Devoir de Mathématiques numéro 1

Exercice 1

Les questions suivantes sont réservées aux 5/2 : partie 1, question 1); partie 2 question 3)d)ii). Définitions et notations :

- On dit qu'un nombre réel x est rationnel s'il existe deux entiers relatifs p et q (avec $q \neq 0$) tels que $x = \frac{p}{q}$.
- On dit qu'un nombre réel x est irrationnel s'il n'est pas rationnel.
- L'ensemble des nombres rationnels est noté \mathbb{Q} .
- Pour tout nombre réel x, on appelle partie entière de x et on note E(x) le plus grand entier relatif inférieur à $x: E(x) \le x < 1 + E(x)$.

Partie 1 (Fonctions homographiques)

1) Cette question est réservée aux 5/2. Pour tout $a \in \mathbb{R}$ fixé, on considère

$$(E_a)$$
 $(x-a)y'' + 2y' = 0$

où y est une fonction inconnue de la variable x de classe \mathscr{C}^2 sur un intervalle réel et à valeur réelle.

- a) On suppose a > 0. On considère une suite réelle (a_n) et on définit une fonction y comme la somme de la série entière $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in]-R, R[$ (avec R > 0).
 - i) On suppose que y est solution de (E_a) . Déterminer, pour tout $x \in]-R, R[$, une relation de récurrence vérifiée par la suite (a_n) , puis déterminer a_n en fonction de n et de a_1 , pour tout $n \ge 1$. Exprimer y à l'aide de fonctions usuelles.
 - ii) En déduire les fonctions développables en série entière qui sont solutions de (E_a) sur]-a,a[.
 - iii) Montrer qu'elles forment un espace vectoriel de dimension 2 et en donner une base. En déduire l'ensemble des solutions de (E_a) sur]-a,a[.
- b) On suppose que a est un nombre réel quelconque. Résoudre (E_a) sur $]-\infty, a[$, puis sur $]a, +\infty[$ et enfin sur \mathbb{R} .
- 2) On considère α , β , γ et δ des réels tels que $\gamma \neq 0$. On pose pour tout x réel différent de $-\frac{\delta}{\gamma}$

$$g(x) = \frac{\alpha x + \beta}{\gamma x + \delta}$$

- a) À quelle condition g est-elle constante? On suppose dans la suite que cette condition n'est jamais remplie.
- b) i) Déterminer des nombres réels u, v et w tels que pour tout $x \in \mathbb{R} \{-\frac{\delta}{\gamma}\}, g(x) = u + \frac{v}{x+w}$.
 - ii) En déduire le sens de variation de g sur chacun de ses intervalles de définition.
- c) On suppose dans cette question que v > 0. On se place dans \mathbb{R}^2 muni d'un repère orthonormé. On considère la courbe \mathscr{C} d'équation xy = 1, la courbe \mathscr{D} d'équation xy = v et la courbe Γ d'équation g(x) = y dans ce repère.
 - i) Trouver une homothétie h telle que $h(\mathscr{C}) = \mathscr{D}$.
 - ii) Trouver une translation t telle que $t \circ h(\mathscr{C}) = \Gamma$.

DL

iii) À quelle condition sur v l'application $t \circ h$ est-elle une homothétie différente de l'identité? Déterminer alors son centre et son rapport.

1

d) Déterminer un réel a pour lequel la fonction g est solution de (E_a) sur des intervalles que l'on précisera.

Partie 2 (Fractions continues) $_1$

On considère la fonction $f: x \mapsto \frac{1}{x - E(x)}$.

