Sujets Maple Concours 2009 (officiel de la Taupe 2009)

Planche 51.

Soit $a \in]0,1[$ et f_n définie sur $I =]-\infty, \frac{1}{a}[$ par $f_n(x) = \prod_{i=1}^n \frac{1}{1-a^i x}.$

Pour $a = \frac{1}{2}$, tracer les graphes de f_n pour $n \in [1,10]$ sur]-3,2[pour observer le comportement de la suite.

Montrer que f_{100} est développable en série entière et donner les valeurs approchées des 20 premiers coefficients de ce développement.

Planche 59.

 $a_0 = 3$, $a_1 = \frac{7}{3}$, $a_n = 8 - \frac{17}{a_{n-1}} + \frac{10}{a_{n-1}a_{n-2}}$. Montrer que, pour les premiers termes, $a_n = \frac{2^{n+2}-1}{2^{n+1}-1}$ et calculer les valeurs exactes des 50 premiers termes.

Planche 62.

Montrer que, $\forall a > 0$, l'équation différentielle $x'' = x - x^2$, x(0) = 0, x'(0) = a admet une solution unique sur un intervalle de la forme $]\alpha, \beta[$, avec $\alpha\beta < 0$.

Tracer les courbes représentatives de quelques solutions pour diverses valeurs de a.

Trouver les éventuels points critiques de $f(x, y) = x^2 + y^2 - \frac{2}{3}x^3$.

Tracer quelques lignes de niveau de f . Déterminer les lignes de niveau passant par ces points critiques.

Planche 66.

Soit
$$I_n = \int_0^{+\infty} \frac{dt}{(3+t^2)^n}$$
. Calculer I_1 et I_2 .

Trouver une relation de récurrence entre les termes de la suite (I_n) .

Etudier la série de terme général $\frac{I_n}{n^{\alpha}}, \ \alpha \in \mathbb{R}$.

Soit (C_b) : $3x^2 + 4y^2 + 2bx - b^2 = 0$. Tracer (C_1) et (C_2) . Trouver une équation polaire de (C_b) .

Planche 70.

Montrer que $N(A) = \sqrt{tr({}^{t}AA)}$ est une norme sur $M_{n}(\mathbb{R})$.

Ecrire une procédure qui donne cette norme.

Pour n = 4, donner la norme des matrices A = (i + j), B = (ij), C = AB, et D = (i - j).

Déterminer la matrice symétrique H telle que $N(A-H) = \inf \{N(A-M), M \text{ symétrique}\}$.

Planche 71.

Résoudre $(x^2 + x)y'' - 3xy' - 3y = 0$ sur chacun des intervalles suivants :

$$]-\infty,-1[,]-1,0[,]0,+\infty[,]-\infty,0[,]-1,+\infty[$$
 et enfin sur $\mathbb R$.

Chercher les solutions développables en série entière et donner le rayon de convergence.

Résoudre le problème de Cauchy y(1) = a, y'(1) = 1 et tracer les graphes des solutions pour $a \in \{-1, -0.9, ..., 0.9, 1\}$.

Planche 75.

On partage le segment $\left[0, \frac{\pi}{2}\right]$ et *n* parties par les points $t_0 = 0 < t_1 < ..., t_n = \frac{\pi}{2}$ de telle sorte que les points

 M_k de paramètres t_k de l'astroïde $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ vérifient : la longueur de $M_k M_{k+1}$ est constante.

Soit enfin
$$S_n = \frac{1}{n+1} \sum_{k=0}^n OM_k$$
.

Est-ce que Maple indique que la suite (S_n) converge?

Calculer l'expression exacte de S_n et calculer la limite de cette suite.

Planche 78.

Soit la surface d'équation :
$$-\frac{6}{5}x^2 + 2xy + \frac{6}{5}xz + \frac{3}{2}y^2 - yz + \frac{7}{10}z^2 = 0$$
.

Donner l'équation réduite de cette quadrique et le repère approprié.

Donner un paramétrage et la représenter à l'écran.

