Devoir de Mathématiques numéro 3

Exercice 1

Soit $(a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$ deux à deux distincts, et $f : [0, 1] \to \mathbb{R}$ continue. Déterminer $(\alpha_0, \ldots, \alpha_n) \in \mathbb{R}^{n+1}$ tels que

$$\forall P \in \mathbb{R}_n[X], \quad \int_0^1 f(t)P(t) dt = \sum_{k=0}^n \alpha_k P(a_k)$$

à l'aide des polynômes de Lagrange

Exercice 2

Soit E un espace vectoriel sur \mathbb{R} de dimension $n, n \in \mathbb{N}^*$, et soit f un endomorphisme de E.

Partie 1

- 1) On suppose que f est diagonalisable. Soit $P = \sum_{i=0}^{d} a_i X^i \in \mathbb{R}[X]$, et u = P(f).
 - a) Montrer que f et u commutent.
 - b) Exprimer les valeurs propres de u en fonction de celles de f et montrer que u est diagonalisable dans la même base que f.
- 2) Soit g un endomorphisme de E qui commute avec f. On suppose désormais que f admet n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$.
 - a) L'endomorphisme f est-il diagonalisable?
 - b) Soit $i \in [1, n]$. Quelle est la dimension de E_{λ_i} , sous-espace propre de f associé à la valeur propre λ_i ?
 - c) En déduire que pour tout $i \in [1, n]$, si e_i est un vecteur propre de f pour la valeur propre λ_i , e_i est également un vecteur propre de g. On notera μ_i la valeur propre associée.
 - d) Les μ_i sont-ils forcément 2 à 2 distincts?
 - e) L'endomorphisme g est-il diagonalisable?
 - f) Montrer qu'il existe un polynôme $P \in \mathbb{C}_{n-1}[X]$ tel que g = P(f). <u>Indication</u>: *Utiliser les polynômes interpolateurs de Lagrange*

Partie 2

Posons

$$\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid f \circ g = g \circ f \}$$

Cet ensemble s'appelle le commutant de f.

- 1) Si f admet n valeurs propres distinctes, déterminer $\mathscr{C}(f)$ à l'aide de la partie 1.
- 2) Désormais, f admet 2 valeurs propres distinctes, λ et μ , et f est diagonalisable. Notons \mathscr{B} une base de diagonalisation, telle que les k premiers vecteurs sont des vecteurs propres pour λ , et les n-k suivant pour μ . Notons A la matrice de f dans cette base \mathscr{B} , et

$$\mathcal{C}(A) = \{ B \in \mathscr{M}_n(\mathbb{R}) \mid AB = BA \}$$

- a) Soit $g \in \mathcal{L}(E)$. Montrer que $g \in \mathcal{C}(f) \iff B = \operatorname{Mat}(g, \mathcal{B}) \in \mathcal{C}(A)$.
- b) Montrer que $B \in \mathcal{C}(A)$ si et seulement si B est diagonale blocs, avec un premier bloc de taille dim E_{λ} et le second de taille dim E_{μ} .
- c) En déduire $\mathscr{C}(f)$.