.
- **5)** Montrer que T_n est le seul polynôme qui vérifie : $\forall \theta \in \mathbb{R} \ T_n(\cos \theta) = \cos(n\theta)$
- 6) Dans cette question uniquement, on suppose $n \neq 0$.
 - a) Pour quelles valeurs de θ a-t-on : $T_n(\cos \theta) = 0$?
 - b) Montrer alors que T_n possède n racines réelles distinctes dans [-1,1]. Conclure.
- 7) Déterminer les racines de T'_n .

Solution.

- 1) $T_2 = 2XT_1 T_0 = 2X^2 1$ $T_3 = 2XT_2 T_1 = 4X^3 3X$
 - $T_4 = 2XT_3 T_2 = 2X(4X^3 3X) 2X^2 + 1 = 8X^4 8X^2 + 1$
- 2) Récurrence forte : montrons que

$$\mathcal{H}(n): \quad \forall k \leqslant n \operatorname{deg} T_k = k \operatorname{et} \operatorname{son coefficient dominant est} a_k^{[k]} = 2^{k-1}$$

est vraie pour tout $n \geqslant 1$.

- $\underline{\mathcal{H}_1}$ est vraie puisque $T_1=X$ de degré 1 et de coefficient dominant $1=2^0.$
- $\overline{\mathcal{H}_n} \Longrightarrow \mathcal{H}_{n+1}$: Supposons $\mathcal{H}(n)$ vraie. Alors $T_{n+1} = 2XT_n T_{n-1}$. Or $\deg(XT_n) = n+1$ et $deg(T_{n-1}) = n - 1$ d'après $\mathcal{H}(n)$.

Ainsi $deg(T_{n+1}) = n + 1$, et le coefficient dominant vient de $2XT_n$ uniquement. Il vaut le double de celui de T_n , donc $a_{n+1}^{[n+1]} = 2a_n^{[n]} = 2^n$. Par conséquent, $\mathcal{H}(n+1)$ est vraie.

- Conclusion: $\forall n \ge 1$, deg $T_n = n$ et son coefficient dominant est $a_n^{[n]} = 2^{n-1}$.
- 3) Le produit de deux polynômes impairs est pair, et le produit d'un polynôme pair et d'un polynôme impair est impair.

Montrons que la propriété:

$$\mathcal{H}(n)$$
: T_{2n} est pair et T_{2n+1} est impair

est vraie pour tout $n \ge 0$.

- \mathcal{H}_0 : est vraie car $T_0 = 1$ est paire et $T_1 = X$ est impair.
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons $\mathcal{H}(n)$ vraie.

Le polynôme $2XT_{2n+1}$ est pair comme produit de deux polynômes impairs, et T_{2n} est pair. Donc T_{2n+2} est pair comme somme de polynômes pairs.

Le polynôme $2XT_{2n+2}$ est impair comme produit d'un polynôme impair et d'un polynôme pair, et T_{2n+1} est impair. Donc T_{2n+3} est impair comme somme de polynômes impairs. Ainsi $\mathcal{H}(n+1)$ est vraie.

• Conclusion : $\forall n \geq 0$ T_n a la parité de n. DL 4

4) $\star \frac{T_n(1)}{\text{premier termes } T_0(1)}$: La suite $(T_n(1))$ vérifie la relation de récurrence $T_{n+1}(1) = 2T_n(1) - T_{n-1}(1)$ avec pour premier termes $T_0(1) = T_1(1) = 1$. On peut donc résoudre à l'aide des suites récurrentes linéaires d'ordre 2.

Sinon, la récurrence est rapide :

$$\mathcal{H}(n): \quad \forall k \leqslant n \quad T_k(0) = 1$$

- \mathcal{H}_0 est vraie par hypothèse.
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons $\mathcal{H}(n)$ vraie. Alors $T_{n+1}(1) = 2 \times 1 1 = 1$, donc $\mathcal{H}(n+1)$ est vraie.
- Conclusion: $\forall n \ge 0$ $T_n(1) = 1$
- * $T_n(-1)$: Par parité, $T_{2n}(-1) = T_{2n}(1) = 1$ et $T_{2n+1}(-1) = -T_{2n}(1) = -1$. Donc $T_n(-1) = (-1)^n$.
- $\star T_n(0)$: Par parité, $T_{2n+1}(0) = 0$. Montrons que la propriété :

$$\mathcal{H}(n): T_{2n}(0) = (-1)^k$$

est vraie pour tout $n \ge 0$.

- \mathcal{H}_0 est vraie par hypothèse.
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons $\mathcal{H}(n)$ vraie. Alors

$$T_{2n+2}(0) = 2 \times 0 \times T_{2n+1}(0) - T_{2n}(0) = -(-1)^n = (-1)^{n+1}$$

donc $\mathcal{H}(n+1)$ est vraie.