- 1) a) Déterminer l'ensemble de définition de f. Montrer que f est périodique de période 1.
 - b) On considère $k \in \mathbb{Z}$. Déterminer des réels α , β , γ et δ tels que la restriction de f à]k, k + 1[coïncide avec celle de la fonction g (telle que définie au 1.2) à ce même intervalle.
 - c) Étudier f; on précisera en particulier ses variations, son ensemble image et on tracera son graphe dans un repère orthonormé.
 - d) Démontrer que pour tout nombre x irrationnel (resp. rationnel non entier), f(x) est irrationnel (resp. rationnel).
- 2) On pose $x_0 \in \mathbb{R}$ tel que $x_0 > 0$ et on s'intéresse lorsque cela est possible à la suite (x_n) définie par

$$\forall n \in \mathbb{N}$$
 $x_{n+1} = f(x_n)$

- a) On suppose dans cette question que $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Montrer que pour tout $n \in \mathbb{N}$, x_n est bien défini.
- b) On suppose dans cette question que $x_0 \in \mathbb{Q}$ et que pour tout $n \in \mathbb{N}$, x_n est bien défini. On considère u_0 et v_0 deux entiers naturels non nuls tels que $x_0 = \frac{u_0}{v_0}$.
 - i) Démontrer que $\forall n \in \mathbb{N}, x_n \in \mathbb{Q}$ et que $\forall n \in \mathbb{N}^*, x_n > 1$.
 - ii) On définit par récurrence deux suites d'entiers (u_n) et (v_n) en posant $\forall n \in \mathbb{N}, u_{n+1} = v_n$ et v_{n+1} égal au reste de la division euclidienne de u_n par v_n lorsque v_n est non nul, et 0 sinon. Démontrer que l'on a, pour tout $n \in \mathbb{N}, v_n > 0$ et $x_n = \frac{u_n}{v_n}$.
 - iii) Démontrer que la suite (v_n) est strictement décroissante. Que peut-on conclure, l'hypothèse faite au début du b) est-elle possible?
- c) Énoncer une condition nécessaire et suffisante sur x_0 pour que, pour tout $n \in \mathbb{N}$, x_n soit bien défini.
- 3) On fixe dans toute cette partie $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ tel que $x_0 > 0$. On considère la suite (x_n) définie au 2)a) et, pour tout $n \in \mathbb{N}$ on pose $a_n = E(x_n)$.

La suite des entiers (a_n) est appelée développement en fraction continue de x_0 .

- a) Écrire un programme Maple d'argument x_0 et n donnant a_n .
- b) On pose dans cette question $x_0 = \sqrt{2}$ (on admettra que c'est un irrationnel).
 - i) Tester l'algorithme du a) pour $x_0 = \sqrt{2}$ et n valant successivement 0, 1, 2, 3 et 4. Donner les valeurs de a_n obtenues. Quelle conjecture peut-on formuler?
 - ii) Calculer exactement les valeurs de x_1 , x_2 . En déduire que la suite (x_n) est stationnaire, puis démontrer la conjecture du a).
 - iii) Reprendre les 2 questions précédentes avec $x'_0 = \sqrt{3}$ (on admettra que c'est un irrationnel).
- c) On définit deux suites (p_n) et (q_n) par

$$\begin{cases} p_0 = a_0 \\ q_0 = 1 \end{cases}, \begin{cases} p_1 = a_0 a_1 + 1 \\ q_1 = a_1 \end{cases} \text{ et } \forall n \geqslant 2 \begin{cases} p_n = a_n p_{n-1} + p_{n-2} \\ q_n = a_n q_{n-1} + q_{n-2} \end{cases}$$

- i) Démontrer que pour tout $n \ge 1$, p_n et q_n sont des entiers naturels non nuls.
- ii) Démontrer que la suite (q_n) est strictement croissante. En déduire que $\forall n \in \mathbb{N}, q_n \geqslant n$.
- iii) Démontrer que $\forall n \in \mathbb{N}^*, p_n q_{n-1} p_{n-1} q_n = (-1)^{n-1}$
- iv) Démontrer que $\forall n \in \mathbb{N}, x_0 = \frac{p_n + p_{n+1}x_{n+2}}{q_n + q_{n+1}x_{n+2}}.$

