Devoir de Mathématiques numéro 2

Exercice 1

Pour $n \in \mathbb{N}$, on pose :

$$a_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n \mathrm{d}t.$$

- 1) a) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est monotone.
 - b) En déduire qu'elle est convergente. On notera ℓ sa limite.
 - c) Justifier que pour tout $t \in [0,1], 1+t^2 \le 1+t$ et en déduire que $\ell=0$.
- 2) (5/2) Justifier la convergence de la série $\sum_{n>0} (-1)^n a_n$.
- 3) On se propose ici de calculer la somme de la série $\sum_{n\geqslant 0} (-1)^n a_n$. Soit $n\in\mathbb{N}$.
 - a) Montrer que pour tout $t \in [0,1]$:

$$\sum_{n=0}^{n} (-1)^p \left(\frac{1+t^2}{2}\right)^p = \frac{2}{3+t^2} - (-1)^{n+1} \frac{2}{3+t^2} \left(\frac{1+t^2}{2}\right)^{n+1}.$$

b) Vérifier l'inégalité

$$\int_0^1 \frac{2}{3+t^2} \left(\frac{1+t^2}{2}\right)^{n+1} dt \leqslant \frac{2}{3} a_{n+1}.$$

- c) Calculer l'intégrale $\int_0^1 \frac{2}{3+t^2} dt$ à l'aide du changement de variable $t = \sqrt{3} u$.
- d) En conclure que

$$\lim_{n \to +\infty} \int_0^1 \sum_{p=0}^n (-1)^p \left(\frac{1+t^2}{2}\right)^p dt = \frac{\pi}{3\sqrt{3}}.$$

e) Donner la valeur de la somme $\sum_{n=0}^{+\infty} (-1)^n a_n$.

Exercice 2

Les trois parties du problème sont largement indépendantes; seul le résultat de la question 2 de la première partie est utile pour la suite.

Partie 1 (Résultats préliminaires)

On se propose de trouver les fonction $h: \mathbb{R} \to \mathbb{R}$ continues telles que $\forall (x,y) \in \mathbb{R}^2$, h(x+y) = h(x) + h(y).

1) Soit $h: \mathbb{R} \to \mathbb{R}$ continue telle que, $\forall (x,y) \in \mathbb{R}^2$, h(x+y) = h(x) + h(y). Pour tout $x \in \mathbb{R}$, on pose

$$H(x) = \int_0^x h(t) \, \mathrm{d}t$$

a) Montrer que, $\forall (x,y) \in \mathbb{R}^2$, $\int_0^y h(x+t) dt = yh(x) + H(y)$.

DL

- **b)** En déduire que, $\forall (x,y) \in \mathbb{R}^2$, H(x+y) H(x) H(y) = yh(x).
- c) Exprimer de même la quantité $xh(y), \forall (x,y) \in \mathbb{R}^2$.
- d) Justifier alors que, $\forall x \in \mathbb{R}$, h(x) = xh(1). Une telle fonction répond-elle à la question?
- 2) Soit I un intervalle de \mathbb{R} , $x_0 \in I$, et $f: I \to \mathbb{R}$ continue. Pour tout $x \in I$ on pose

$$F(x) = \int_{x_0}^x f(t) \, \mathrm{d}t$$

- a) Justifier que F est dérivable sur I et préciser sa dérivée.
- b) Soit J un intervalle de \mathbb{R} et soient $u: J \to \mathbb{R}$ et $v: J \to \mathbb{R}$ deux fonctions dérivables à valeurs dans I. On pose, pour tout $x \in J$,

$$F_1(x) = \int_{u(x)}^{v(x)} f(t) dt$$

Montrer que F_1 est dérivable sur J et préciser sa dérivée. De plus, si u et v sont de classe \mathscr{C}^1 , montrer que F_1 est aussi \mathscr{C}^1 .

3) Soit $g: \mathbb{R} \to \mathbb{R}$ continue, et soit (a,b) un couple de réels avec a < b. En effectuant un changement de variable, montrer que l'application $G: x \mapsto \int_a^b g(x+t) \cos t \, dt$ est de classe \mathscr{C}^1 sur \mathbb{R} et que, pour tout $x \in \mathbb{R}$,

$$G'(x) = g(b+x)\cos b - g(a+x)\cos a + \int_a^b g(x+t)\sin t \,dt$$

Partie 2 (Étude d'une équation fonctionnelle)

On se propose de déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que :

$$\forall (x,y) \in \mathbb{R}^2$$
 $f(x)f(y) = \int_{x-y}^{x+y} f(t) dt$

On suppose qu'il existe une telle fonction f, non identiquement nulle. Soit a tel que $f(a) \neq 0$.