- Conclusion : $\forall n \ge 0$ $T_{2n}(0) = (-1)^n$
- 5) On note (\mathcal{P}) la propriété suivante pour une suite (P_n) de polynômes

$$\forall n \in \mathbb{N} \quad \forall \theta \in \mathbb{R} \qquad P_n(\cos \theta) = \cos(n\theta)$$

* Unicité: Soit (P_n) et (Q_n) deux suites de polynômes vérifiant (\mathscr{P}) . Soit $n \in \mathbb{N}$, il vient

$$\forall \theta \in \mathbb{R} \quad P_n(\cos \theta) = \cos(n\theta) = Q_n(\cos \theta) \Longrightarrow \forall x \in [-1, 1] \quad P_n(x) - Q - n(x) = 0$$

Ainsi $P_n - Q_n$ a une infinité de racines, c'est donc le polynôme nul : $P_n - Q_n = 0$. D'où l'unicité.

 \star (T_n) vérifie la propriété. Montrons que la propriété :

$$\mathcal{H}(n): \quad \forall k \leqslant n \ \forall \theta \in \mathbb{R} \quad T_k(\cos \theta) = \cos(k\theta)$$

est vraie pour tout $n \ge 0$.

- \mathcal{H}_0 est vraie car $\cos(0) = 1$.
- $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$: Supposons $\mathcal{H}(n)$ vraie. $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$ donc

$$\forall \theta \in \mathbb{R}$$
 $T_{n+1}(\cos \theta) = 2\cos(\theta)\cos(n\theta) - \cos((n-1)\theta) = \cos((n+1)\theta)$

• Conclusion: $\forall n \ge 0 \quad \forall \theta \in \mathbb{R} \quad T_n(\cos \theta) = \cos(n\theta)$ En conclusion, T_n est le seul polynôme qui vérifie (\mathscr{P}) :

$$\forall \theta \in \mathbb{R}$$
 $T_n(\cos \theta) = \cos(n\theta)$

- 6) Dans cette question uniquement, on suppose $n \neq 0$.
 - a) Il suffit de résoudre l'équation $cos(n\theta) = 0$:

$$T_n(\cos \theta) = 0 \iff \cos(n\theta) = 0 \iff n\theta = \frac{\pi}{2}[\pi] \iff \theta = \frac{\pi}{2n}\left[\frac{\pi}{n}\right]$$

Donc pour
$$\theta = \frac{\pi}{2n} + \frac{k\pi}{n}$$
 avec $k \in \mathbb{Z}$.

 DL

b) Pour tout $k \in \mathbb{Z}$, d'après la question précédente, $T_n\left(\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)\right) = 0$, c'est-à-dire $x_k = \cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)$ est racine de T_n .

De plus, $\frac{\pi}{2n} + \frac{k\pi}{n} \in]0, \pi]$ pour tout $k \in \{0, \dots, n-1\}$, et le cosinus est bijectif de $[0, \pi]$ sur [-1, 1]. Ainsi, les réels (x_0, \dots, x_{n-1}) sont tous distincts et dans [-1, 1].

Or le polynôme T_n est de degré n, il a donc au plus n racines. Ainsi

$$T_n(X) = 2^{n-1} \prod_{k=0}^{n} \left(X - \cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right) \right)$$

7) Si $n=0, T_0'=1$; et si $n=1, T_1'=1$. Supposons désormais $n \ge 2$. La relation de la question 5) est vraie pour tout $\theta \in \mathbb{R}$, et les fonctions sont dérivables : dérivons-la.

$$-\sin\theta T_n'(\cos\theta) = -n\sin(n\theta)$$

Or $\sin(n\theta) = 0$ si et seulement si $\theta = \frac{k\pi}{n}$ pour $k \in \mathbb{Z}$. De même qu'en 6)b), les $x_k' = \cos\left(\frac{k\pi}{n}\right)$ sont n-1 réels tous distincts de [-1,1] lorsque $k \in \{1,\ldots,n-1\}$.

De plus, $\sin\left(\frac{k\pi}{n}\right) \neq 0$ si $k \in \{1, \dots, n-1\}$, donc

$$-\sin\left(\frac{k\pi}{n}\right)T_n'\left(\cos\left(\frac{k\pi}{n}\right)\right) = -n\sin(k\pi) = 0 \Longrightarrow T_n'(x_k') = 0$$

Ainsi, (x'_1, \ldots, x'_{n-1}) sont des racines de T'_n . Or deg $T'_n = (\deg T_n) - 1 = n - 1$, donc ce sont les seules.

4