1

- d) On définit une suite de rationnels (r_n) par $\forall n \in \mathbb{N}, r_n = \frac{p_n}{q_n}$.
 - i) Démontrer que $\forall n \in \mathbb{N}^*, r_n r_{n-1} = \frac{(-1)^{n-1}}{q_n q_{n-1}}.$
 - ii) (5/2) Montrer que la série de terme général $r_n r_{n-1}$ est alternée et convergente.
 - iii) On admet que $\sum_{k=1}^{n} (r_k r_{k-1})$ converge. En déduire que la suite (r_n) converge.
 - iv) On note r la limite de (r_n) . Démontrer que pour tout $n \in \mathbb{N}$, r est compris entre r_n et r_{n+1} et que $\forall n \in \mathbb{N}^*$, $\left|r \frac{p_n}{q_n}\right| \leqslant \frac{1}{q_n^2}$. Indication: Étudier les suites (r_{2n}) et (r_{2n+1}) , ou via le ii).
- 4) On considère un nombre irrationnel x_0 , deux nombres entiers α et δ strictement positifs, et on pose $\beta = 1 + \alpha \delta$ et $\gamma = 1$.
 - a) Démontrer que le nombre réel $y_0 = g(x_0)$ (avec g définie dans la partie 1) est bien défini et qu'il est irrationnel.
 - b) On note respectivement (a_n) et (b_n) les développements en fraction continue de x_0 et y_0 définis au 3). Démontrer que pour tout $n \ge 2$, $a_{n-1} = b_n$.
- 5) On considère deux entiers α et δ strictement positifs et on pose : $\Delta = (\delta + \alpha)^2 + 4$. On pose, comme au 4), $\beta = 1 + \alpha \delta$ et $\gamma = 1$.
 - a) Démontrer que Δ n'est pas le carré d'un entier. On en déduit et on l'admettra que $\sqrt{\Delta}$ est un nombre irrationnel.
 - b) Démontrer que l'équation du second degré $x^2 + (\delta \alpha)x \alpha\delta 1 = 0$ possède deux solutions réelles distinctes toutes les deux irrationnelles dont l'une, notée z_0 , est strictement positive.
 - c) Démontrer que $z_0 = g(z_0)$.
 - d) Que peut-on en déduire quant au développement en fraction continue du nombre z_0 ?
 - e) Que peut-on dire du développement en fraction continue de $\sqrt{p^2+1}$ pour tout $p \in \mathbb{N}^*$?

Exercice 2

- 1) a) Étudier les variations de la fonction f définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par $f(x) = \sin x$.
 - **b)** Montrer que f réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1].
 - c) i) Montrer que f^{-1} est dérivable sur]-1,1[.
 - ii) Donner, pour tout réel x de] -1,1[, l'expression de $(f^{-1})'(x)$ en fonction de x.
 - iii) Montrer que $(f^{-1})'$ est de classe \mathscr{C}^{∞} sur]-1,1[. On posera, pour tout $x \in [-1,1], f^{-1}(x) = \operatorname{Arcsin}(x)$.
- 2) Soit $\alpha \in \mathbb{R}^*$. On pose, pour tout $x \in [-1, 1]$, $g_{\alpha}(x) = \cos(\alpha \operatorname{Arcsin} x)$.
 - a) Montrer que g_{α} est de classe \mathscr{C}^2 sur]-1,1[.
 - b) Donner, pour tout $x \in]-1,1[$, l'expression de $g'_{\alpha}(x)$ en fonction de x.
 - c) Donner, pour tout $x \in]-1,1[$, l'expression de $g''_{\alpha}(x)$ en fonction de x.
 - d) Montrer que g_α est solution sur] 1,1[de l'équation différentielle

$$(1 - x^2)y'' - xy' + \alpha^2 y = 0$$

- e) Déterminer les valeurs de α pour lesquelles cette équation admet des solutions polynomiales.
- 3) Pour tout $x \in [-1,1]$, donner une expression simplifiée de $g_1(x)$.
- 4) Pour tout $x \in [-1, 1]$, donner une expression simplifiée de $g_2(x)$.
- 5) Pour tout $k \in \mathbb{N}^*$ et tout $x \in [-1, 1]$, on pose $P_k(x) = \cos(2^k \operatorname{Arcsin} x)$.
 - a) Montrer que, pour tout $x \in [-1,1]$, P_k est une fonction polynomiale de x, dont on précisera le degré. On désignera par c_k le coefficient du terme de plus haut degré de P_k .
 - b) Le coefficient du terme de plus haut degré de $P_{k-1}(x)$ étant noté c_{k-1} , donner une relation entre c_{k-1} et c_k .