- 1) Montrer que f(0) = 0.
- 2) a) Vérifier que, $\forall x \in \mathbb{R}, f(x) = \frac{1}{f(a)} \int_{x-a}^{x+a} f(t) dt$.
 - b) Montrer que f est de classe \mathscr{C}^1 et calculer sa dérivée.
 - c) En déduire que f est de classe \mathscr{C}^2 sur \mathbb{R} .
- 3) Montrer que,

$$\forall (x,y) \in \mathbb{R}^2$$
 $f'(x)f(y) = f(x+y) - f(x-y)$ et $f(x)f'(y) = f(x+y) + f(x-y)$

Quelle est nécessairement la parité de f?

4) On pose $\lambda = -\frac{f''(a)}{f(a)}$. Déduire de ce qui précède que f est solution sur \mathbb{R} de l'équation différentielle

$$(\mathscr{E}_{\lambda}) \qquad z'' + \lambda z = 0$$

- 5) Étude de l'équation différentielle (\mathcal{E}_{λ}) : $z'' + \lambda z = 0$.
 - a) On suppose $\lambda > 0$ et on pose $\mu = \sqrt{\lambda}$.
 - i) Donner la dimension et une base de l'espace vectoriel des solutions de (\mathcal{E}_{λ}) .
 - ii) En déduire que, dans ce cas, il existe $A \in \mathbb{R}^*$ tel que $\forall x \in \mathbb{R}, f(x) = A\sin(\mu x)$, puis justifier que $A = \frac{2}{\mu}$.
 - **b)** On suppose que $\lambda < 0$ et on pose $\mu = \sqrt{-\lambda}$.

DL

- i) Donner de même une base des solutions de (\mathcal{E}_{λ}) .
- ii) En déduire que, dans ce cas, il existe $A' \in \mathbb{R}^*$ tel que $\forall x \in \mathbb{R}, f(x) = A' \operatorname{sh}(\mu x)$, puis justifier que $A' = \frac{2}{\mu}$

2

c) Si $\lambda = 0$, montrer que $\forall x \in \mathbb{R}, f(x) = 2x$.

Partie 3 (Étude d'une fonction)

Partie 3 (Etude d'une fonction) On considère la fonction f définie par : $f(x) = \int_{-\pi}^{x^2} \frac{dt}{\ln t}$ lorsque ceci a un sens.

- 1) Justifier que $\mathbb{R}_{+}^{*}\setminus\{1\}$ est inclus dans le domaine de définition \mathcal{D}_{f} de f.
- 2) Justifier que f est dérivable sur $\mathbb{R}_+^* \setminus \{1\}$ et donner l'expression de f'.
- a) Écrire le développement limité à l'ordre 2 de la fonction ln au voisinage de 1.
 - **b)** Justifier alors que $\frac{1}{\ln x} = \frac{1}{x-1} + \frac{1}{2} + o_1(1)$.
 - c) En déduire que les fonctions f' et $x \mapsto \frac{1}{\ln x} \frac{1}{x-1}$ possèdent des limites finies en 1 à préciser.
- 4) Étude de f au voisinage de 1 :
 - a) Justifier qu'il existe $\alpha \in]0,1[$ tel que pour tout $x \in]1-\alpha,1+\alpha[\setminus\{1\},\left|\frac{1}{\ln x}-\frac{1}{x-1}\right|\leqslant \frac{3}{2}.$
 - **b)** En déduire que, pour tout $x \in]\sqrt{1-\alpha}, \sqrt{1+\alpha}[\setminus\{1\}, |f(x)-\ln(1+x)| \le \frac{3}{2}|x^2-x|$, puis trouver la limite de f en 1.
 - c) On prolonge f par continuité en 1 et on note encore f ce prolongement. Montrer que f est dérivable en 1 et préciser f'(1). On énoncera le théorème utilisé.
- 5) Étude de f au voisinage de 0:
 - a) Montrer que, pour tout $x \in]0,1[, 0 \leqslant f(x) \leqslant \frac{-x}{\ln x}$ et en déduire que f est prolongeable par continuité à droite en 0
 - b) On note encore f ce prolongement. Préciser f(0) et montrer que f est dérivable à droite en 0. Quelle est la valeur de f'(0)?
- 6) Étude de f au voisinage de $+\infty$: Montrer qu'au voisinage de $+\infty$, la courbe représentative de f présente une branche parabolique de direction asymptotique l'axe des y.
- 7) Dresser le tableau de variations de f sur \mathbb{R}_+ .
- 8) Montrer que la dérivée de f est strictement croissante sur \mathbb{R}_+ .
- 9) Tracer la courbe représentative de f.
- 10) Calcul d'une intégrale.
 - a) Montrer que l'intégrale $\int_0^1 \frac{t-1}{\ln t} dt$ est convergente.
 - **b)** Montrer que, $\forall (x,y) \in]0,1[^2,\int_{y^2}^{x^2} \frac{\mathrm{d}t}{\ln t} = \int_y^x \frac{u}{\ln u} \,\mathrm{d}u$ et en déduire que $f(y) f(x) = \int_x^y \frac{t-1}{\ln t} \,\mathrm{d}t$
 - c) En déduire la valeur de $\int_0^1 \frac{t-1}{\ln t} dt$.