<u>Planche 79.</u>

Soit
$$A = \begin{pmatrix} 12 & 2 & 3 & 4 \\ 2 & 13 & 4 & 5 \\ 3 & 4 & 15 & 6 \\ 4 & 5 & 6 & -17 \end{pmatrix}$$
, $Y_0 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$.

On construit la suite de vecteurs Y_n par : $Y_{n+1} = D^{-1}(B - (A - D)Y_n)$ où D est la matrice diagonale ayant pour diagonale, la diagonale de A.

Montrer que si la suite Y_n converge, sa limite Y est solution du système AX = B.

Calculer les 20 premiers vecteurs Y_n .

Planche 80.

On définit sur $M_3(\mathbb{R})$ les deux endomorphismes u et v par : u(M) = MA et v(M) = AM où $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Déterminer les matrices de u et v relativement à la base canonique de $M_3(\mathbb{R})$ et les sous espaces propres de ces deux endomorphismes.

On munit $M_3(\mathbb{R})$ du produit scalaire $(M/N) = tr({}^tMN)$.

Montrer que $\Phi = u - v$ est un endomorphisme symétrique dans cet espace euclidien.

Donner une base de $Ker(\Phi)$ et de $Im(\Phi)$.

Planche 85.

Trouver toutes les solutions de l'équation différentielle : $\sqrt{1-x^2}$ y'+ $\sqrt{1-y^2}$ = 0.

Planche 93.

Etudier et représenter les courbes d'équation polaire : $\rho = \frac{1}{1 + a\cos\theta}$ pour $a \in \left\{\frac{1}{2}, 1, 2\right\}$.

Trouver l'équation du cercle inscrit dans un triangle donné par ses trois sommets.

Planche 97.

Montrer que pour
$$(j,k) \in \mathbb{N}^2$$
, $P_{k,j}(x) = \frac{(x^k - 1)^{j+1}}{j!} \frac{d^j}{dx^j} \left(\frac{1}{x^k - 1}\right)$ est un polynôme.

Donner ces polynômes pour $(j,k) \in [0,10] \times [1,5]$.

Planche 228.

Montrer que f définie sur $\mathbb{R}_{10}[X]$ par : $f(P) = (X^2 + 2X + 1)P'' + (2X + 1)P' - 99P(X + 1)$ est un endomorphisme. Donner sa matrice relativement à la base canonique et déterminer son noyau.

Planche 23

Soit
$$A = \begin{pmatrix} a & 0 & 1 & 0 & 1 & 0 \\ 0 & a & 0 & 1 & 0 & 1 \\ 1 & 0 & a & 0 & 1 & 0 \\ 0 & 1 & 0 & a & 0 & 1 \\ 1 & 0 & 1 & 0 & a & 0 \\ 0 & 1 & 0 & 1 & 0 & a \end{pmatrix}$$
. Calcul de A^n , expliciter A^4 .

Planche 232.

Trouver k pour que le polynôme $X^4 - X^3 + kX^2 + 6X - 4$ admette deux racines dont le produit vaut 2.

Planche 233.

Soit
$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
. Ecrire la matrice relativement à la base canonique de $M_3(\mathbb{R})$, de l'endomorphisme u défini par : $u(M) = MN - NM$.

Planche 234.

Les matrices $A(a,b,c) = \begin{pmatrix} a & b & c \\ b & a+c & b \\ c & b & a \end{pmatrix}$ $(a,b,c) \in \mathbb{R}^3$ sont-elles simultanément diagonalisables?

A(a,b,c) est-elle inversible? Calculer $A(a,b,c)^n$ pour $n \in \mathbb{N}$.

Planche 235.

Dimension du commutant de $A = \begin{pmatrix} a & b & c \\ b & a & b \\ c & b & a \end{pmatrix}$.

Planche 236.

A quelle condition la fonction f 3-périodique sur \mathbb{R} et valant $ax^3 + bx^2 + cx + d$ sur [0,3[est-elle continue sur \mathbb{R} ?

