Programme de colle 20

Classe de PT

Semaine du lundi 6 au vendredi 10 mars

Liste des questions de cours

- Rayon de convergence de la somme de deux séries entières, avec preuve.
- L'application $(x,y) \mapsto \frac{xy}{x^2 + y^2}$ n'a pas de limite en (0,0). L'application $(x,y) \mapsto \frac{x^2y}{x^2 + y^2}$ et $(0,0) \mapsto 0$ est continue en (0,0).
- Points réguliers de $x(x^2+y^2)-x^2+y^2=0$. Équation de la tangente en $(\frac{1}{2},\frac{1}{2\sqrt{3}})$.
- Plan tangent en un point régulier d'une nappe paramétrée $(u,v) \mapsto \overrightarrow{F}(u,v)$, d'une surface d'équation cartésienne f(x,y,z) = 0. Vecteur tangent à une courbe définie par deux équations cartésiennes (énoncés).

1 Fonctions de plusieurs variables

1.1 Limite et continuité

Limite en un point adhérent.

Fonctions continues de \mathbb{R}^p dans \mathbb{R}^m , opérations algébriques, composition. L'image d'un fermé borné par une application continue est fermé borné (cas des fonctions à valeurs dans \mathbb{R} : bornée et atteint ses bornes).

1.2 Calcul différentiel

Dérivées partielles, applications \mathscr{C}^1 , formule de Taylor à l'ordre 1. Formule de composition, applications aux EDP. Cas des fonctions à valeurs dans \mathbb{R} : Gradient (∇) .

Dérivées partielles d'ordre supérieur, théorème de Schwarz. EDP d'ordre 2, avec changement de variable (donné).

Fonctions de $\Omega \subset \mathbb{R}^2$ ouvert dans \mathbb{R} : formule de Taylor-Young à l'ordre 2. Étude des extrema locaux : points critiques, hessienne, nature lorsque la hessienne est inversible via l'étude des valeurs propres.

1.3 Courbes du plan définies par une équation cartésienne

Point régulier, équation de la tangente en un point régulier. Cas des lignes de niveau $f(x,y) = \lambda$.

2 Surfaces

2.1 Généralités

2.1.1 Définitions

Définition d'une surface à l'aide d'une équation paramétrique ou cartésienne. Recherche d'équation cartésienne. Courbe tracée sur une surface.

Définition et équation du plan tangent dans les cas paramétrique et cartésien. Droite tangente à une courbe tracée sur une surface.

2.1.2 Courbes comme intersection de deux surfaces

 $Condition \ suffisante \ d'existence, \ tangente.$