A quelle condition admet-elle un un extrema en 1 valant 4?

A quelle condition est-elle de classe C^1 sur \mathbb{R} ?

Ces conditions étant remplies, tracer le graphe de f sur [-3,6].

F est-elle alors de classe C^2 sur \mathbb{R} ?

Planche 258.

Soit f de matrice $A = \begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$ relativement à la base canonique de \mathbb{R}^2 . Donner les bases orthonormées relativement auxquelles la matrice de f n'a que des 0 dans la diagonale.

Planche 259.

Trouver toutes les fonctions f de classe C^2 telles que $f(x, y) = \Phi(x^2 + y^2)$ et $\frac{\partial^2 f}{\partial x \partial y} = \frac{xy f(x, y)}{(x^2 + y^2)^2}$.

Planche 260.

Trouver toutes les fonctions f de classe C^1 telles que $f(x, y) = \Phi(x^2 + y^2)$ et $y \frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y} = \frac{xy f(x, y)}{(x^2 + y^2)^2}$.

Planche 261.

Soient les points $M_i(x_i, y_i)$ avec $x_i = \frac{i}{10}$ et $y_i = 0.8 + 1.2 \ln(x_i)$.

Déterminer a,b,c tel que $S = \sum_{i=1}^{20} (y_i - (ax_i^2 + bx_i + c))^2$ soit minimal. Donner la valeur de ce minimum.

Tracer sur une même figure l'ensemble des points M_i et la courbe d'équation $y = ax^2 + bx + c$.

Planche 262.

Déterminer a pour que la matrice $A = \begin{pmatrix} -3a+6 & 3a-4 & 2a-2 \\ -3a+4 & 3a-2 & 2a-2 \\ -2a+2 & 2a-2 & 2a \end{pmatrix}$ soit diagonalisable. Lorsque c'est le cas diagonaliser A.

Planche 263.

Représenter la courbe $\begin{cases} x = \frac{t^2}{1 + 2t - 3t^2} \\ y = \ln(1 + t^2) \end{cases}$. Branches infinies, points stationnaires, points doubles.

Planche 264.

Trouver a,b,c,e,f pour que $F(x) = \tan x - \frac{ax^2 + bx^4 + cx^6}{ex^3 + fx^5}$ soit un infiniment petit au voisinage de 0 d'ordre

Maximum. Donner alors un équivalent de F au voisinage de 0.

Planche 265.

On pose $x_k = \frac{k}{5}$ et on définit $f(x_k) = x_k^2$.

Montrer qu'il existe des réels uniques $(a_k)_{0 \le k \le 5}$, tels que $\forall x \in [0,1]$, $f(x) = \sum_{k=0}^{5} a_k \left| x - \frac{k}{5} \right|$.

Tracer sur une même figure les graphes de f et g définie sur [0,1] par $g(x) = x^2$.

Planche 266.

Vérifier que les trois plans d'équations :

 $P_1: 8x + 4y + z + 2 = 0$, $P_2: 2x - 2y + z - 4 = 0$, $P_3: 4x + 2y + 4z - 8 = 0$ ne sont pas parallèles deux à deux. Déterminer les sphères de rayons 1 tangentes à ces trois plans. Représenter sur une même figure, pour x, y, z tous compris entre -6 et 6, les trois plans et les sphères trouvées.

1

Planche 267.

Montrer que $\langle P, Q \rangle = \int_0^1 P(x) Q(x) dx$ est un produit scalaire sur $R_8[X]$.

Trouver une base orthonormée de $R_5[X]$. Trouver le projeté orthogonal de X^8 sur $R_5[X]$. Déterminer la distance de X^8 à $R_5[X]$.

Planche 268.

Déterminer a,b,c,d pour que la série de terme général $u_n = a \ln \left(1 - \frac{1}{n}\right) + b \ln \left(1 - \frac{1}{\sqrt{n}}\right) + \frac{c-a}{\sqrt{n}} + \frac{b+a}{n} + \frac{d}{n^2}$ soit convergente.